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Coxeter groups

A Coxeter group W is a group with a certain presentation:

Choose a finite generating set S = {s1, . . . , sn}.

For every i < j , choose an integer m(i , j) ≥ 2.

Define:

W = 〈S | s2
i = 1, ∀ i and (sisj)

m(i ,j) = 1, ∀ i < j〉.

Finite Coxeter groups correspond to finite groups generated by
reflections.

Not familiar with Coxeter groups? Two good classes of examples
are the dihedral groups and the symmetric groups.

I’ll use two running examples: the dihedral group I2(5) and the
symmetric group S4.
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A dihedral example

The Coxeter group I2(5) given by 〈{a, b} | a2 = b2 = (ab)5 = 1〉 is
the (dihedral) symmetry group of the regular pentagon.
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Elements of the group are in bijection with “regions” cut out by
the reflecting hyperplanes.
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Symmetric group S4 (symmetries of regular tetrahedron)

Regions ↔
elements.

Blue region is 1.

Largest circles:
hyperplanes for
s1= (1 2),
s2= (2 3), and
s3= (3 4).

m(s1, s2) = 3 .
m(s2, s3) = 3.
m(s1, s3) = 2.
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Noncrossing (NC) partitions (Kreweras, 1972)

1

2

3

4

Partitions of an n-cycle
with noncrossing parts.

(Shown: n = 4,
refinement order.)

NC partitions ↔
certain elements of Sn.
Bijection: read parts
clockwise as cycles.
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W -NC partitions (Athanasiadis, Bessis, Brady, Reiner, Watt, ∼2000)

W : a finite Coxeter group with S = {s1, . . . , sk} and reflections T .
Reduced T -word for w ∈W : shortest possible word in alphabet T .
Absolute order: Prefix order on reduced T -words. Notation: ≤T .

Coxeter element: c = s1 · · · sk .
W -noncrossing partition lattice: elements of [1, c]T .

Example (W = Sn, c = (1 2)(2 3) · · · (n − 1 n))

Reflections in Sn are (not-necessarily adjacent) transpositions.
Sn-noncrossing partitions map to classical noncrossing partitions.
(Interpret cycles as blocks.)

Why do this?

1. Eilenberg-MacLane spaces (and more) for Artin groups
(e.g. the braid group).

2. Interesting algebraic combinatorics.
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Motivation

NC(W ) is a lattice.
First proved uniformly, Brady and Watt (2005).
Another proof (W crystallographic) Ingalls and Thomas (2006).

Initial motivation for the present work: A new proof that NC(W ) is
a lattice, as follows: We construct a lattice (W ,�) on the elements
of W , and identify a sublattice of (W ,�) isomorphic to NC(W ).

Beyond the initial motivation:

(W ,�) turns out to have very interesting properties, very
closely analogous to the properties of NC(W ).

Proofs are simple and natural in the Coxeter context. (More
broadly: in the context of simplicial hyperplane arrangements.)

This approach brings to light how NC(W ) arises naturally in
the context of semi-invariants of quivers.

There are intriguing connections to certain “pulling”
triangulations of associahedra and permutohedra.
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Shards (an unmotivated definition)

Shards in a dihedral (or “rank 2”) Coxeter group: The two
hyperplanes bounding the “identity region” are not cut. The
remaining hyperplanes are cut in half.

1

Important technical point: all of the shards contain the origin. We
“cut” along the intersection of the hyperplanes, then take closures
of the pieces.
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Shards in S4
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The shard intersection order

Let Ψ(W ) be the set of arbitrary intersections of shards. We
partially order this set by reverse containment.

Immediate: (Ψ(W ),⊇) is a join semilattice. (Join is intersection.)
It also has a unique minimal element (the empty intersection, i.e.
the ambient vector space), so it is a lattice. Also immediate:
(Ψ(W ),⊇) is atomic.

Less obvious: (Ψ(W ),⊇) is graded (ranked by codimension) and
coatomic.

Surprising: The elements of Ψ(W ) are in bijection with the
elements of W .

w ∈W ←→ a region R ←→
⋂

{shards below R}

In particular, (Ψ(W ),⊇) induces a partial order � on W .

Also surprising: Every lower interval in (Ψ(W ),⊇) is isomorphic to
(Ψ(WJ),⊇) for some standard parabolic subgroup WJ .
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Shard intersections in I2(5)
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The poset (Ψ(I2(5)),⊇) has R
2

as its unique minimal element
and the origin as its unique
maximal element. The 8
(1-dimensional) shards are
pairwise incomparable under
containment, and live at rank 1
(i.e. codimension 1).

