# The commands for each result are listed below. # to call up the sort_maple file: read(sort_maple): # for Proposition 3.1 {family} # Note that we need to do this for all irreducible types which are standard parabolic subgroups of exceptional groups, # because we later need all such subgroups to check proposition~\ref{restrict or} # To do this in sort_maple, run: crys:=true: for R in [A3,B3,A4,D4,B4,F4,A5,D5,B5,A6,D6,B6,E6,A7,D7,B7,E7,E8] do check_family_all(R) od; crys:=false: for R in [H3,H4] do check_family_all(R) od; # for Proposition 3.2 {restrict or} crys:=true: for R in [E6,E7,E8,F4] do check_res_all(R) od; crys:=false: for R in [H3,H4] do check_res_all(R) od; # for the claim in Lemma 4.6 {align sc} crys:=true: for R in [E6,E7,E8,F4] do check_claim_all(R) od; crys:=false: for R in [H3,H4] do check_claim_all(R) od; # For Lemma 6.6 {nc lemma} crys:=true: for R in [D4,D5,D6,E6,E7,E8,F4] do check_nc_lemma_all(R) od; crys:=false: for R in [H3,H4] do check_nc_lemma_all(R) od; # For Lemma 6.7 {nc lemma 2} crys:=true: for R in [E6,E7,E8,F4] do check_nc_lemma2_all(R) od; crys:=false: for R in [H3,H4] do check_nc_lemma2_all(R) od; # For Proposition 7.2 {compat} crys:= false: for R in [H3,H4] do check_compat_all(R) od; # For Proposition 7.3 {restrict} crys:= false: for R in [H3,H4] do check_compat_res_all(R) od;