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Introduction

George Grätzer started writing his General Lattice Theory in 1968. It was
published in 1978. It set out “to discuss in depth the basics of general lattice
theory.” Almost 900 exercises, 193 research problems, and a detailed Further
Topics and References for each chapter completed the picture.

As T. S. Blyth wrote in the Mathematical Reviews: “General Lattice Theory
has become the lattice theorist’s bible. Now, two decades on, we have the second
edition, in which the old testament is augmented by a new testament that is
epistolic. The new testament gospel is provided by leading and acknowledged
experts in their fields.”

Another decade later, Grätzer considered updating the second edition to
reflect some exciting and deep developments. “When I started on this project,
it did not take me very long to realize that what I attempted to accomplish in
1968–1978, I cannot even try in 2009. To lay the foundation, to survey the
contemporary field, to pose research problems, would require more than one
volume or more than one person. So I decided to cut back and concentrate in
this volume on the foundation.”

So Lattice Theory: Foundation (referenced in this volume as LTF) provides
the foundation. Now we complete this project with Lattice Theory: Special
Topics and Applications, written by a distinguished group of experts, to cover
some of the vast areas not in LTF.
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Chapter

9

Lattice Theory of the Poset of

Regions

N. Reading

Hyperplane arrangements (collections of codimension-1 subspaces) have long
been an object of study in combinatorics, topology, and geometry. This
chapter explores the lattice theory of the poset of regions of a (real) hyperplane
arrangement. We discuss the open problem, first posed by Björner, Edelman,
and Ziegler [70], of characterizing by local geometric conditions which posets of
regions are lattices. We give a local geometric characterization (“tightness”) of
which posets of regions are semidistributive lattices. Along the way, we discuss
a local condition for checking that a partially ordered set is a lattice, along with
analogous local conditions for determining lattice-theoretic properties. In the
case of simplicial arrangements (which are in particular tight), we characterize
the regions of the arrangement in terms of two notions of combinatorial
convexity.

We then turn our attention to lattice congruences on posets of regions,
focusing in particular on the tight case. We begin with a discussion of lattice
congruences from a combinatorial point of view. We then establish that tight
posets of regions have the special property of being polygonal lattices. We
discuss how to decompose the hyperplanes in a tight arrangement into shards
and show how the polygonal property leads to a geometric characterization of

399© Springer International Publishing Switzerland 2016 
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400 9. Lattice Theory of the Poset of Regions

lattice congruences of tight poset of regions in terms of shards. Finally, we
discuss how the geometric characterization in terms of shards is inherited by
lattice quotients of the poset of regions.

9-1. Basic notions

9-1.1 Hyperplane arrangements

Definition 9-1.1. A (linear) hyperplane in Rn is a linear subspace of dimen-
sion n − 1 (i.e., codimension 1). An arrangement of hyperplanes is a finite
collection of hyperplanes.

Other important notions of hyperplane arrangements exist in the literature.1

In the standard terminology, our object of study is a real, central hyperplane
arrangement, but we mostly omit the adjectives “real” and “central” for
arrangements and omit the adjective “linear” for hyperplanes.

A hyperplane arrangement A is essential if the intersection
⋂

H∈A H of
all of the hyperplanes in A is the origin. There is no harm in requiring
A to be essential; if it is not, then an essential hyperplane arrangement is
obtained by taking the quotient of Rn by the subspace

⋂
H∈A H and taking

the quotient of each hyperplane by
⋂

H∈A H. In general, we do not make this
requirement, because it is convenient in specific examples to have the freedom
to construct non-essential arrangements. For those results which require an
essential arrangement, the corresponding result for non-essential arrangements
is easily obtained (but often much less convenient to state) as a corollary. The
rank of A is the dimension of the quotient of Rn by the subspace

⋂
H∈A H,

or equivalently the dimension of the linear span of normal vectors to the
hyperplanes in A.

Definition 9-1.2. The complement of A is the set Rn \ (
⋃

H∈A H) of all
points not contained in any hyperplane of A. The connected components
of the complement are unbounded n-dimensional open sets. The closures of
these connected components are called regions or A-regions and we write
R(A) for the set of regions of A. (Some authors, including the authors of the
foundational papers [70, 139, 144], use the term “region” for the connected
components themselves rather than their closures.)

Example 9-1.3. Figure 9-1.1 represents a hyperplane arrangement A in R3 .
This picture is obtained as follows: Each hyperplane in A intersects the unit
sphere in R3 in a great circle. The resulting collection of great circles is
stereographically projected to the plane. Since a great circle maps to a circle
under stereographic projection (or to a line if the great circle contains the
poles), we obtain the diagram shown. The intersection of a region with the

1For example, collections of hyperplanes in finite-dimensional vector spaces over other
fields, or collections of affine hyperplanes (translates of linear hyperplanes).
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Figure 9-1.1: A hyperplane arrangement

unit sphere is a curvilinear polygon that projects to a possibly unbounded area
defined by the projected circles. In Figure 9-1.1, there are 14 (projections of)
regions, including the unbounded region outside all of the circles. The labels
in the regions are explained later in Example 9-1.14.

9-1.2 Polyhedral geometry

To describe the regions, we need some terminology from polyhedral geometry.
(For more information, see for example [464].)

We write bold symbols (x, y, etc.) for vectors in Rn and the corresponding
non-bold symbols, with subscripts, for their entries, so that for example the
symbol x stands for (x1 , . . . , xn) ∈ Rn. We write ⟨·, ·⟩ for the usual Euclidean
inner product on Rn. Given a hyperplane H in Rn, there exists a vector n
(unique up to nonzero scaling) such that H = {x ∈ Rn | ⟨n,x⟩ = 0}. This
is a normal vector to H, and H = Hn is the hyperplane normal to n. The
hyperplane H defines two closed (linear) halfspaces in Rn, namely the sets
H−

n = {x ∈ Rn | ⟨n,x⟩ ≤ 0} and H+
n = {x ∈ Rn | ⟨n,x⟩ ≥ 0}, where n is a

normal vector to H.

Definition 9-1.4. A cone in Rn is a set that is closed under addition and
positive scaling. A cone is in particular a convex set, meaning that if x and
y are points in the cone, then the entire line segment xy connecting x and
y is contained in the cone. The dimension of a cone is the dimension of the
smallest linear subspace containing the cone. The relative interior of a cone
is its interior relative to the smallest linear subspace containing the cone. A
closed polyhedral cone in Rn is a set that can be written as the intersection
of finitely many closed linear halfspaces. Equivalently, a closed polyhedral
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cone is the nonnegative linear span (the set of all linear combinations with
nonnegative coefficients) of a finite set of vectors. The equivalence of these two
definitions of a closed polyhedral cone is non-trivial. (See, for example, [464,
Lecture 1].) A closed polyhedral cone is in particular a cone, and thus a convex
set. A closed polyhedral cone in Rn may have dimension less than n. For
example, for any nonzero vector n, the cone H−

n ∩H+
n is the hyperplane Hn.

We will now give a quick definition, sufficient for our needs, of the faces of
a closed polyhedral cone. For a more standard definition, see for example [464,
Lecture 2.1]. Given a full-dimensional closed polyhedral cone R in Rn, an
expression for R as

⋂
n∈N H−

n is non-redundant if for any proper subset N ′

of N , the cone
⋂

n∈N ′ H−
n is strictly larger than R. Given a non-redundant

expression
⋂

n∈N H−
n for R, the facets of R are the intersections Hn ∩R for

n ∈ N . Exercise 9.1 is to verify that for each n ∈ N , the facet Hn ∩ R is
(n− 1)-dimensional, and thus full-dimensional in Hn. Exercise 9.2 verifies that
for any n such that H−

n ⊇ R and Hn ∩R is (n− 1)-dimensional, Hn ∩R is a
facet of R. For n ∈ N , the hyperplane Hn is called a facet-defining hyperplane
or boundary hyperplane for R, and the set of these hyperplanes is written
B(R). Any intersection of facets is called a face of R. Any face is itself a
closed polyhedral cone. By convention, the intersection of the empty set of
facets is interpreted to be R, so that in particular R is a face of itself. It is
possible that a given face may be written as an intersection of facets in several
different ways. Faces of a closed polyhedral cone C not of full dimension can
be defined by considering C as a full-dimensional cone in the smallest linear
subspace containing C.

Definition 9-1.5. A full-dimensional closed polyhedral cone in Rn is simplicial
if it has exactly n facets, or equivalently if it can be written as the intersection⋂

n∈N H−
n where N is a basis for Rn. Equivalently again, a full-dimensional

cone is simplicial if it can be written as the nonnegative linear span of some
basis for Rn. In a simplicial cone, each face has a unique expression as an
intersection of facets and so there are

(n
k

)
faces of dimension k for each k from

0 to n. Alternately, each face is the nonnegative linear span of a subset of the
basis whose nonnegative linear span is the cone.

9-1.3 Regions

Each region of a hyperplane arrangement is a closed polyhedral cone and is the
closure of its interior, which is a connected component of Rn \ (

⋃
H∈A H). To

see why, fix a connected component U of Rn \ (
⋃

H∈A H) and observe that, for
every H ∈ A, the set U is contained in one of the two open halfspaces defined
by H (the two connected components of Rn \ H). Indeed, this connected
component is the intersection of open halfspaces, one for each H ∈ A. It
follows that the corresponding region is the intersection of closed halfspaces,
one for each H ∈ A.
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Figure 9-1.2: A simplicial hyperplane arrangement

Definition 9-1.6. A hyperplane arrangement is simplicial if every one of its
regions is a simplicial cone in the sense of Definition 9-1.5.

Example 9-1.7. Figure 9-1.2 shows a simplicial hyperplane arrangement
of rank 3 with 7 hyperplanes. The picture is a stereographic projection as
explained in Example 9-1.3.

Proposition 9-1.8. If Q and R are distinct regions of A and Q∩R is (n−1)-
dimensional, then Q ∩ R is a facet of Q and a facet of R. If R is a region,
then every facet of R is shared by a unique other region Q.

Proof. If Q ∩ R is (n− 1)-dimensional, then let x be a point in the relative
interior of Q ∩R. Thus for small enough ε, the open ball of radius ε about x
intersects Q ∩R in an (n− 1)-dimensional ball. By definition, the interiors of
regions are disjoint, so this (n−1)-dimensional ball forms part of the boundary
of Q and of R, and furthermore, the interiors of Q and of R are on opposite
sides of the hyperplane H containing the (n−1)-dimensional ball. Exercise 9.2
implies that H is a facet-defining hyperplane of Q and of R. If H ′ ̸= H is a
hyperplane intersecting the relative interior of the facet F = R ∩H of R, then
H ′ intersects the relative interior of R as well. We see in particular that no
facet-defining hyperplane of Q (besides H) intersects the relative interior of F ,
so F ⊆ Q ∩H. By symmetry Q ∩H ⊆ R ∩H = F , and we have proved the
first assertion.

If F is a facet of R, then let x be a point in the relative interior of F . Then
for small enough ε, the open ball of radius ε about x intersects no hyperplane
of A besides the facet-defining hyperplane H of F . The hyperplane H cuts
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the open ball into two halves, one of which is contained in R. The other
half is contained in some region Q whose intersection with R is thus (n− 1)-
dimensional. By the first assertion, R and Q share a common facet. Since
interiors of regions are disjoint, the region Q is the unique region sharing the
facet F with R.

Definition 9-1.9. A fan in Rn is a collection F of closed polyhedral cones
in Rn such that (i) if C is a cone in F and D is a face of C, then D is in F ,
and (ii) if C and D are cones in F then C ∩D is a face of C and a face of D.
The fan F is complete if the union of the cones in F is all of Rn. See [464,
Lecture 7] for more details about fans. The following theorem is a special
case2 of [373, Theorem 1.2], but can probably be attributed to folklore.

♦ Theorem 9-1.10. Suppose M is a collection of full-dimensional cones in
Rn with disjoint interiors, such that

⋃
M = Rn. Suppose also that whenever

two cones in M have an (n− 1)-dimensional intersection, their intersection is
a facet of each. Then the set F consisting of cones in M and faces of cones
in M is a complete fan.

Proposition 9-1.8 and Theorem 9-1.10 imply the following corollary.

Corollary 9-1.11. The regions of A are the maximal cones of a complete fan.

Two regions are adjacent if they share a facet in common. The adjacency
graph of A is the graph G(A) whose vertices are regions and whose edges are
pairs of adjacent regions. The adjacency graph is connected. In fact, much
more is true: Taking A to be essential, G(A) is the graph consisting of the
vertices and edges of an n-dimensional zonotope, so Balinski’s Theorem says
that the graph is n-connected (meaning connected even after removing any
n− 1 vertices). See, for example, [464, Lecture 7.3] for details on zonotopes
and [464, Lecture 3.5] for details on Balinski’s Theorem. For our purposes,
the following lemma, which extends the assertion of connectivity in another
direction, is more relevant.

Lemma 9-1.12. Given regions Q and R of a hyperplane arrangement A,
there exists a sequence of regions Q = R0 , . . . , Rk = R with Ri−1 adjacent to
Ri for i = 1, . . . , k. The sequence can be chosen so as to have an additional
property: Moving from Q to R in the sequence, no hyperplane of A is crossed
more than once.

Proof. Choose a point x in the interior of Q and a point y in the interior of
R such that the line segment xy does not intersect any (n− 2)-dimensional
subspace of the form H1 ∩ H2 for H1 , H2 ∈ A. To see why we can choose

2Take k = n− 2 in [373, Theorem 1.2]. Condition (i) of [373, Theorem 1.2] holds because
an open ball in Rn remains path connected, even after removing a finite number of sets of
dimension at most n− 2.
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such x and y, consider, for any x, the set Y of vectors y such that the line
containing x and y intersects some subspace H1 ∩H2 . The set Y is a union of
finitely many hyperplanes, and thus cannot cover the interior of R, because
the latter is full-dimensional. Following the line segment xy, we cross only one
hyperplane at a time, and thus visit a sequence of regions Q = R0 , . . . , Rk = R
with Ri−1 adjacent to Ri for i = 1, . . . , k. The line segment is not contained
in any hyperplane of A, so it intersects each hyperplane of A in at most one
point. We have constructed the desired sequence.