The poset (I2(5),�) has 1 as its
unique minimal element and
ababa as its unique maximal
element. The other 8 elements
of W are pairwise incomparable
and live at at rank 1.
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1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321
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Properties of (W ,�) and NC(W )

(Except as noted: (W ,�) results are new; NC(W ) results are not.)

(W ,�) NC(W )

Lattice Lattice (sublattice of (W ,�))

Weaker than weak order
(R., 2008 or modern folklore.)

Weaker than Cambrian lattice
(R., 2008 or modern folklore.)

Atomic and coatomic Atomic and coatomic

Graded (W -Eulerian numbers) Graded (W -Narayana)

Not self-dual Self-dual

Lower intervals ∼= (WJ ,�) Lower intervals ∼= NC(WJ)

Möbius number: ±number of
“positive” elements of W .

Möbius number: ±number of
“positive” elements of NC(W ).
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Details on the Möbius number

Theorem
The Möbius function of (W ,�) satisfies

µ(1,w0) =
∑

J⊆S

(−1)|J| |WJ | .

Proof.
Since lower intervals [1,w ] are isomorphic to (WDes(w),�),
checking the defining recursion for µ becomes

∑

w∈W

∑

J⊆Des(w)

(−1)|J| |WJ | =
∑

J⊆S

(−1)|J| |WJ |
∑

w∈W s.t.

J⊆Des(w)

1.

The inner sum is |W |/ |WJ |, the number of maximal-length
representatives of cosets of WJ in W . Thus the double sum
reduces to zero.
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Properties of (W ,�) and NC(W ) (continued)

(W ,�) NC(W )

Recursion counting maximal
chains: sum over max’l proper
standard parabolic subgroups.
MC(W ) =

∑

s∈S

(

|W |
∣

∣W〈s〉

∣

∣

− 1

)

MC(W〈s〉)

Recursion counting maximal
chains: sum over max’l proper
standard parabolic subgroups.
(R., 2007.)

MC(W ) =
h

2

∑

s∈S

MC(W〈s〉).

These types of recursions are very natural in the context of Coxeter
groups/root systems. For example:

1. Recursions for the W -Catalan number (number of
W -noncrossing partitions, clusters in the associated root
system, W -nonnesting partitions, etc.)

2. Volume of W -permutohedron (weight polytope). This follows
from Postnikov’s formula in terms of Φ-trees.
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Properties of (W ,�) and NC(W ) (concluded)

(W ,�) NC(W )

Maximal chains ←→ maximal
simplices in a pulling triangula-
tion of the W -permutohedron.
(Sn case: Loday described the
triangulation, 2005.)

Maximal chains ←→ maximal
simplices in a pulling triangu-
lation of the W -associahedron.
(Sn case: Loday, 2005.)
(General case: R., 2008.)

k-Chains ←→ k-simplices in
the same triangulation of the
W -permutohedron.
(R., 2008.)

k-Chains ←→ k-simplices in
the same triangulation of the
W -associahedron.
(R., 2008.)

Loday: Noticed that maximal simplices in a certain pulling
triangulation of the Sn-associahedron biject with parking functions.
Constructed the analogous triangulation of the Sn-permutohedron
and asked what played the role of parking functions.
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Details on the triangulations

The bijection between intersections of shards and elements of W

extends to a bijection between k-chains in (W ,�) and k-simplices
in a pulling triangulation of the W -permutohedron.

In particular: The order complex of (W ,�) has f -vector equal to
the f -vector of a pulling triangulation of the W -permutohedron.

Key point: For any w ∈W , the lower interval [1,w ] in (W ,�) is
isomorphic to (WJ ,�) for some WJ . The elements of WJ are in
bijection with vertices of the face below w in the permutohedron.

All of this works for NC(W ) and the W -associahedron as well.
Maximal chains in NC(Sn) are in bijection with parking functions,
so we recover the Loday result as a special case.
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S3 Permutohedron example
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Proofs of properties of (W ,�)

The key point in the proofs is the bijection between shard
intersections Ψ(W ) and elements of W .

All of the arguments use fairly simple tools, including:

A characterization of “canonical join representations” in the
weak order (R., Speyer, 2008).

Lemmas on shards proved in my earlier papers on the lattice
theory of the weak order. (These involve simple geometric and
lattice-theoretic arguments.)

New lemmas in the same spirit.
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Why shards?

Before the shard intersection order, the original purpose for shards:
Shards encode lattice congruences of the weak order on W .
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Why shards?