9-1.4 The poset of regions

A hyperplane H ∈ A separates a region R from the base region B if some line
segment (or equivalently, every line segment) from the interior of R to the
interior of B intersects H. The separating set S(R) of R (with respect to B)
is the set of hyperplanes in A that separate R from B.

Definition 9-1.13. The poset of regions Pos(A, B) is the set R(A) of regions,
partially ordered with Q ≤ R if and only if S(Q) ⊆ S(R). This is a valid
partial order: reflexivity and transitivity are immediate, and antisymmetry
is an easy exercise (Exercise 9.3). Typically, different choices of B, for the
same arrangement A, give non-isomorphic posets Pos(A, B). (For example,
consider the arrangement of Example 9-1.3. Two different posets of regions
for this arrangement are shown in Figures 9-1.3 and 9-3.2. See also Examples
9-1.14 and 9-3.6.)

Example 9-1.14. For the arrangement of Figure 9-1.1, choose B to be the
region that projects to the center (labeled in the figure). The other regions
are labeled with their separating sets. The hyperplanes are numbered 1, 2, 3, 4
and separating sets are shown without set braces and commas. The region
−B, with separating set A, projects to the unbounded area outside of all
circles. The hyperplanes themselves are not labeled with their numbers, but
the numbering is clear from the separating sets. The resulting poset of regions
is shown in Figure 9-1.3.

The poset of regions Pos(A, B) is self-dual. The anti-automorphism is
R ,→ −R. (See Exercise 9.4.) It is immediate that B is the unique minimal
element of Pos(A, B), and the antipodal region −B is the unique maximal
element. The proof of the following proposition is left as Exercise 9.7.

Proposition 9-1.15. The cover relations in Pos(A, B) are Q ≺ R if and only
if Q and R are adjacent and |S(Q)| < |S(R)|. In this case, S(R) = S(Q)∪{H},
where H is the hyperplane defining the common facet of Q and R.

Using Proposition 9-1.15, one can show that Pos(A, B) is graded, with
rank function |S(R)| (Exercise 9.8).
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Figure 9-1.3: A poset of regions

Definition 9-1.16. Given a facet F of a region R, Proposition 9-1.8 says
that there is a unique region Q ̸= R also containing F as a facet. Proposition
9-1.15 asserts that either Q ≺ R or Q ≻ R. Accordingly, we define a lower
facet of R with respect to B to be a facet that R shares with a region Q ≺ R.
Similarly, an upper facet of R with respect to B is a facet that R shares with a
region Q ≻ R. A lower hyperplane (with respect to B) of a region R is the
facet-defining hyperplane of a lower facet of R, and an upper hyperplane is the
facet-defining hyperplane of an upper facet of R. Write L(R) for the set of
lower hyperplanes of R and U(R) for the set of upper hyperplanes of R.

The following lemmas are convenient restatements of Proposition 9-1.15.

Lemma 9-1.17. Suppose R is a region.

(i) The regions covered by R in Pos(A, B) are exactly the regions Q such
that S(Q) = S(R) \ {H}, for some lower hyperplane H of R.

(ii) The regions covering R in Pos(A, B) are exactly the regions Q such that
S(Q) = S(R) ∪ {H}, for some upper hyperplane H of R.

Lemma 9-1.18. Let b be a vector in the interior of B. Suppose Q and R
are adjacent regions and let n be a normal vector to their shared facet with
⟨x,n⟩ > 0 for all x in the interior of Q. Then Q ≺ R if and only if ⟨b,n⟩ > 0.

The following proposition is proved as Exercise 9.9.

Proposition 9-1.19. Let b be a vector in the interior of B, and for each
H ∈ A, let nH be a nonzero normal vector to H such that ⟨b,nH⟩ > 0.
Suppose R is a region of A and choose r in the interior of R. Then S(R) =
{H ∈ A | ⟨r,nH⟩ < 0}.

The choice of vectors nH is unique up to positive scaling of each nH and
is independent of the choice of b, as long as b is in the interior of B.

The following simple observation first appeared as part of the proof of
[144, Corollary 2.4].
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Lemma 9-1.20. For any region R, the interval [R,−B] in Pos(A, B) is
isomorphic to the interval [R,−B] in Pos(A, R). (The isomorphism is the
identity map.)

Proof. In this proof, we write SB(Q) for the separating set of a region Q
with respect to the base region B. Then for Q ∈ [R,−B]Pos(A,B) we have
SR(Q) = SB(Q) \ SB(R). Therefore, the identity map is an isomorphism from
[R,−B]Pos(A,B) to [R,−B]Pos(A,R).

We are interested in the case where Pos(A, B) is a lattice. The following
result of [70] establishes a necessary condition.

♦ Theorem 9-1.21. If A is essential and Pos(A, B) is a lattice, then B is a
simplicial cone.

The converse to Theorem 9-1.21 holds in a special case, described in
Theorem 9-1.22 below, but does not hold in general. The following is [70,
Theorem 3.2]. See also [70, Example 3.3].

♦ Theorem 9-1.22. If A has rank at most 3 and B is a simplicial cone, then
Pos(A, B) is a lattice.

As pointed out in [70, Section 3], there ought to be a necessary and sufficient
local condition for Pos(A, B) to be a lattice. More specifically, the condition
should be based on local configurations of hyperplanes/regions, so for example,
the property of being simplicial is local. The problem of finding such a local
condition is open. (See Problem 9.1 at the end of this chapter.) In Section 9-3,
we establish the lattice property for pairs (A, B) satisfying a certain local
condition, more general than simpliciality, that we call tightness. The proof of
the lattice property for that class relies on a shortcut that we call the BEZ
Lemma, which we present later as Lemma 9-2.2. To use the BEZ lemma,
we need to know that joins exist “locally.” The next section is devoted to
establishing key local properties of the poset of regions, including the needed
local result about joins.

9-1.5 Faces, rank-two subarrangements, and intervals

Definition 9-1.23. Let A be an arrangement and fix a base region B. Let U
be an (n− 2)-dimensional subspace of Rn and write A′ for {H ∈ A | U ⊂ H}.
If |A′| ≥ 2, then A′ is called a rank-two subarrangement of A. We emphasize
that A′ consists of all of the hyperplanes in A containing U . Write B′ for the
A′-region containing B. The facet-defining hyperplanes of B′ are called the
basic hyperplanes of A′. Given any two distinct hyperplanes H1 and H2 of A,
there is a unique rank-two subarrangement containing H1 and H2 , namely the
set of all hyperplanes in A that contain H1 ∩H2 .

The straightforward proof of the following lemma is left as Exercise 9.10.
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Lemma 9-1.24. Let A be an arrangement, fix a base region B, and let A′

be a rank-two subarrangement of A. The hyperplanes in A′ can be totally
ordered as H1 , . . . , Hk with the following property: For any region R, the set
S(R) ∩ A′ is either {H1 , . . . , Hi} for some i = 0, . . . , k − 1 or {Hi, . . . , Hk}
for some i = 1, . . . , k. This total order is unique up to reversing the order.
The hyperplanes H1 and Hk are the basic hyperplanes of A′.

Define the set of faces of A to be the union of the sets of faces of all the
regions of A. Rank-two subarrangements arise naturally when one considers
the regions containing a given codimension-2 face of A.

Lemma 9-1.25. Let A be an arrangement, fix a base region B, and let F be
an (n− 2)-dimensional face of A.

(i) The set A′ = {H ∈ A | F ⊂ H} is a rank-two subarrangement.

(ii) The set of regions containing F is an interval [Q,R] in Pos(A, B).

(iii) [Q,R] is isomorphic to Pos(A′, B′), where B′ is the A′-region contain-
ing B.

(iv) [Q,R] is the union of two chains, disjoint except at Q and R, each having
|A′|+ 1 elements.

(v) S(Q) ∩A′ = ∅ and S(R) = S(Q) ∪A′.

Proof. Let F be an (n− 2)-dimensional face of A, and specifically, let R be
some region having F as a face. Write U for the linear span of F , which is
a linear subspace of dimension n− 2 because F is a cone of dimension n− 2.
A hyperplane H ∈ A contains F if and only if it contains U . There are at
least two hyperplanes in A′, namely the facet-defining hyperplanes for the two
facets of R whose intersection is F . This proves (i).

Let x be a point in the relative interior of F . We claim that A′ is the set
of hyperplanes containing x. Since x ∈ F , each H ∈ A′ contains x. On the
other hand, suppose some hyperplane H ∈ A \ A′ contains x. Since H is not
in A′, it does not contain U . Thus there is a 2-dimensional plane P ⊆ H such
that Rn is the direct sum of P with U .

Given a point y in the interior of R that is very close to x, we can subtract
a vector in U to obtain a point y′ = x+p for p ∈ P . Since x is in the relative
interior of F and since U is the intersection of the facet-defining hyperplanes
for the two facets of R whose intersection is F , if the initial y is close enough
to x, the point y′ is in the interior of R. But y′ is in H, so H intersects the
interior of R. This contradicts the fact that R is a region, thus proving the
claim.

We also claim that the set of regions containing F equals the set of regions
containing x. Every region containing F contains x. If some region R′ contains
x but not F , then there is some other point x′ in the relative interior of F such
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that x and x′ are on the opposite sides of some facet-defining hyperplane H
of R′. The line segment xx′ intersects H in a point x′′ also in the relative
interior of F . But then H contains x′′ but not F , contradicting the previous
claim (with x′′ replacing x in the claim). This proves the second claim.

Now consider a ball of radius ε about x. The second claim implies that
for small enough ε, the regions intersecting the ball are exactly the regions
containing F . The first claim implies that the separating sets of these regions
differ only on the set A′. Furthermore, these regions are in bijection with the
regions of A′. The bijection takes each region Q of A intersecting the ball
to the unique region of A′ containing Q. The induced subposet of Pos(A, B)
consisting of regions intersecting the ball is thus isomorphic to Pos(A′, B′).
Assertions (ii), (iii), and (v) follow, and then (iv) follows by Lemma 9-1.24.

Recall that Proposition 9-1.15 says that two regions that form a covering
pair in Pos(A, B) share a common facet.

Lemma 9-1.26. Suppose R1 and R2 are distinct regions of A, both covering
a region Q in Pos(A, B). Let F1 be the facet shared by Q and R1 , let F2 be
the facet shared by Q and R2 , and suppose F1 ∩F2 is (n− 2)-dimensional. Let
H1 be the hyperplane containing F1 , let H2 be the hyperplane containing F2 ,
and let A′ be the rank-two subarrangement containing H1 and H2 .

(i) The basic hyperplanes of A′ are H1 and H2 .

(ii) R1 ∨R2 exists and has separating set S(Q)∪A′. This is a disjoint union.

(iii) The interval [Q,R1 ∨R2 ] is the set of regions containing F1 ∩ F2 .

(iv) There exists a region R with S(R) = S(R1 ∨ R2 ) \ {H1} (and thus
R ≺ R1 ∨R2 ).

(v) The interval [Q,R1 ∨R2 ] is the union of two chains, disjoint except at
Q and R1 ∨R2 , each having |A′|+ 1 elements.

Proof. The separating sets of R1 and R2 are S(Q) ∪ {H1} and S(Q) ∪ {H2}
respectively, so Lemma 9-1.24 says that H1 and H2 are the basic hyperplanes
of A′. This is (i).

Lemma 9-1.24 also implies that any region with H1 and H2 in its separating
set has A′ contained in its separating set, so any upper bound for R1 and R2

has separating set containing S(Q) ∪A′. Lemma 9-1.25 says that there exists
an element with separating set exactly S(Q) ∪A′. Therefore, this element is
R1 ∨R2 , and we have established (ii).

Lemma 9-1.25 also says that the set of regions containing F1 ∩ F2 is an
interval composed of two chains, disjoint except at the top and bottom of the
interval. Since Q is covered by two distinct elements, it must be the bottom
element of the interval. Also, R1 ∨ R2 covers two distinct elements in the
interval. (Otherwise, the unique element it covers is also an upper bound for
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R1 and R2 .) Thus R1 ∨ R2 is the top element of the interval, and we have
established (iii) and (v).

Lemma 9-1.25 says furthermore that S(R1 ∨ R2 ) = S(Q) ∪ A′ and that
the separating sets of regions in [Q,R1 ∨R2 ] differ only by hyperplanes in A′.
Therefore, Lemma 9-1.24 allows only two possibilities for an element covered
by R1 ∨R2 in the interval [Q,R1 ∨R2 ]. Such an element has separating set
either S(R) = S(Q) ∪ (A′ \ {H1}) or S(R) = S(Q) ∪ (A′ \ {H2}). Since the
region R1 ∨R2 covers two elements of [Q,R1 ∨R2 ], both possible separating
sets occur, and in particular, we have established (iv).

Exercise 9.11 describes how much of Lemma 9-1.26 holds without the
assumption that F1 ∩ F2 is (n− 2)-dimensional.

The dual statement to Lemma 9-1.26 holds by the dual argument.

Lemma 9-1.27. Suppose Q1 and Q2 are distinct regions of A, both covered
by a region R in Pos(A, B). Let F1 be the facet shared by Q1 and R, let F2

be the facet shared by Q2 and R, and suppose F1 ∩ F2 is (n− 2)-dimensional.
Let H1 be the hyperplane containing F1 , let H2 be the hyperplane containing
F2 , and let A′ be the rank-two subarrangement containing H1 and H2 .

(i) The basic hyperplanes of A′ are H1 and H2 .

(ii) Q1 ∧Q2 exists and has separating set S(R) \ A′. Also, A′ ⊆ S(R).

(iii) The interval [Q1 ∧Q2 , R] is the set of regions containing F1 ∩ F2 .

(iv) There exists a region Q with S(Q) = S(Q1 ∧ Q2 ) ∪ {H1} (and thus
Q1 ∧Q2 ≺ Q).

(v) The interval [Q1 ∧Q2 , R] is the union of two chains, disjoint except at
Q1 ∧Q2 and R, each having |A′|+ 1 elements.

9-2. Lattice-theoretic shortcuts

Combinatorialists often encounter lattices “in nature” as partial orders and
must prove that the partial orders are indeed lattices. Here we discuss some
shortcuts to proving the lattice property. We then broaden the discussion to
consider various shortcuts in a similar spirit, including shortcuts to establish
semidistributivity or to detect homomorphisms.

To begin, we give the simplest and best-known shortcut for proving the
lattice property. Recall that 0 denotes the unique minimal element of a poset,
if such exists, and that ↓x denotes the set of elements weakly below x.

Lemma 9-2.1. Suppose P is a finite join-semilattice with 0. Then P is a
lattice.
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Proof. We verify that meets exist. Let x and y be elements of P . The set
U = (↓x) ∩ (↓ y) of lower bounds for {x, y} is nonempty because it contains 0.
Because P is finite, we can form3 the join

∨
U . Since x and y are both upper

bounds for U , we have
∨

U ≤ x and
∨

U ≤ y, so (
∨
U) ∈ U . Thus

∨
U is the

unique maximal lower bound for {x, y}, or in other words, it is x ∧ y.

9-2.1 The BEZ Lemma and some extensions

There is a much more powerful shortcut that we call the BEZ Lemma after the
authors (Björner, Edelman, and Ziegler) of the paper where it first appeared.
We have weakened the hypotheses slightly by not requiring a priori that P
has a 1.

Lemma 9-2.2 (BEZ Lemma). Suppose P is a finite poset with 0. Suppose
also that, for all x and y in P such that x and y cover a common element z,
the join x ∨ y exists. Then P is a lattice.

Proof. We prove that P is a join-semilattice and apply Lemma 9-2.1. We
argue by induction on the number of elements in P , with the base case |P | = 1
being trivial. Let x and y be elements of P . If x and y are comparable, then
x ∨ y exists, so we assume that x and y are incomparable. In particular, they
are both strictly above 0. Let ax and ay be elements of P such that 0 ≺ ax ≤ x
and 0 ≺ ay ≤ y. If ax = ay then both x and y lie in the induced subposet ↑ ax
(the set of elements weakly above ax), which is strictly smaller than P . Thus
by induction, x and y have a join in ↑ ax. But any upper bound of x and y in
P is in ↑ ax, so x and y have a unique minimal upper bound in P .

If ax ̸= ay then ax ∨ ay exists, because ax and ay both cover 0. Both x and
ax ∨ ay are in ↑ ax, which is strictly smaller than P , so as before we conclude
by induction that x ∨ (ax ∨ ay) exists. Both y and x ∨ (ax ∨ ay) are in ↑ ay,
so we similarly conclude that x ∨ (ax ∨ ay) ∨ y exists. But since ax ≤ x and
ay ≤ y, the element x ∨ (ax ∨ ay) ∨ y is the desired element x ∨ y.

We next discuss extensions of Lemmas 9-2.1 and 9-2.2 beyond finite posets.
We extend Lemmas 9-2.1 and 9-2.2 to establish the (meet-semi)lattice property
for infinite posets that are “finite under going down.” A poset P is lower
finite if the downset ↓x of every element x ∈ P is finite. In some references,
including [421, Section 3.4] and [383, Section 2], lower finite posets are referred
to as finitary posets. A poset is well-founded if every nonempty subset U of P
has at least one minimal element (an element x of U such that there exists
no y ∈ U with y < x). For example, every lower finite poset is well-founded.
Exercise 9.13 shows that a poset is well-founded if and only if it satisfies
the Descending Chain Condition, meaning that there is no infinite sequence
a1 > a2 > · · · of elements of P .

3A standard argument (see for example LTF Lemma 2) shows that if the join exists for
all pairs of elements of P , then every finite subset of P has a join. One shows that the join
operation is associative, and that x1 ∨ · · · ∨ xk is the least upper bound for {x1, . . . , xk}.
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Lemma 9-2.3. If P is a well-founded poset, then conditions (i) and (ii) below
are equivalent. If P is a lower finite poset, then conditions (i)–(iii) below are
equivalent.

(i) P is a meet-semilattice.

(ii) P has a unique minimal element 0 and every nonempty subset of P either
has no upper bound or has a join.

(iii) P has a unique minimal element 0 and every pair x, y ∈ P either has no
upper bound or has a join.

Proof. Suppose (i) holds. Since P is well-founded, it has at least one minimal
element. The meet-semilattice property then implies that there is exactly
one minimal element. Suppose that some nonempty subset A ⊆ P has an
upper bound b. Then since P is well-founded, there is an element ≤ b which
is minimal among upper bounds for A. Suppose b1 and b2 are both minimal
upper bounds for A. Then any a ∈ A has a ≤ b1 and a ≤ b2 so that a ≤ b1 ∧b2 .
Thus b1 ∧ b2 is an upper bound for A. We must have b1 = b2 , since b1 and b2
were both assumed to be minimal upper bounds for A. We have shown that
A has a unique minimal upper bound, and this is

∨
A. Thus (ii) holds.

Suppose (ii) holds. For any pair x, y ∈ P , let B be the set (↓x) ∩ (↓ y).
Since P has a unique minimal element, B is nonempty. Since x is an upper
bound for B, condition (ii) implies that

∨
B exists. Since x is an upper bound

for B, we have
∨

B ≤ x. Similarly,
∨

B ≤ y. We conclude that x ∧ y exists
and equals

∨
B. This establishes (i).

With no additional hypotheses on P , (ii) implies (iii). Assuming lower
finiteness, we show that (iii) implies (i). Suppose (iii) holds. Taking x, y ∈ P
and defining B as in the previous paragraph, we see that B is finite by the
hypothesis of lower finiteness. Since B has an upper bound, every pair of
elements in B has an upper bound, and thus has a join in P by (iii). Therefore
B has a join4 in P and

∨
B equals x ∧ y as in the previous paragraph.

Exercise 9.14 asks for an example of a well-founded partial order satisfying
condition (iii) of Lemma 9-2.3 but not conditions (i) and (ii).

As an immediate consequence of the implication (iii) =⇒ (i) in Lemma
9-2.3, we obtain an extension of Lemma 9-2.1 to lower finite posets:

Lemma 9-2.4. Suppose P is a lower finite join-semilattice with 0. Then P
is a lattice.

We have extended Lemma 9-2.1 to lower finite posets, but unfortunately
the BEZ Lemma becomes false when we replace “finite” with “lower finite.”
As an example, consider the lower finite poset of Figure 9-2.1, in which, for

4See the footnote on page 411.
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x
y

Figure 9-2.1: A counterexample to the BEZ Lemma for lower finite posets

example, the elements marked x and y do not have a join. If we apply the
strategy of the proof of Lemma 9-2.2, the induction never terminates. However,
we prove the following version of the BEZ Lemma.

Lemma 9-2.5 (BEZ Lemma for lower finite meet-semilattices). Suppose P
is a lower finite poset with 0. Suppose also that, for any x and y in P such
that x and y cover a common element z, either {x, y} has no upper bound or
the join x ∨ y exists. Then P is a meet-semilattice.

Proof. We verify condition (iii) of Lemma 9-2.3. Suppose x, y ∈ P have an
upper bound. The proof that x ∨ y exists is identical to the proof of Lemma
9-2.2, except that we argue by induction on the minimum size of the set ↓P m,
where m ranges over all upper bounds of x and y. When ax = ay, then we pass
to the induced subposet P ′ =↑P ax and note that a smallest ↓P ′ m is smaller
than a smallest ↓P m. The induction in the other cases works similarly.

A meet-semilattice L is complete if every subset of L (not just every finite
subset of L) has a greatest lower bound. Completeness of join-semilattices is
defined similarly, and a complete lattice is a lattice which is both a complete
meet-semilattice and a complete join-semilattice. (See LTF Section I.3.14).
The results of this section can be extended to assert completeness, as explored
in Exercises 9.15, 9.16, and 9.17. One must be careful, however, because it is
possible, for example, for a lattice to be a complete meet-semilattice but not a
complete join-semilattice (Exercise 9.16).

9-2.2 More BEZ-type lemmas

The argument for Lemma 9-2.2 is very versatile, and we spend the rest of
this section discussing other “BEZ-type” lemmas. Our first BEZ-type lemma
simplifies the process of checking whether a lattice is semidistributive. We recall
Definition 3-1.1: A lattice L is meet-semidistributive if any elements x, y, z ∈ L
with x ∧ y = x ∧ z also satisfy x ∧ (y ∨ z) = x ∧ y. The lattice is join-semidis-
tributive if the dual condition holds: If x ∨ y = x ∨ z, then x ∨ (y ∧ z) = x ∨ y.
If both conditions hold, then the lattice is called semidistributive.
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Lemma 9-2.6 (BEZ Lemma for meet-semidistributivity). Suppose L is a
finite lattice with the following property: If x, y, and z are elements of L with
x∧ y = x∧ z and if y and z cover a common element, then x∧ (y ∨ z) = x∧ y.
Then L is meet-semidistributive.

Proof. Let x, y, and z be elements of L with x∧ y = x∧ z. We now show that
x ∧ (y ∨ z) = x ∧ y. We argue by induction on the size of ↑ (y ∧ z). If y and z
are comparable, then the assertion is trivial, so assume not. Let ay and az
be elements covering y ∧ z with ay ≤ y and az ≤ z. In particular, ay ̸= az,
because if ay = az, then we reach the contradiction that ay = y ∧ z.

Since ay ≤ y, we have x ∧ ay ≤ x ∧ y. But x ∧ y is a lower bound for y,
and since x ∧ y = x ∧ z, a lower bound for z as well. Thus x ∧ y ≤ y ∧ z < ay,
so x ∧ y ≤ x ∧ ay. We have shown that x ∧ ay = x ∧ y. The same argument
shows that x∧az = x∧ z, so x∧ay = x∧az. Since ay and az both cover y∧ z,
by hypothesis, we have x ∧ (ay ∨ az) = x ∧ ay. Thus x ∧ (ay ∨ az) = x ∧ y.
Since y and ay ∨ az are both above ay, which is strictly greater than y ∧ z,
by induction we have x ∧ (y ∨ ay ∨ az) = x ∧ y. But this also equals x ∧ z.
Now (y ∨ ay ∨ az) and z are both above az, which is strictly greater than y ∧ z.
Again by induction, we have x ∧ (y ∨ ay ∨ az ∨ z) = x ∧ z. We rewrite this as
x ∧ (y ∨ z) = x ∧ z.

The dual proof establishes a BEZ Lemma for join-semidistributivity. A
similar argument proves a criterion for distributivity. We leave the proof of the
following lemma to Exercise 9.18. One should be careful in dualizing Lemma
9-2.7, as illustrated in Exercise 9.19.

Lemma 9-2.7 (BEZ Lemma for distributivity). Suppose L is a finite lattice
such that the distributive law x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) holds whenever y
and z cover a common element. Then L is distributive.

The now-familiar argument also establishes a criterion for detecting homo-
morphisms.

Lemma 9-2.8 (BEZ Lemma for join-homomorphisms). Suppose L is a lower
finite lattice and suppose L′ is a join-semilattice. Suppose η : L → L′ is an
order-preserving map such that η(x ∨ y) = η(x) ∨ η(y) holds whenever there
exists z ∈ L with z ≺ x and z ≺ y. Then η is a join-homomorphism.

The hypothesis that η is order-preserving is also local: It is equivalent to
requiring that η(x) ≤ η(y) whenever x ≺ y. (See Exercise 9.21.)

Proof. We argue by induction on the size of ↓ (x∨y) that η(x∨y) = η(x)∨η(y).
The set ↓ (x∨y) is finite because L is lower finite. The base case, where ↓ (x∨y)
has one element, is trivial. If x and y are comparable, then we are done by the
hypothesis that η is order-preserving. Assume x and y are incomparable, so
that both are strictly above 0. Let ax and ay have 0 ≺ ax ≤ x and 0 ≺ ay ≤ y.
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If ax = ay then x and y are in ↑ ax, and the number of elements of ↑ ax below
x ∨ y is strictly less than the number of elements of L below x ∨ y. Thus by
induction the restriction of η to ↑ ax has η(x ∨ y) = η(x) ∨ η(y), but then this
equality holds for the unrestricted map η.

If ax ̸= ay then by hypothesis η(ax∨ay) = η(ax)∨η(ay). Since ax∨ay and x
are both in ↑ ax, and since x∨(ax∨ay) ≤ x∨y, we apply induction to conclude
that η(x∨ax∨ay) = η(x)∨η(ax)∨η(ay). Since y and x∨ax∨ay are both in ↑ ay,
we similarly conclude that η(x∨ax∨ay ∨ y) = η(x)∨ η(ax)∨ η(ay)∨ η(y). But
x∨ax∨ay∨y = x∨y, and since η is order-preserving, we also have η(ax) ≤ η(x)
and η(ay) ≤ η(y), so that η(x) ∨ η(ax) ∨ η(ay) ∨ η(y) = η(x) ∨ η(y).

Lemma 9-2.8 has other BEZ-type lemmas as corollaries. The first is
immediate.

Lemma 9-2.9 (BEZ Lemma for homomorphisms). Suppose L is a finite
lattice and suppose L′ is a lattice. Suppose η : L→ L′ is an order-preserving
map such that η(x ∨ y) = η(x) ∨ η(y) whenever x and y cover a common
element and such that η(x ∧ y) = η(x) ∧ η(y) whenever x and y are covered by
a common element. Then η is a lattice homomorphism.

In the following lemmas, we use subscripts S and L to denote joins, meets,
and cover relations in a lattice L and in an induced subposet S of L.

Lemma 9-2.10 (BEZ lemma for join-subsemilattices). Suppose S is a finite
induced subposet of a join-semilattice L and suppose S has a unique minimal
element. Suppose also that, whenever x, y, z ∈ S have z ≺ S x and z ≺ S y, the
join x ∨L y is in S. Then S is a lattice and is a join-subsemilattice (but not
necessarily a sublattice) of L.