Before the shard intersection order, the original purpose for shards:
Shards encode lattice congruences of the weak order on W .

The weak order on I2(5): Bottom element: the identity element.
Going up: Crossing reflecting hyperplanes away from the identity.
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The weak order on S4

Bottom element: the identity element.
Going up: Crossing reflecting hyperplanes away from the identity.
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The weak order on S4

Bottom element: the identity element.
Going up: Crossing reflecting hyperplanes away from the identity.
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Lattice congruences 101

A congruence on a finite lattice L is an equivalence relation ≡ that
respects the operations ∨ (least upper bound) and ∧ (greatest
lower bound).

Easy: congruence classes are intervals in L.

Therefore: The relation ≡ is determined by transitivity, once one
knows all equivalences of the form x ≡ y for x <· y .

We say that ≡ contracts the edge x <· y if x ≡ y .

Edges cannot be contracted independently. There are some forcing
relations.
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Edge-forcing example: “Dihedral” lattices

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Edge-forcing example: “Dihedral” lattices
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A “bottom” edge forces all side edges and the opposite “top” edge.
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i.e. 1 ≡ y
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Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Lattice congruences of the weak order

The weak order on W is a lattice.

Congruences on the weak order have nice geometric properties.
Interpret a lattice congruence “≡” as an equivalence relation on
the regions cut out by the reflecting hyperplanes. For each
congruence class C , let ∪C denote the union of the regions in C .

Theorem (R., 2004)

The cones ∪C are the maximal cones of a complete fan.

The quotient of the weak order modulo ≡ arises geometrically from
the coarser fan just as the weak order arises from the original fan.

The weak order has many intervals that are dihedral lattices.

Theorem (R., 2002)

All edge forcings for lattice congruences of the weak order are

determined locally within dihedral intervals.
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What shards are

We will be gluing regions together according to congruence classes.

So: contracting an edge means removing the wall between two
adjacent cones.

A shard is a maximal collections of walls which must always be
removed together in a lattice congruence (because of edge-forcing).
Each shard turns out to consist of walls all in the same hyperplane.

Edge-forcing also implies some forcing relations among shards.

Example:

1
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Shard removal, forcing and fans in S4
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Shard removal, forcing and fans in S4
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Shard intersections and lattice congruences

Since shards are so central to lattice congruences on the weak
order, it is perhaps not surprising that lattice congruences “play
nicely” with the shard intersection order.

Specifically, let πΘ
↓ (W ) be the collection of “bottom elements” of

congruences classes of a congruence Θ. Then the restriction
(πΘ

↓ (W ),�):

is a lattice (a join-sublattice of (W ,�));

is graded, atomic and coatomic;

has lower intervals (πΘ′

↓ (WJ),�)

has Möbius number analogous to that of (W ,�);

has order-complex whose simplices biject with the simplices of
a pulling triangulation of a certain CW-ball.
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Shard intersections and noncrossing partitions

There is a special lattice congruence Θc called the c-Cambrian
congruence, with very special properties:

The Cambrian fan, (obtained by removing shards according to Θc)
is combinatorially isomorphic with the generalized associahedron
for W . (R., Speyer, 2007.)

πΘc

↓ (W ) is the set of c-sortable elements. These are in bijection
with both noncrossing partitions and clusters in the corresponding
cluster algebra of finite type. (R., 2006.)
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Shard intersections and noncrossing partitions

There is a special lattice congruence Θc called the c-Cambrian
congruence, with very special properties:

The Cambrian fan, (obtained by removing shards according to Θc)
is combinatorially isomorphic with the generalized associahedron
for W . (R., Speyer, 2007.)

πΘc

↓ (W ) is the set of c-sortable elements. These are in bijection
with both noncrossing partitions and clusters in the corresponding
cluster algebra of finite type. (R., 2006.)

NEW! The lattice (πΘc

↓ ,�) is isomorphic to NCc(W ).

As a consequence, NCc(W ) is a lattice. (In fact, NCc(W ) is a
sublattice of (W ,�).)

The earlier proof (by Brady and Watt) that NC(W ) is a lattice also
used the polyhedral geometry of cones. Their proof is “dual” to the
new proof (in the broadest outlines but not in any of the details).
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What are the Cambrian congruences?

There is a small set ΣW ,c of shards such that the c-Cambrian
congruence corresponds to removing the shards in ΣW ,c and all
other shards whose removal is then forced.
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The Cambrian fan
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The Cambrian fan
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The Cambrian fan (Normal fan to W -associahedron)
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