Proof. Lemma 9-2.2 implies that S is a lattice. Let η : S → L be the inclusion
of S as a subset of L. By hypothesis, whenever x, y, z ∈ S have z ≺ S x
and z ≺ S y, the join x ∨L y is in S, so x ∨L y = x ∨S y. In other words,
η(x ∨ y) = η(x) ∨ η(y). Lemma 9-2.8 implies that η(x ∨ y) = η(x) ∨ η(y) for
any x, y ∈ S. In other words, the join operation in S agrees with the join
operation in L.

In any partially ordered set, the transitive closure of the comparability
relation is an equivalence relation. The partially ordered set is connected if
this equivalence relation has only one equivalence class.

Lemma 9-2.11 (BEZ lemma for sublattices). Suppose S is a nonempty
connected finite induced subposet of a lattice L. Suppose that, whenever
x, y, z ∈ S have z ≺ S x and z ≺ S y, the join x∨L y is in S. Suppose also that,
whenever x, y, z ∈ S have x ≺ S z and y ≺ S z, the meet x ∧L y is in S. Then
S is a sublattice of L.
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Proof. We first show that S has a unique minimal element. Since S is finite
and nonempty, it has a minimal element. Suppose it has two distinct minimal
elements m1 and m2 . Since S is connected, there exist elements m1 =
x0 , . . . , xk = m2 of S such that xi−1 and xi are comparable for each i =
1, . . . , k. Suppose there is some i with 1 ≤ i < k such that xi−1 ≤ xi ≥ xi+1 .
Then S′ = S ∩ ↓xi and L′ = L ∩ ↓xi satisfy the hypotheses to the dual
of Lemma 9-2.10. The dual of the lemma implies that the meet of xi−1

and xi+1 is in S′ and therefore is in S. In the sequence x0 , . . . , xk, we
replace xi by xi−1 ∧ xi+1 . Continuing in this manner, we eventually have
a sequence m1 = x0 , . . . , xk = m2 of elements of S and some j such that
x0 ≥ x1 ≥ · · · ≥ xj ≤ · · · ≤ xk−1 ≤ xk. This contradicts the supposition that
m1 and m2 are distinct minimal elements of S, thus proving that S has a
unique minimal element.

Now Lemma 9-2.10 implies that S is a join-subsemilattice of L and is a
lattice. In particular S has a unique maximal element. Thus the dual to
Lemma 9-2.10 implies that S is also a meet-subsemilattice of L.

We conclude this section on lattice-theoretic shortcuts by mentioning a
criterion [463, Criterion 2] that is similar in spirit to the BEZ-lemma but
establishes the lattice property without requiring the existence of any meets
or joins.

♦ Lemma 9-2.12. Suppose P is a poset having 0 and 1 and having a finite
upper bound on the length of chains. Then P is a lattice if and only if the
following condition holds: Whenever x1 and x2 cover a common element, y1
and y2 are covered by a common element, and xi ≤ yj for all i, j ∈ {1, 2},
there exists an element z with xi ≤ z ≤ yj for all i, j ∈ {1, 2}.

9-3. Tight posets of regions

The BEZ Lemma was formulated in [70] for the purpose of proving that the
poset of regions of a simplicial arrangement (see Definition 9-1.6) is a lattice.
Here, we prove a generalization of that result based on the proof given in [70].
The generalization replaces simplicial arrangements with tight arrangements,
as defined below. As an indication that the generalization is natural, we prove
that tightness characterizes posets of regions that are semidistributive lattices.

Let A be a hyperplane arrangement and choose a base region B. Recall
from Definition 9-1.16 the notion of lower facets and upper facets.

Definition 9-3.1. A region is tight with respect to B if every pair of its
upper facets intersects in a face of dimension n− 2 and every pair of its lower
facets intersects in a face of dimension n − 2. An arrangement is tight with
respect to B if all of its regions are tight with respect to B. The phrase “with
respect to B” is essential here, as we see, for example, in Figure 9-3.5: The
arrangement shown there is tight with respect to the region labeled B but
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not tight with respect to the region labeled 1. Since the antipodal map is
an anti-automorphism of Pos(A, B), to check tightness, it is enough to check
either all pairs of lower facets of all regions or all pairs of upper facets of
all regions. For convenience, we sometimes say that (A, B) is tight or that
Pos(A, B) is tight, to mean that A is tight with respect to B.

Theorem 9-3.2. If A is tight with respect to B, then Pos(A, B) is a lattice.

Proof. We verify the hypotheses of the BEZ Lemma (9-2.2). Suppose R1 and
R2 cover a common region Q in Pos(A, B). Let F1 be the facet shared by R1

and Q and let F2 be the facet shared by R2 and Q. Since A is tight with
respect to B, the face F1 ∩ F2 is (n− 2)-dimensional. Lemma 9-1.26 says that
R1 ∨R2 exists, so Lemma 9-2.2 implies that Pos(A, B) is a lattice.

The motivating example for Definition 9-3.1 is the example of a simplicial
arrangement. It is well known (and easily verified in Exercise 9.23) that for
every simplicial region R, every pair of facets of R intersects in a face of
dimension n− 2. Thus we have the following proposition.

Proposition 9-3.3. A simplicial arrangement is tight with respect to any
choice of base region B.

In light of Proposition 9-3.3, Theorem 9-3.2 has the following corollary.

Corollary 9-3.4. If A is simplicial and B is any region of A, then Pos(A, B)
is a lattice.

Example 9-3.5. Figure 9-3.1 shows a hyperplane arrangement that is not
simplicial but is tight with respect to the region marked B.

Example 9-3.6. The poset of regions of Examples 9-1.3 and 9-1.14 (Figures
9-1.1 and 9-1.3) is not a lattice. If we take R1 and R2 to be the regions with
separating sets 1 and 3 and try to push through the argument in the proof of
Theorem 9-3.2, we see how tightness is crucial.

Example 9-3.7. On the other hand, the lattice property may hold even in
the non-tight case. Figure 9-3.2 shows the same hyperplane arrangement as
Figure 9-1.1, but with a different choice of base region. The arrangement is
not tight with respect to this choice of base region. For example, the region
whose separating set is 1 is not tight with respect to B. However, this poset
of regions is still a lattice, as one can check directly. As an alternative to
checking directly, one can appeal to Theorem 9-1.22.

9-3.1 Tightness and semidistributivity

Given that there are posets of regions Pos(A, B) that are lattices, even though
A is not tight with respect to B, one might consider the tightness hypothesis
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in Theorem 9-3.2 to constitute an artificial generalization of the more natural-
seeming simplicial hypothesis of Corollary 9-3.4. It turns out, however, that
the tightness condition is lattice-theoretically quite natural: It characterizes
semidistributivity.

Theorem 9-3.8. The poset of regions Pos(A, B) is a semidistributive lattice
if and only if A is tight with respect to B.

By Proposition 9-3.3, Theorem 9-3.8 has the following corollary.

Corollary 9-3.9. If A is simplicial and B is any region of A, then Pos(A, B)
is a semidistributive lattice.

If A has the property that Pos(A, B) is a lattice for every choice of B,
then Theorem 9-1.21 implies that A is simplicial. Thus we have the following
additional corollary to Theorem 9-3.8.

Corollary 9-3.10. For any hyperplane arrangement A, the following are
equivalent:

(i) Pos(A, B) is a lattice for every region B of A.

(ii) Pos(A, B) is a semidistributive lattice for every region B of A.

(iii) A is simplicial.

Using Theorem 9-3.8, we will also prove the following property of tight
arrangements. Recall from Definition 9-1.16 the definitions of lower hyperplanes
and upper hyperplanes of a region and the sets L(R) and U(R).

Proposition 9-3.11. Let b be a vector in the interior of B, and for each
H ∈ A, let nH be a nonzero normal vector to H such that ⟨b,nH⟩ > 0. If
(A, B) is tight, then for each region R of A, the vectors {nH | H ∈ L(R)} are
linearly independent and the vectors {nH | H ∈ U(R)} are linearly independent.

Remark 9-3.12. Proposition 9-3.11 does not give an alternate characterization
of the property of tightness, because there exist non-tight pairs (A, B) satisfying
the conclusions of Proposition 9-3.11. One such pair is found in Example 9-3.7.

We now prepare to prove Theorem 9-3.8 by proving two lemmas.

Lemma 9-3.13. If a region R has exactly two lower facets with respect to B,
then the intersection of the two facets is (n− 2)-dimensional.

Proof. Let F and G be the two lower facets, let x be a point in the relative
interior of F , let y be a point in the relative interior of G, and let b be a point
in the interior of B. Lemma 9-1.18 implies that, for small enough ε, the points
x′ = x − εb and y′ = y − εb are in the interior of R. The convexity of R
implies that the line segment connecting x′ and y′ is contained in the interior
of R.
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Now, for any point z in the interior of R, define p(z) to be the point
forming the intersection of the boundary of R with the set {z+ λb | λ ≥ 0}.
Lemma 9-1.18 implies that the point p(z) is contained in one or more lower
facets of R but is not contained in any upper facets of R. We have p(x′) = x
and p(y′) = y.

Let HF and HG be the hyperplanes containing F and G respectively. Since
x is in the relative interior of F , it is in HF but not in HG. Similarly, y is in
HG but not in HF . Since each p(z) is in a lower facet of R and since HF and
HG are the facet-defining hyperplanes of the only lower facets of R, there is
a point z′ on the line segment from x′ to y′ such that p(z′) is in HF ∩HG.
Since z′ is in the interior of R, there is an open ball about z′ contained in R.
The map p takes this ball to a relatively open neighborhood U of p(z′) in
the boundary of R. But U is also contained in the union of the lower facets
of R. Thus, the intersection of U with HF ∩ HG is an open neighborhood
of p(z′) in HF ∩ HG ∩ R. In particular, the set F ∩ G = HF ∩ HG ∩ R is
(n− 2)-dimensional.

Lemma 9-3.14. Let C be a collection of regions of A, suppose
∨

C exists
and let R be an upper bound for C in Pos(A, B). Then R is a minimal upper
bound for R if and only if, for every lower hyperplane H of R, there exists
Q ∈ C such that H ∈ S(Q).

Proof. Suppose there exists H ∈ L(R) such that H /∈
⋃

Q∈C S(Q). By Lemma
9-1.17, there is a region whose separating set is S(R) \ {H}, and this region is
an upper bound for C. Therefore R is not a minimal upper bound.

Conversely, suppose that for every H ∈ L(R), there exists Q ∈ C such that
H ∈ S(Q). Then Lemma 9-1.17 implies that no region covered by R is an
upper bound for C. We conclude that R is a minimal upper bound.

Proof of Theorem 9-3.8. Suppose A is tight with respect to B. We know by
Theorem 9-3.2 that Pos(A, B) is a lattice. We verify the hypotheses of Lemma
9-2.6 (the BEZ lemma for meet-semidistributivity). Suppose W , X, Y , and
Z are regions such that X ∧ Y = X ∧ Z and such that W ≺ Y and W ≺ Z.
Let M be the region X ∧ Y = X ∧Z. In particular, M is a lower bound for Y
and Z, so M ≤ W = Y ∧ Z. We need to show that X ∧ (Y ∨ Z) = M .

Let FY be the facet shared by Y and W and let FZ be the facet shared
by Z and W . Let HY and HZ be the hyperplanes containing these facets.
We have S(Y ) = S(W ) ∪ {HY } and S(Z) = S(W ) ∪ {HZ}. Since (A, B) is
tight, FY ∩ FZ is (n− 2)-dimensional. Let A′ be the set of hyperplanes of A
containing FY ∩FZ . Lemma 9-1.26 says that A′ is a rank-two subarrangement
with basic hyperplanes HY and HZ and that S(Y ∨ Z) = S(W ) ∪A′. Also,
S(W ) ∩A′ = ∅, and since M ≤ W , we have S(M) ∩A′ = ∅ also.

Now let M ′ = X ∧ (Y ∨ Z). In any case M ′ ≥ M . Suppose for the sake
of contradiction that M ′ > M and consider a region N with M ≺ N ≤ M ′.
Since N ≤ M ′, we have N ≤ X. Therefore, since M = X ∧Y , we have N " Y .
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Let H be the hyperplane separating M from N , so that S(N) = S(M) ∪ {H}.
But N ≤ M ′ ≤ (Y ∨Z), so H ∈ S(W )∪A′. But H ̸∈ S(W ) because otherwise
N ≤ W < Y . Thus H ∈ A′. We also rule out the possibility that H = HY ,
because if so, then S(N) = S(M) ∪ {HY } ⊆ S(W ) ∪ {HY } = S(Y ). Arguing
symmetrically (exchanging Y and Z), we rule out the possibility that H = HZ .
Since S(M) ∩ A′ = ∅ and H ∈ A′ \ {HY , HZ}, we consider the set S(N)
to obtain a contradiction to Lemma 9-1.24. This contradiction shows that
X ∧ (Y ∨ Z) = M . Lemma 9-2.6 now says that Pos(A, B) is meet-semidistrib-
utive. Since all posets of regions are self-dual (Exercise 9.4), we conclude that
Pos(A, B) is semidistributive.

Now suppose A is not tight with respect to B. If Pos(A, B) is not a lattice,
then we are done, so we assume that Pos(A, B) is a lattice. Since (A, B) is
not tight, there is a region W with two upper facets whose intersection is of
dimension lower than n− 2. Let Y and Z be the regions covering W through
these facets, and let HY and HZ be the facet-defining hyperplanes. (It may
be helpful to consider the poset of regions shown in Figure 9-3.2, taking W , Y ,
and Z to be the regions with separating sets 1, 12 and 14.) Let R = Y ∨ Z.

For most of the rest of the proof, we will consider separating sets with
respect to W and thus order relations in the poset of regions Pos(A,W ). In
Pos(A,W ), the region R need not be the join of Y and Z, but in any case
it is a minimal upper bound for Y and Z. The separating sets of Y and Z,
with respect to W , are S(Y ) = {HY } and S(Z) = {HZ}, so Lemma 9-3.14
implies that the set L(R) of lower hyperplanes of R, with respect to W , is
contained in {HY , HZ}. If L(R) = ∅, then we obtain a contradiction: As
an easy consequence (proved as Exercise 9.24) of Lemma 9-1.18 we see that
R = W . If |L(R)| = 1, then R covers a unique element Q, which is therefore
an upper bound for Y and Z, contradicting the fact that R is a minimal upper
bound. Thus L(R) = {HY , HZ}.

By Lemma 9-1.17, there are exactly two distinct regions, QY and QZ , that
are covered by R in Pos(A,W ), separated from R by the hyperplanes HY and
HZ respectively. Lemma 9-3.13 implies that the two facets of R associated to
these covers intersect in an (n− 2)-dimensional face F of R. Lemma 9-1.27
says that QY ∧ QZ exists in Pos(A,W ). Writing X for QY ∧ QZ , Lemma
9-1.27 says further that S(X) = S(R) \ A′ and S(R) = S(X) ∪ A′, where
A′ is the set of all hyperplanes in A containing HY ∩ HZ . In particular,
{HY , HZ} ∩ S(X) = ∅ and therefore X ∧ Y = X ∧ Z = W . If X = W , then
Lemma 9-1.27 says that all regions in the interval [X,R], including Y and Z,
contain F , and we obtain a contradiction to the assumption that the facets
Y ∩W and Z ∩W of W intersect in dimension lower than n−2. Thus X ≠ W .

We now return to the poset of regions Pos(A, B), rather than Pos(A,W ).
Lemma 9-1.20 and the fact that Pos(A, B) is a lattice imply that the assertions
X ∧ Y = X ∧ Z = W and X ≤ R proved in Pos(A, B) also hold in Pos(A, B).
But then X ∧ (Y ∨Z) = X ∧R = X ≠ W = X ∧ Y . This is a counterexample
to the meet-semidistributive law in Pos(A, B).
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We now give the proof of Proposition 9-3.11, which is modeled after the
proof of Theorem 9-1.21 given in [70], but uses semidistributivity. Indeed,
Proposition 9-3.11 establishes Theorem 9-1.21 in the case where (A, B) is
tight.

Proof of Proposition 9-3.11. We will show that {nH | H ∈ U(R)} is linearly
independent. Linear independence of {nH | H ∈ L(R)} follows by Exercise 9.4.

If {nH | H ∈ U(R)} is not linearly independent, then there exists a lin-
ear relation

∑
y∈U cyy =

∑
z∈V czz for U and V disjoint subsets, not both

empty, of {nH | H ∈ U(R)} and all cy and cz positive. For each vector v in
{nH | H ∈ U(R)}, let Rv be the region whose separating set is S(R) ∪ {H}
for v = nH . Let J =

∨
y∈U Ry. Since Ry ∧Rz = R for any y ∈ U and z ∈ V ,

semidistributivity implies that Rz ∧ J = R and thus Rz " J for each z ∈ V .
Thus by Proposition 9-1.19, any vector r in the interior of J has ⟨r,y⟩ < 0 for
all y ∈ U and has ⟨r, z⟩ > 0 for all z ∈ V . Applying the linear functional ⟨r, · ⟩
to both sides of

∑
y∈U cyy =

∑
z∈V czz yields a nonpositive number on the

left side and a nonnegative number on the right side. Since U and V are not
both empty, the two numbers are not both zero, so we obtain a contradiction.
We conclude that {nH | H ∈ U(R)} is linearly independent.

9-3.2 Simplicial arrangements

Recall that the faces of an arrangement A are the faces of the regions of A. In
particular, the rays of A are the 1-dimensional faces of A and the facets of A
are the (n − 1)-dimensional faces of A. There is exactly one 0-dimensional
face, the origin, and the n-dimensional faces are the regions. Every facet of A
is a facet of exactly two regions of A.

We now show that the rays of a simplicial arrangement admit a particularly
nice coloring. The coloring result (Theorem 9-3.15 below) can be stated in
standard terminology as follows. A simplicial arrangement defines an abstract
simplicial complex whose vertices are the rays of the arrangement and whose
maximal faces are the sets of rays contained in regions. Theorem 9-3.15 is
precisely the statement that this complex is balanced. For more information
on balanced complexes, see for example [418, Chapter III.4].

Theorem 9-3.15. If A is a simplicial arrangement in Rn, then the rays of
A can be colored with n colors such that the n rays of each region are given n
distinct colors. This coloring is unique up to permuting the color set.

Proof. Given a region Q, a coloring of the rays of Q, and a region R adjacent
to Q, we define a coloring of the rays of R in the only natural way: The n− 1
common rays are already colored, and the remaining ray of R is colored the
same as the remaining ray of Q. Now, choose a base region B and start with a
coloring of the n rays of B with n distinct colors. Let this coloring propagate to
adjacent regions. In light of Lemma 9-1.12, every ray of A is assigned a color,
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so we need only rule out the possibility that some ray is assigned different
colors based on how the coloring propagates from B to the ray. Specifically,
we need to rule out the existence of a region R and two sequences of regions
B = Q0 , . . . , Qk = R with Qi−1 and Qi adjacent for each i = 1, . . . , k and
B = R0 , . . . , Rm = R with Ri−1 and Ri adjacent for each i = 1, . . . ,m such
that the coloring of the rays of B propagates to two different colorings of
the rays of R. If such a region and sequences exist, then we concatenate the
sequences (reversing one of them) to obtain a sequence

B = Q0 , . . . , Qk = Rm, . . . , R0 = B

along which the coloring of B propagates to a different coloring of B.
Thus we complete the proof by verifying the following fact: Propagating

the coloring of B along any sequence B = R0 , . . . , Rk = B of adjacent regions,
we obtain the same coloring of B. Within this proof, we call a sequence
B = R0 , . . . , Rk = B a loop and call a loop good if propagating the coloring
along the loop does not change the coloring of B. We argue by a double
induction that every loop is good, first by induction on the maximum value of
|S(Ri)| (the size of the separating set of Ri) on the loop and second, fixing
this maximum, by induction on the number of times the maximum is attained.
The base case of the induction is where this maximum is zero, so that k = 0
and the loop consists of a single region B.

If the maximum is positive, let i be an index such that |S(Ri)| attains the
maximum. Then |S(Ri−1 )| and |S(Ri+1 )| are both one less than the maximum.
There are two cases: either Ri−1 = Ri+1 or not. If Ri−1 = Ri+1 , then we
consider the loop obtained from B = R0 , . . . , Rk = B by deleting Ri and
Ri+1 . This loop either has a lower maximum size of a separating set or attains
the maximum fewer times. By induction, the shortened loop is good. In
the original loop, propagating the coloring from Ri−1 to Ri to Ri+1 = Ri−1

returns the same coloring of Ri−1 , and we conclude that the original loop
B = R0 , . . . , Rk = B is good.

Now suppose Ri−1 ̸= Ri+1 . Let H− be the hyperplane containing the
common facet of Ri and Ri−1 and let H+ be the hyperplane containing the
common facet of Ri and Ri+1 . Let A′ be the rank-two subarrangement
containing H− and H+. Lemma 9-1.27 says that R′ = Ri−1 ∧ Ri+1 has
S(R′) = S(Ri) \ A′ and that the interval [R′, Ri] is the union of two chains of
the same length, disjoint except at R′ and Ri. Write R′ = Q0 ≺ · · · ≺ Qℓ = Ri

and R′ = Q′
0 ≺ · · · ≺ Q′

ℓ = Ri for these two chains, with Qℓ−1 = Ri−1 and
Q′

ℓ−1 = Ri+1 . Alter the loop B = R0 , . . . , Rk = B by deleting Ri and inserting
in its place Qℓ−2 , . . . , Q0 = Q′

0 , . . . , Q
′
ℓ−2 . The inserted sequence may consist

of as few as one region, in which case the region is R′. The altered loop either
has a lower maximum size of a separating set or attains the maximum fewer
times, so by induction, it is good.

The proof can now be completed by checking that propagating the coloring
along the original loop B = R0 , . . . , Rk = B yields the same coloring of B as



424 9. Lattice Theory of the Poset of Regions

propagating the coloring along the altered loop. Equivalently, propagating a
coloring of Ri along the sequence Ri = Qℓ, . . . , Q0 = Q′

0 , . . . , Q
′
ℓ = Ri does

not alter the coloring of Ri. By Lemma 9-1.27, the intersection of the regions
in the latter sequence is an (n− 2)-dimensional face F of A. The coloring of
the rays of F does not change along the sequence. The remaining two colors
are switched at every step along the sequence, and thus are switched an even
number of times.

When A is simplicial, the k-dimensional faces of a region are in bijection
with the k-element subsets of the rays of the region. Thus we have the following
immediate corollary to Theorem 9-3.15.

Corollary 9-3.16. Suppose A is a simplicial arrangement in Rn and color the
rays of A with n colors as in Theorem 9-3.15. Color each k-dimensional face F
of A with the set of colors of the rays contained in F . Then the k-dimensional
faces of each region are colored with distinct colors (that is, with distinct sets
of colors). This coloring is unique up to permuting the color set.

Suppose A is a simplicial hyperplane arrangement, with faces colored as
in Corollary 9-3.16 using a color set S with |S| = n. In the adjacency graph
G(A) of A, each edge corresponds to a facet (codimension-1 face) of A, the
intersection of the two regions connected by the edge in the adjacency graph.
The facets of A are colored with sets of the form S \ {s} for s ∈ S. Color each
edge in G(A) with the color s if the corresponding facet of A is colored S \{s}.
For each subset I of the colors, consider the graph GI(A) obtained from the
adjacency graph by deleting all of the edges with colors in I. The following
proposition shows how to recover the faces of a simplicial arrangement from
its colored adjacency graph.

Proposition 9-3.17. Suppose A is a simplicial hyperplane arrangement,
colored as in Corollary 9-3.16. For each subset I of the color set and each
component C of the graph GI(A), let FC be the intersection of the regions of
A corresponding to the vertices of C.

(i) FC is an |I|-dimensional face of A colored I.

(ii) Every face of A colored I is FC for a unique component C of GI(A).

Since each face of A has a color, as I and C are allowed to vary, Proposition
9-3.17(ii) accounts for each face of A exactly once.

Proof. The vertices of GI(A) are regions of A. Let R be a region in C. Since
each ray of R is colored a distinct (singleton) color, and the color of a face F of
R is the set of colors of the rays of R contained in F , there is an |I|-dimensional
face F of R colored I. We will show that F = FC . If F = R, then C = {R}
and we are done, so assume F # R. The face F is the intersection of the
facets of R containing it. These are exactly the facets of R colored S \ {s}
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for s ̸∈ I. The corresponding edges of G(A) are colored with the colors s for
s ̸∈ I. Writing Rs for the region sharing with R a facet colored S \ {s}, we
have F = R ∩

⋂
s ̸∈I Rs, so FC ⊆ F . On the other hand, all regions in C are

connected to R by a path in G(A) using only the colors in S \ I. Thus since
the color of F is I, every region on this path contains F . We conclude that
FC = F , and we have established (i).

Furthermore, if F is a face of A colored I, then the construction above
realizes F as FC for a component C of GI(A), namely the component of
GI(A) containing R. To prove uniqueness of C, we need to verify that if F
is a face of R colored I and F is also a face of Q, then Q and R are in the
same component of GI(A). Lemma 9-1.12 says that there exists a sequence
of regions Q = R0 , . . . , Rk = R with Ri−1 adjacent to Ri for i = 1, . . . , k and
with the property that, moving from Q to R in the sequence, no hyperplane of
A is crossed more than once. This sequence is a path in G(A). If R′ is a region
containing F and H is a facet-defining hyperplane of R′, then H contains F if
and only if the color of the facet defined by H is S \ {s} for s ̸∈ I. Suppose an
edge Ri, Ri+1 in the path Q = R0 , . . . , Rk = R is colored with a color s ∈ I.
Then either Ri or Ri+1 is separated from F by the hyperplane H defining the
common facet of Ri and Ri+1 . Since F is a face of Q and of R, neither is
separated from F by a hyperplane, and we see that the path crosses H twice.
This contradiction shows that all of the edges in the path Q = R0 , . . . , Rk = R
are colored with colors not in I. Thus Q and R are in the same connected
component of GI(A). We have established (ii).

Proposition 9-3.17 can be rephrased as a method for determining whether
two simplicial arrangements are combinatorially “the same.”

Definition 9-3.18. The face semilattice of a hyperplane arrangement A is
the set of faces of A, partially ordered by containment. Corollary 9-1.11
implies that this is a meet-semilattice, with the meet being intersection. Two
hyperplane arrangements are called combinatorially isomorphic if they have
isomorphic face semilattices.

Proposition 9-3.19. Suppose A and A′ are simplicial arrangements with
faces colored as in Corollary 9-3.16, using the same color set. Color each
edge of G(A) as described before Proposition 9-3.17, and color G(A′) in the
same way. Then A and A′ are combinatorially isomorphic if and only if there
exists an isomorphism from G(A) to G(A′) that preserves the colors (up to
permuting the color set).

Proof. An isomorphism that preserves colors also preserves the graphs GI(A)
for each color set I, and thus the sets of regions defining faces as FC . The
isomorphism can be extended to an isomorphism of face semilattices by iden-
tifying each face F as FC for C a component of the appropriate GI(A), and
mapping F to FC′ where C ′ is the corresponding component of GI(A′). Con-
versely, given an isomorphism of face lattices, the uniqueness in Corollary
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9-3.16 implies that the isomorphism preserves face colors. The coloring on
adjacency graphs is completely determined by the coloring on faces.

Remark 9-3.20. A weaker notion of combinatorial isomorphism (isomorphism
of adjacency graphs) is considered in Exercise 9.25. Isomorphism of adjacency
graphs is a weaker condition because the adjacency graph is in essence the
restriction of the face semilattice to faces of dimension n (regions) and faces
of dimension n − 1 (facets). Exercise 9.25 thus applies to say that weakly
combinatorially isomorphic hyperplane arrangements have isomorphic posets
of regions when the base regions are chosen to coincide under the isomorphism.
For simplicial arrangements, the two notions coincide: When A is simplicial,
the zonotope dual to A is simple, and its face lattice (and thus the face lattice
of A) is determined by the adjacency graph as explained in [263]. We will not
need to appeal to this result of [263], so we omit the details here. Proposition
9-3.19, which appears to be a step in the same direction, is not as strong
because it requires not only the adjacency graph but also a coloring of that
graph’s edges.

9-4. Biconvexity and rank-two biconvexity

In this section, we describe the connection between the poset of regions
Pos(A, B) and several notions of combinatorial convexity of subsets of A with
respect to B.

9-4.1 Convexity, biconvexity, and strong biconvexity

Definition 9-4.1. Let b be a vector in the interior of B, and for each H ∈ A,
let nH be a normal vector to H such that ⟨b,nH⟩ > 0. A subset S of A is
convex with respect to B if

(
Span ≥ 0{nH | H ∈ S}

)
∩ {nH | H ∈ A} = {nH | H ∈ S}.

Here Span ≥ 0 denotes nonnegative linear span. Define a closure operator S ,→ S
on subsets S ⊆ A by

S = {H ′ ∈ A | nH′ ∈ Span ≥ 0{nH | H ∈ S}}.

Then S is convex if and only if it is closed in the sense that S = S. Exercise 9.27
is to verify that S is the intersection of all convex sets containing S. The
subset S is biconvex with respect to B if S and A \ S are both convex with
respect to B. The subset S of A is strongly biconvex if

(
Span ≥ 0{nH | H ∈ S}

)
∩
(
Span ≥ 0{nH | H ∈ A \ S}

)
= {0}.
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The notion of convexity in Definition 9-4.1 corresponds to a well-established
notion of convexity in finite sets of vectors. This is, for example, a linearization
of the notion defined in Example 1 of [141, Section 3]. See also [70, Remark 5.3].
Exercise 9.28 establishes this linearized notion of convexity in general.

The following proposition is immediate from Definition 9-4.1.

Proposition 9-4.2. Given a hyperplane arrangement A with base region B
and a subset S ⊆ A, the following implications hold for convexity with respect
to B:

S is strongly biconvex =⇒ S is biconvex =⇒ S is convex.

We now show that strong biconvexity characterizes separating sets.

Theorem 9-4.3. Given a hyperplane arrangement A with base region B, a
subset S ⊆ A is the separating set of some region if and only if S is strongly
biconvex with respect to B.

Proof. Suppose S = S(R) for a region R and let r be a vector in the interior
of R. By Proposition 9-1.19, any nonzero vector n ∈ Span ≥ 0{nH | H ∈ S}
has ⟨n, r⟩ < 0, while any nonzero vector n ∈ Span ≥ 0{nH | H ∈ A \ S} has
⟨n, r⟩ > 0. Thus S is strongly biconvex.

Conversely, if S is strongly biconvex, then a standard separation theorem
from the theory of convexity (a special case of the Hahn-Banach Separation
Theorem) implies that there exists a vector x such that ⟨nH ,x⟩ < 0 for H ∈ S
and ⟨nH ,x⟩ ≥ 0 for H ∈ A \ S. Let b be any vector in the interior of B. For
small enough ε > 0, the vector r = x + εb has ⟨nH ,b⟩ < 0 for H ∈ S and
⟨nH ,b⟩ > 0 for H ∈ A \ S. In particular, r is contained in a region R, and
Proposition 9-1.19 says that S(R) = S.

Convexity has a reformulation in terms of regions and halfspaces defined
by hyperplanes in A. Given vectors nH as in Definition 9-4.1, write H+ for
the closed halfspace {x ∈ Rn | ⟨x,nH⟩ ≥ 0}. This is a union of regions of A.
Let R+(H) be the set of regions contained in H+. In other words, R+(H)
is the set of regions whose separating set does not contain H. Exercise 9.29
verifies that for S ⊆ A,

S =
{
H ∈ A | R+(H) ⊇

⋂

H′∈S

R+(H
′))
}
.

To understand this formulation, one should notice that
⋂

H′∈S R+(H ′) is the
set of regions that are not separated from B by any hyperplane in S. To
form S, we adjoin to S every hyperplane that we can adjoin without making⋂

H′∈S R+(H ′) any smaller.
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9-4.2 Rank-two!biconvexity

Theorem 9-4.3 says that strong biconvexity characterizes separating sets of
regions. We will see in this section that in the simplicial case, the weaker
condition of biconvexity also characterizes separating sets of regions. In fact,
an even weaker condition of rank-two biconvexity characterizes separating sets
in the simplicial case. Furthermore, the join operation can be described in
terms of the closure operation or the rank-two closure operation.

Definition 9-4.4. Given (A, B) and a rank-two subarrangement A′, write
B′ for the A′-region containing B. Say a set of hyperplanes S ⊆ A is rank-two
convex with respect to B if, for every rank-two subarrangement A′ ⊆ A, the
intersection S ∩A′ is convex with respect to B′. We define a rank-two closure
operator which takes U ⊆ A to

2

U
2

, defined to be the intersection of all
rank-two convex sets in A containing U . Exercise 9.31 verifies that

2

U
2

is
rank-two convex. A set S ⊆ A is rank-two biconvex if S and A \ S are both
rank-two convex.

Theorem 9-4.5. Suppose Pos(A, B) is simplicial, and let S be a subset of A.
Then the following are equivalent:

(i) S is the separating set of some region.

(ii) S is strongly biconvex with respect to B.

(iii) S is biconvex with respect to B.

(iv) S is rank-two biconvex with respect to B.

Without any hypotheses on A, Theorem 9-4.3 says that conditions (i) and
(ii) are equivalent, Proposition 9-4.2 says that (ii) implies (iii), and Exercise 9.32
shows that (iii) implies (iv). To prove Theorem 9-4.5, we will show that (iv)
implies (i) under the hypothesis that A is simplicial.

Example 9-4.6. When A is not simplicial, a biconvex subset of A can fail
to be the separating set of a region. In Figure 9-1.1 (Example 9-1.3), the set
containing the hyperplanes numbered 1 and 3 is biconvex but no region has
this separating set.

Example 9-4.7. On the other hand, the conclusion of Theorem 9-4.5 may
hold when A is not simplicial. One example is the poset of regions in Example
9-3.5. In this example, there are 32 subsets of A and 18 regions. One can check
that the 14 subsets that are not separating sets are not rank-two biconvex.

In the simplicial case, we can also make two definite statements about the
join operation.
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J
J
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Q
H

H

H′

∗

˜

Figure 9-4.1: An illustration of the proof of Lemma 9-4.10

Theorem 9-4.8. Suppose A is simplicial and let Q and R be regions. Then

(i) Q ∨R is the unique region with separating set S(Q) ∪ S(R).

(ii) Q ∨R is also the unique region with separating set
2

S(Q) ∪ S(R)
2

.

Using the self-duality of Pos(A, B), Theorem 9-4.8 implies a similar de-
scription of the meet (Exercise 9.33).

We now prepare to prove Theorems 9-4.5 and 9-4.8.

Definition 9-4.9. The depth of a hyperplane H ∈ A with respect to B is
the minimum, over regions R with H ∈ S(R), of |S(R)|. For example, the set
B(B) of facet-defining hyperplanes of B is the set of hyperplanes of depth 1.

Lemma 9-4.10. Suppose A is simplicial and H ∈ A \ B(B). Then there
exists a rank-two subarrangement A′ of A such that H ∈ A′ and both basic
hyperplanes of A′ have depth strictly smaller than the depth of H.

Proof. This proof is illustrated in Figure 9-4.1. Choose J such that S(J)
has minimal size among separating sets containing H. In particular, H is
the unique lower hyperplane of J . By Lemma 9-1.17, the region J covers
exactly one region J∗, which has S(J∗) = S(J) \ {H}. Since H ̸∈ B(B), in
particular J∗ is not B, so J∗ covers some region Q.

Let H̃ be the hyperplane containing the common facet of Q and J∗ and
let A′ be the rank-two subarrangement containing H and H̃. Since J∗ is a
simplicial region, the intersection F = Q ∩ J∗ ∩ J (the intersection of the
facets Q ∩ J∗ and J∗ ∩ J of J∗) is an (n − 2)-dimensional face of J∗. (See
Exercise 9.23.) Since F is a face of J∗, it is the nonnegative span of n − 2
rays of J∗. Since F ⊆ J∗ ∩ J , all of these rays are in J as well, so F is a face
of J . Specifically, F is the intersection of two facets of J , one being J∗ ∩ J
and the other J ∩R for some R with J ≺ R. The facet J ∩ J∗ is defined by
the hyperplane H . Write H ′ for the hyperplane defining the facet J ∩R. This
hyperplane H ′ is also in A′, since it contains F and therefore contains H ∩ H̃ .

Now suppose A′ is ordered H1 , . . . , Hk as in Lemma 9-1.24. Since Q ≺
J∗ ≺ J ≺ R, Lemma 9-1.24 implies that H is between H̃ and H ′ in this total
order. In particular, H is not basic in A′. Lemma 9-1.25 says that the set
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of regions containing F is an interval in Pos(A, B) isomorphic to the poset
of regions Pos(A′, B′), where B′ is the A′-region containing B. Furthermore,
the regions in this interval have separating sets differing by hyperplanes in A′.
Lemma 9-1.24 implies that there are two distinct elements Q′ and Q′′ of
this interval whose separating set contains exactly one hyperplane (a basic
hyperplane) in A′. Since S(J) contains at least two hyperplanes (H and H̃)
in A′, it is larger than the separating set of Q′ and the separating set of Q′′.
In particular, the two basic hyperplanes of A′ have depth strictly smaller than
the depth of H.

Lemma 9-4.11. Suppose A is simplicial. Every nonempty rank-two biconvex
subset of A contains at least one hyperplane in B(B).

Proof. Suppose S is a biconvex subset of A. We must show that S contains
a hyperplane of depth 1. Suppose not, and take H to be a hyperplane of
minimal depth in S. Lemma 9-4.10 says that H is contained in a rank-
two subarrangement A′ such that both basic hyperplanes of A′ have strictly
smaller depth. But A \ S is rank-two convex, and thus one of these two basic
hyperplanes is in S, contradicting the minimality of H.

Lemma 9-4.12. Suppose A is a hyperplane arrangement, B is a base region,
and H is a hyperplane in B(B). Let C be the region that shares with B the
facet defined by H. Suppose a subset S ⊆ A contains H.

(i) If S is rank-two convex with respect to B then S \{H} is rank-two convex
with respect to C.

(ii) If S is rank-two biconvex with respect to B then S \ {H} is rank-two
biconvex with respect to C.

Proof. We argue the second assertion; the proof of the first assertion is similar,
but simpler, and is left as Exercise 9.34. We work with normal vectors nH as in
Definition 9-4.1, but now we need to explicitly mention B in the notation. For
each hyperplane K ∈ A, choose a nonzero normal vector nB

K with ⟨b,nB
K⟩ > 0.

Let c be a vector in the interior of C. Setting nC
K = nB

K for K ≠ H and
setting nC

H = −nB
H , we see that ⟨c,nC

K⟩ > 0 for all K ∈ A. Now let A′ be
any rank-two subarrangement. If H ̸∈ A′, then S′ ∩ A′ is biconvex in A′

with respect to C ′ (the A′-region containing C) because S′ ∩ A′ = S ∩ A′

and because C ′ is also the A′-region containing B. On the other hand, if
H ∈ A′, then H is basic in A′ (with respect to B). In this case, S′ ∩A′ is still
biconvex in A′ with respect to C ′, as illustrated in Figure 9-4.2. In the figure,
the vectors {nB

K | K ∈ S ∩ A′} are shown by solid black arrows. The other
vectors in {nB

K | K ∈ A′} are shown by dotted black arrows and the vector
nC
H = −nB

H is shown by a differently-dotted gray arrow.

We are now prepared to prove the main results of this section. We begin
with Theorem 9-4.5.
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Figure 9-4.2: An illustration for the proof of Lemma 9-4.12

Proof of Theorem 9-4.5. As discussed above, it remains only to show that
a rank-two biconvex set S in a simplicial arrangement A is necessarily the
separating set of some region. We argue by induction on |S|, allowing the
choice of base region to vary. The base case |S| = 0 is trivial. If S is rank-
two biconvex with respect to B and |S| > 0, then Lemma 9-4.11 says that S
contains some hyperplane H in B(B). Let C be the region that shares with
B the facet defined by H. Lemma 9-4.12 says that the set S′ = S \ {H} is
rank-two biconvex with respect to C. Thus by induction, S′ is the separating
set, with respect to C, of a region R of A. The separating set of R with respect
to B is S′ ∪ {H} = S.

Remark 9-4.13. The hypothesis that A is simplicial is needed in the proof of
Theorem 9-4.5 for several reasons. First, in the proof of Lemma 9-4.10 (which
is the key to Lemma 9-4.11), the hypothesis that all regions are simplicial is
used (specifically for the region J∗). Furthermore, the structure of the proof
of Theorem 9-4.5 makes any generalization of hypotheses meaningless. The
base region B varies in the induction, in such a way that every region serves
as the base region at some point in the proof. In order for the hypotheses to
hold as B varies, in particular, the poset of regions must be a lattice for each
choice of B. Thus Corollary 9-3.10 says that A is simplicial.

Proof of Theorem 9-4.8. We prove the second assertion first, beginning with
several claims.
Claim 1: S(Q∨R) =

2

S(Q) ∪ S(R)
2

if and only if
2

S(Q) ∪ S(R)
2

is rank-two

biconvex. Proof: If S(Q ∨R) =
2

S(Q) ∪ S(R)
2

, then Theorem 9-4.5 says that
2

S(Q) ∪ S(R)
2

is rank-two biconvex. Conversely, if the set
2

S(Q) ∪ S(R)
2

is rank-two biconvex, then Theorem 9-4.5 says that
2

S(Q) ∪ S(R)
2

is the

separating set of some region. But
2

S(Q) ∪ S(R)
2

is contained in every rank-
two convex set containing S(Q) and S(R), and thus (again by Theorem
9-4.5) contained in the separating set of every region above Q and R. Thus
2

S(Q) ∪ S(R)
2

is S(Q ∨R). (Claim 1)

Claim 2: If Q and R are distinct regions covering B, then
2

S(Q) ∪ S(R)
2

is rank-two biconvex. Proof: In this case S(Q) = {H1} and S(R) = {H2}
for distinct hyperplanes H1 , H2 ∈ B(B). These hyperplanes are basic in the

rank-two subarrangement A′ containing them, so
2

S(Q) ∪ S(R)
2

= A′, and
Lemma 9-1.26 says that S(Q ∨R) = A′ as well. (Claim 2)
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Suppose C is a region covering B with C ≤ Q∧R. Lemma 9-1.20 says that
the interval [C,−B] in Pos(A, B) is isomorphic (by the identity map) to the
interval [C,−B] in Pos(A, C). We continue to write S(Q) for the separating
set of Q with respect to B, and we now also write SC(Q) for the separating
set of Q with respect to C. Let H be the hyperplane defining the common
facet of B and C. Then any region X in [C,−B] has SC(X) = S(X) \ {H}.
We also adopt the following notational convention for the remainder of the
proof: If the subscript C appears anywhere beneath the closure marker

2 2

,
the rank-two closure is taken with respect to C. Otherwise, the closure is
taken with respect to B. Furthermore, all mentions of rank-two (bi)convexity
are with respect to B, unless otherwise noted.
Claim 3: If

2

SC(Q) ∪ SC(R)
2

= SC(Q∨R), then
2

S(Q) ∪ S(R)
2

= S(Q ∨R).

Proof: If
2

SC(Q) ∪ SC(R)
2

equals SC(Q ∨ R), then the set S(Q ∨R) equals
2

SC(Q) ∪ SC(R)
2 ∪ {H}. In particular,

2

SC(Q) ∪ SC(R)
2 ∪ {H} is rank-two

biconvex by Theorem 9-4.5. Also, since
2

SC(Q) ∪ SC(R)
2 ∪ {H} is a rank-

two convex set containing S(Q) ∪ S(R), we have
2

SC(Q) ∪ SC(R)
2 ∪ {H} ⊇

2

S(Q) ∪ S(R)
2

. If the containment is proper, then Lemma 9-4.12 implies that
2

S(Q) ∪ S(R)
2 \ {H} is a rank-two convex set (with respect to C) containing

SC(Q) and SC(R) but properly contained in
2

SC(Q) ∪ SC(R)
2

. This contra-

diction implies that
2

SC(Q) ∪ SC(R)
2 ∪ {H} =

2

S(Q) ∪ S(R)
2

. (Claim 3)
We now prove the second assertion of the theorem by induction on the size

of S(Q ∨R), with the base region B varying. The proof is modeled after the
proof of the BEZ lemma (Lemma 9-2.2).

If Q ≤ R or R ≤ Q, then the result follows because S(Q) and S(R) are
both rank-two biconvex by Theorem 9-4.5. Thus we assume that Q and R are
incomparable, so that in particular both are strictly above B. Let C and D
be regions of A such that B ≺ C ≤ Q and B ≺ D ≤ R.

If C = D then both Q and R lie in the interval [C,−B] in Pos(A, B).
As mentioned above, the interval [C,−B] in Pos(A, B) is isomorphic (by the
identity map) to the interval [C,−B] in Pos(A, C). In particular, Q∨R is the
join both in Pos(A, B) and in Pos(A, C). Since |SC(Q∨R)| = |S(Q∨R)|− 1,

we can appeal to induction to conclude that
2

SC(Q) ∪ SC(R)
2

is SC(Q ∨R).

Claim 3 now says that
2

S(Q) ∪ S(R)
2

is S(Q ∨R).
If C ≠ D then define E to be the join C ∨D in Pos(A, B). Since E ≤ R,

we see that Q ∨ E ≤ Q ∨ R. In particular |SC(Q ∨ E)| ≤ |SC(Q ∨R)| =
|S(Q ∨R)|− 1, so we can appeal to induction to see that

2

SC(Q) ∪ SC(E)
2

is

SC(Q ∨ E). Claim 3 says that
2

S(Q) ∪ S(E)
2

is S(Q ∨ E). Claim 2 says that

S(E) =
2

S(C) ∩ S(D)
2

. Furthermore,
2

S(Q) ∪ S(E)
2

is the smallest rank-two
convex set both containing S(Q) and containing the smallest rank-two convex

set containing S(C) and S(D). Thus
2

S(Q) ∪ S(E)
2

=
2

S(Q) ∪ S(C) ∪ S(D)
2

,

which is
2

S(Q) ∪ S(D)
2

because C ≤ Q.
But now Q∨E and R are both above D and Q∨E ∨R ≤ Q∨R, so by the
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same argument,
2

S(Q ∨ (E)) ∪ S(R)
2

equals S(Q∨ (E)∨R). But Q∨ (E)∨R
equals Q ∨R. Also,

2

S(Q ∨ (E)) ∪ S(R)
2

is the smallest rank-two convex set
both containing S(R) and containing the smallest rank-two convex set con-

taining S(Q) and S(D). Thus
2

S(Q ∨ (E)) ∪ S(R)
2

=
2

S(Q) ∪ S(D) ∪ S(R)
2

,

which equals
2

S(Q) ∪ S(R)
2

because D ≤ R. This completes the inductive
argument.

We have proved the second assertion of the theorem. In particular, the set
S(Q ∨R) is contained in every rank-two convex set containing S(Q) ∪ S(R).
But as verified in Exercise 9.32, every convex set is also rank-two convex, so
S(Q ∨R) is contained in every convex set containing S(Q) ∪ S(R). Theorem
9-4.5 implies in particular that S(Q ∨ R) is convex, so it is the intersection
of all convex sets containing S(Q) ∪ S(R). But Exercise 9.27 verifies that
that intersection is S(Q) ∪ S(R). We have proved the first assertion of the
theorem.

Remark 9-4.14. The equivalence of conditions (i) and (iii) in Theorem 9-4.5
is proved without the simplicial hypothesis, but with the hypothesis that
Pos(A, B) is a lattice, as part of [70, Theorem 5.5]. The other part of [70,
Theorem 5.5] proves assertion (i) of Theorem 9-4.8, also under the hypothesis
that Pos(A, B) is a lattice. In [308, Theorem 5.1], assertion (ii) of Theorem
9-4.8 is proved under the weaker hypothesis that (A, B) is tight.

9-5. Lattice congruences for combinatorialists

This section presents basic notions and combinatorial tools surrounding lattice
congruences of finite lattices, emphasizing order-theoretic characterizations
of lattice-theoretic concepts. The “combinatorialists” targeted in the section
title are those who may deal frequently with posets and lattices but have less
contact with lattice theory per se, and in particular may not have thought
very much about lattice homomorphisms and congruences. Anticipating that
some of the targeted combinatorialists may read this section separately from
the rest of the book, we give some basic definitions in this section that we
have assumed earlier in the book.

Probably none of the results of this section are surprising to those familiar
with lattice homomorphisms and congruences. Indeed, some have appeared in
the literature — see the Notes at the end of this chapter — or have already
appeared in this volume. However, this section may provide a point of view
that is different from the traditional lattice-theoretic viewpoint.

Although here we highlight the case of finite lattices, there are several
possible extensions to the infinite case. If one sacrifices the purely algebraic
framework by passing to complete lattices and complete homomorphisms,
then many statements for finite lattices generalize essentially verbatim. If, on
the other hand, one avoids the notion of completeness, then the definition
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of a lattice as a triple (L,∧,∨) remains purely algebraic, but the order-
theoretic statements become less satisfying. A third option is to consider only
bounded homomorphisms and bounded congruences. We consider some of
these generalizations beyond finite lattices in Exercises 9.40–9.49.

9-5.1 Homomorphisms and congruences

A lattice homomorphism is a map η from a lattice L1 to a lattice L2 such
that η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y) for all x, y ∈ L1 . An
isomorphism of lattices is a bijective lattice homomorphism.

Given a map η : L→ L′ and a subset S ⊆ L′, the notation η−1 (S) means
{x ∈ L | η(x) ∈ S}.

Proposition 9-5.1. Let L and L′ be finite lattices. A surjective map η : L→ L′

is a lattice homomorphism if and only if the following two conditions hold:

(i) η is order-preserving.

(ii) For every interval [x, y] in L′, the set η−1 ([x, y]) is an interval.

Proof. Suppose η is a lattice homomorphism. If x and y are in L and x ≤ y
then x∧y = x and thus η(x)∧η(y) = η(x∧y) = η(x), so η(x) ≤ η(y). Suppose
[x, y] is an interval in L′. If η(a) and η(b) are in [x, y], then η(a∨b) = η(a)∨η(b)
is in [x, y] and similarly η(a∧ b) is in [x, y]. Thus η−1 ([x, y]) is contained in the
interval

[∧
η−1

(
[x, y]

)
,
∨

η−1
(
[x, y]

)]
. If η(a) ∈ [x, y] and η(b) ∈ [x, y], then

η(a∨ b) = η(a)∨ η(b) ∈ [x, y]. Therefore η
(∨

η−1
(
[x, y]

))
is in [x, y]. Similarly,

η
(∧

η−1
(
[x, y]

))
is in [x, y]. Furthermore, if a ≤ b ≤ c and if η(a) and η(c) are

in [x, y], then since η is order-preserving, η(b) is in [x, y]. Thus η−1 ([x, y]) is
the entire interval

[∧
η−1

(
[x, y]

)
,
∨

η−1
(
[x, y]

)]
. We have verified (i) and (ii).

Conversely, suppose η satisfies (i) and (ii) and let x and y be elements of L.
By (i), η(x ∧ y) is a lower bound for η(x) and η(y), so η(x ∧ y) ≤ η(x) ∧ η(y).
By (ii), η−1 ([η(x) ∧ η(y), η(x) ∨ η(y)]) is an interval I in L. But η(x) is
in [η(x) ∧ η(y), η(x) ∨ η(y)], so x ∈ I, and similarly y ∈ I. Since I is an
interval, also x ∧ y is in I, and in particular η(x ∧ y) ≥ η(x) ∧ η(y). We
have shown that η(x ∧ y) = η(x) ∧ η(y), and the dual argument shows that
η(x ∨ y) = η(x) ∨ η(y).

When η is a bijection, Proposition 9-5.1 reduces, with the help of Exer-
cise 9.21(c), to the statement that a bijection between finite lattices is an
isomorphism of lattices if and only if it is an isomorphism of posets. This is easy
to prove for general lattices. (See, for example, LTF Lemma 4). Furthermore,
if a lattice L and a poset P are isomorphic as posets then P is a lattice and L
and P are isomorphic as lattices.

We now turn to the order-theoretic characterization of lattice congruences.
A congruence on a lattice L is an equivalence relation α on L such that if
x1 ≡x2 (mod α) and y1 ≡y2 (mod α) then x1 ∧ y1 ≡x2 ∧ y2 (mod α) and
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x1 ∨ y1 ≡x2 ∨ y2 (mod α). To check that a given α is a congruence, it is
enough to check that if x1 ≡x2 (mod α) then x1 ∧ y ≡x2 ∧ y (mod α) and
x1 ∨ y ≡x2 ∨ y (mod α) for all y. (See Exercise 9.35.)

Proposition 9-5.2. An equivalence relation α on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map πα
↓ mapping each element to the bottom element of its equiva-

lence class is order-preserving.

(iii) The map π↑
α mapping each element to the top element of its equivalence

class is order-preserving.

Proof. First, suppose α is a congruence on L and let C be an α-class. Since
C is finite, it has at least one minimal element, but if x1 and x2 are both
minimal in C, then since x1 ≡x2 (mod α), we have x1 ∧ x2 ≡x2 ∧ x2 = x2

(mod α), so that x1 ≥ x2 and therefore x1 = x2 by the minimality of x1 .
Thus C has a unique minimal element x and by the dual argument, it has a
unique maximal element y. If x ≤ z ≤ y, then since x≡y (mod α), we have
x = x ∧ z ≡y ∧ z = z (mod α). Thus C is the entire interval [x, y].

If x ≤ y then x∧y = x, and since x≡πα
↓ x (mod α) and y ≡πα

↓ y (mod α),
we have x = x ∧ y ≡πα

↓ x ∧ πα
↓ y (mod α). Thus πα

↓ x ∧ πα
↓ y is in the α-class

of x, so πα
↓ x ≤ πα

↓ x ∧ πα
↓ y ≤ πα

↓ y. This is (ii), and the proof of (iii) is dual.
Conversely, suppose that (i) and (ii) hold for some equivalence relation α.

For any x, y ∈ L, since x ≥ x ∧ y and y ≥ x ∧ y, condition (ii) implies that
πα
↓ x ≥ πα

↓ (x ∧ y) and πα
↓ y ≥ πα

↓ (x ∧ y). Thus

(9-5.1) πα
↓ x ∧ πα

↓ y ≥ πα
↓ (x ∧ y).

On the other hand, x ≥ πα
↓ x and y ≥ πα

↓ y, so

(9-5.2) x ∧ y ≥ πα
↓ x ∧ πα

↓ y.

Applying (ii) to (9-5.2) and combining it with (9-5.1), we obtain

(9-5.3) πα
↓ x ∧ πα

↓ y ≥ πα
↓ (x ∧ y) ≥ πα

↓ (π
α
↓ x ∧ πα

↓ y).

But also πα
↓ x∧πα

↓ y and πα
↓ (π

α
↓ x∧πα

↓ y) are in the same α-class, so (i) implies
that πα

↓ (x ∧ y) is also in that α-class. Therefore also x ∧ y is in that α-class,
or in other words x ∧ y ≡πα

↓ x ∧ πα
↓ y (mod α).

Now given x1 ≡y1 (mod α) and x2 ≡y2 (mod α), we have πα
↓ x1 = πα

↓ y1
and πα

↓ x2 = πα
↓ y2 . Thus

x1 ∧ x2 ≡πα
↓ x1 ∧ πα

↓ x2 = πα
↓ y1 ∧ πα

↓ y2 ≡y1 ∧ y2 (mod α).

The proof is completed by arguing dually based on (i) and (iii).
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Remark 9-5.3. The proof of Proposition 9-5.2 also shows that, in a lattice of
arbitrary cardinality, an equivalence relation satisfying (i), (ii), and (iii) is a
congruence. In addition, the proof shows that a congruence satisfying (i) also
satisfies (ii) and (iii). Exercise 9.36 asks for an example of a congruence not
satisfying (i). Congruences that satisfy (i) are called bounded congruences.

9-5.2 Quotient lattices

We now prove two order-theoretic characterizations of the quotient of a finite
lattice modulo a congruence. The first and more obvious characterization
describes the quotient as a partial order on congruence classes. See also
Exercise 9.46.

Proposition 9-5.4. If L is a lattice and α is a congruence on L then the
quotient lattice L/α is the partially ordered set on α-classes with order relation
described as follows: Two α-classes C1 and C2 have C1 ≤ C2 if and only if
there exist x ∈ C1 and y ∈ C2 with x ≤ y. If L is finite, then distinct α-classes
have C1 ≺ C2 if and only if there exist x ∈ C1 and y ∈ C2 with x ≺ y.

Proof. We have C1 ≤ C2 if and only if C1 ∧ C2 = C1 . The latter condition
is equivalent to the requirement that x ∧ y ∈ C1 for any x ∈ C1 and y ∈ C2 .
Thus if C1 ≤ C2 and x ∈ C1 and y ∈ C2 , then the elements x ∧ y ∈ C1 and
y ∈ C2 satisfy x ∧ y ≤ y. Conversely, given x ∈ C1 and y ∈ C2 with x ≤ y, we
have x ∧ y = x ∈ C1 .

Now suppose L is finite. If C1 ≺ C2 then in particular, there exist x ∈ C1

and y ∈ C2 with x ≤ y. Any maximal chain from x to y is x = x0 ≺ · · · ≺
xk ≺ y0 ≺ · · · ≺ yℓ = y with each xi in C1 and each yi in C2 . (If some
other class appears in the chain, then we obtain a contradiction to C1 ≺ C2 .)
Conversely, if C1 ̸= C2 and there exist x ∈ C1 and y ∈ C2 with x ≺ y, then in
particular C1 < C2 . If C1 ≺ C3 ≤ C2 , then in particular there exist elements
x′ ∈ C1 and z in C3 with x′ < z and elements z′ ∈ C3 and y′ ∈ C2 with
z′ ≤ y′. Applying the order-preserving map πα

↓ to x′ < z and to z′ ≤ y′,
we obtain πα

↓ x ≤ πα
↓ z ≤ πα

↓ y, because the map πα
↓ is constant on α-classes.

Now x = x ∨ πα
↓ x ≤ x ∨ πα

↓ z ≤ x ∨ πα
↓ y = y (with the latter equality holding

because x ≺ y). But x ∨ πα
↓ x and x ∨ πα

↓ z are not equal, because one is in C1

and the other is in C3 . Because x ≺ y, we conclude that x ∨ πα
↓ z = x ∨ πα

↓ y
and thus that C3 = C2 .

The second order-theoretic characterization of quotients uses Propositions
9-5.2 and 9-5.4 to give a more direct description of the quotient lattice as
a partial order. Given a congruence α on a finite lattice L, the notation
πα
↓ L stands for {πα

↓ x | x ∈ L}, the set of elements that are minimal in their
equivalence class. The set πα

↓ L is partially ordered as an induced subposet
of L.
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Proposition 9-5.5. If L is a finite lattice and α is a congruence on L then
πα
↓ L is a lattice, isomorphic to the quotient lattice L/α. The map πα

↓ is a
lattice homomorphism from L to πα

↓ L.

Proof. We write πα
↓ : (L/α)→ πα

↓ L for the bijection taking α-classes to their
bottom elements. Suppose C1 and C2 are α-classes. If C1 ≤ C2 then by
Proposition 9-5.4, there exist x ∈ C1 and y ∈ C2 with x ≤ y. By Proposition 9-
5.2, πα

↓ x ≤ πα
↓ y, or in other words πα

↓ (C1 ) ≤ πα
↓ (C2 ). Conversely, if π↓(C1 ) ≤

π↓(C2 ) then C1 ≤ C2 by Proposition 9-5.4. We have shown that πα
↓ is an

isomorphism.
The map πα

↓ from L to πα
↓ L coincides with the composition πα

↓ ◦ ψ, where
ψ is the natural homomorphism from L to L/α. (See, for example, LTF
Theorem 16.) In particular πα

↓ is a lattice homomorphism to πα
↓ L.

Of course, the dual statement to Proposition 9-5.5, replacing πα
↓ by π↑

α,
holds by the dual proof.

Remark 9-5.6. Proposition 9-5.2 may allow a combinatorialist to recognize
situations where lattice-theoretic tools are applicable. Suppose L is a finite
lattice, S is a set, and η : L → S is a surjective map such that the fiber
η−1 (x) = {y ∈ L | η(y) = x} of any x ∈ S is an interval in L. In this
case, one should check whether the fibers are the congruence classes of a
lattice congruence on L, specifically by checking that the projection to bottom
elements of fibers is order-preserving and that the projection to top elements
of fibers is order-preserving. If the fibers define a congruence α, then the
natural bijection from η-fibers to S allows the lattice structure on L/α to be
carried to S. That is, S admits a lattice structure isomorphic to L/α and
also, by Proposition 9-5.5, isomorphic to πα

↓ L, the subposet of L induced by
the elements that are minimal in their η-fibers. Furthermore, Proposition
9-5.5 implies that η is a lattice homomorphism from L to S. This kind of
investigation led to the notion of Cambrian lattices discussed in Chapter 10;
more details are found in [374].

Propositions 9-5.2 and 9-5.4 also lead to the following useful lemma.

Lemma 9-5.7. Given a finite lattice L, a congruence α on L and an interval
[x, y] in L, the intervals [πα

↓ x,π
α
↓ y] in πα

↓ L and [x/α, y/α] in L/α are both
isomorphic to the quotient of [x, y] modulo the restriction of α to [x, y].

Proof. The map πα
↓ from the proof of Proposition 9-5.5 restricts to an iso-

morphism between the two intervals. Consider the restriction to [x, y] of the
natural homomorphism from L to L/α. Proposition 9-5.4 implies that the
image of this restriction is contained in [x/α, y/α]. We claim that the restric-
tion is also surjective onto [x/α, y/α]. That is, given z/α ∈ [x/α), y/α], we
claim that z/α ∩ [x, y] ̸= ∅. Proposition 9-5.4 says that there exist x′ ∈ x/α
and z′ ∈ z/α with x′ ≤ z′ and that there exist z′′ ∈ z/α and y′′ ∈ y/α with



438 9. Lattice Theory of the Poset of Regions

z′′ ≤ y′′. Proposition 9-5.2 implies that πα
↓ z = πα

↓ z
′′ ≤ πα

↓ y
′′ ≤ y. Since

also y is above x, we have (πα
↓ z) ∨ x ∈ [x, y]. Because x′ ≤ z′, we have

x ≤ π↑
αx

′ ≤ π↑
αz

′ = π↑
αz. Thus π

α
↓ z ≤ (πα

↓ z)∨ x ≤ π↑
αz, and we conclude that

(πα
↓ z) ∨ x ∈ [πα

↓ z,π
↑
αz] = z/α. We have proved the claim. Two elements of

[x, y] map to the same element of [x/α), y/α] if and only if they are congruent
mod α. Thus we have proved the lemma.

The following proposition is proved as Exercise 9.39.

Proposition 9-5.8. If L is a finite lattice and α is a congruence on L, then
πα
↓ L is a join-subsemilattice of L, but can fail to be a sublattice of L.

Remark 9-5.9. The last assertion of Proposition 9-5.5 (that πα
↓ is a lattice

homomorphism from L to πα
↓ L) may lead the unwary to write down a statement

like “πα
↓ (x∧y) = πα

↓ x∧πα
↓ y.” In general, that statement is, at best, ambiguous

and, at worst, incorrect. A correct statement is πα
↓ (x ∧L y) = πα

↓ x ∧πα
↓ L πα

↓ y,
where we use subscripts to distinguish the meet in L from the meet in πα

↓ L.
Since πα

↓ L is a join-subsemilattice of L by Proposition 9-5.8, the statement
πα
↓ (x∨y) = πα

↓ x∨πα
↓ y is correct and unambiguous. When πα

↓ L is a sublattice
of L, the offending statement above is also correct.

It is straightforward to describe the cover relations in πα
↓ L.

Proposition 9-5.10. Suppose L is a finite lattice and α is a congruence on L.
For each y ∈ πα

↓ L, the map πα
↓ restricts to a bijection between elements of L

covered by y in L and elements of πα
↓ L covered by y in πα

↓ L.

The proposition amounts to two assertions: First, if y ∈ πα
↓ L and x is

covered by y in L, then πα
↓ x is covered by y in πα

↓ L. Second, if x is covered by
y in πα

↓ L, then there exists a unique element x′ covered by y in L such that
πα
↓ x

′ = x.

Proof. We use Proposition 9-5.2 throughout the proof. Suppose y ∈ πα
↓ L

and x is covered by y in L. Then πα
↓ x ≤ x ≺ y. Suppose there is some

element z ∈ πα
↓ L such that πα

↓ x < z < y. If z ≤ x, so that πα
↓ x < z ≤ x,

then πα
↓ z = πα

↓ x, and since πα
↓ z = z, this is a contradiction. If z " x, then

since x ≺ y and y is an upper bound for x and z, we see that x ∨L z = y.
Propositions 9-5.5 and 9-5.8 imply that πα

↓ x ∨ πα
↓ z = πα

↓ y. But π
α
↓ z = z and

πα
↓ y = y, so πα

↓ x ∨ z = y, contradicting the supposition that πα
↓ x < z < y.

Now suppose x, y ∈ πα
↓ L and x is covered by y in πα

↓ L. In particular
x < y in L. Let x′ be an element of L with x ≤ x′ ≺ y in L. Then
x = πα

↓ x ≤ πα
↓ x

′ < πα
↓ y = y. Since x is covered by y in πα

↓ L, we see that
πα
↓ x

′ = x. If there are two distinct elements x′ and x′′ covered by y in L with
πα
↓ x

′ = x and πα
↓ x

′′ = x, then x′ ∨ x′′ = y. Applying πα
↓ to x′ ∨ x′′ = y and

appealing again to Propositions 9-5.5 and 9-5.8, we obtain the contradiction
x = y.
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9-5.3 Join-irreducible elements and congruences

An element j of a finite lattice L is join-irreducible if it cannot be written as
j =

∨
U for some U ⊂ L with j ̸∈ U . Equivalently, j is join-irreducible if it

covers exactly one element. We write j∗ for the unique element covered by j.
A congruence α contracts a join-irreducible element j if j ≡j∗ (mod α).

Proposition 9-5.11. Let α be a congruence on a finite lattice L. An element
j ∈ πα

↓ L is join-irreducible as an element of πα
↓ L if and only if it is join-irre-

ducible as an element of L. The join-irreducible elements of πα
↓ L are exactly

the join-irreducible elements of L that are not contracted by α.

Proof. The first statement is an immediate consequence of Proposition 9-5.10.
The second statement follows because a join-irreducible element j of L is in
πα
↓ L if and only if it is not contracted by α.

The notion of contracting join-irreducible elements leads to another char-
acterization of the quotient of a finite lattice L modulo a congruence α.

Proposition 9-5.12. Let α be a congruence on a finite lattice L. For x ∈ L,
let Dαx be the set of join-irreducible elements j ≤ x that are not contracted
by α. Then x, y ∈ L have x ≡ y (mod α) if and only if Dα(x) = Dα(y).
The quotient L/α is isomorphic to the set {Dαx | x ∈ L} partially ordered by
containment.

Proof. Suppose x ∈ L. Since πα
↓ x ≤ x, it is immediate that Dα(πα

↓ x) ⊆ Dαx.
If, on the other hand, j ∈ Dαx, then j = πα

↓ j ≤ πα
↓ x, so j ∈ Dα(πα

↓ x). Thus
Dαx = Dα(πα

↓ x) for all x ∈ L, and we conclude that Dαx = Dαy whenever
x≡y (mod α).

To prove the converse, first consider the case where Dαx = Dαy for
elements x, y ∈ L with x ≺ y. Choose some element j which is minimal
among elements below y but not below x. If j covers two distinct elements
y and y′, then both are below x by our choice of j. But then since x is an
upper bound for both y and y′, the join y ∨ y′ = j is below x, and this is a
contradiction. Thus j is join-irreducible and covers a unique element j∗. Since
x ≺ y, we have j ∨ x = y. Since Dαx = Dαy, we see that j∗ ≡j (mod α) and
therefore j∗ ∨ x≡j ∨ x (mod α), or in other words x≡y (mod α). Next, if
Dαx = Dαy for x ≤ y, then repeating the above argument along a maximal
chain from x to y, we conclude that x ≡y (mod α). Finally, for general x
and y, the set Dα(x ∧ y) is the set of uncontracted join-irreducible elements
below x and below y, so Dα(x∧ y) = Dαx∩Dαy. Thus if Dαx = Dαy, then
Dαx = Dα(x ∧ y) = Dαy. Since x ∧ y ≤ x, we see that x ≡x ∧ y (mod α)
and similarly y ≡x ∧ y (mod α), so x≡y (mod α).

By Proposition 9-5.5, to prove the second statement, it is enough to show
that for x, y ∈ πα

↓ L we have x ≤ y if and only if Dαx ⊆ Dαy. The “only
if” direction is immediate. Conversely, suppose Dαx ⊆ Dαy. As before,
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Dα(x ∧ y) = Dαx ∩ Dαy, which equals Dαx because Dαx ⊆ Dαy. Thus
x ∧ y ≡x (mod α), but since x ∈ πα

↓ L, we conclude that x ∧ y = x, so that
x ≤ y.

The congruence lattice ConL is the set of all congruences of L, partially
ordered by containment of equivalence relations, or equivalently as a subposet
of the lattice of partitions of L.

The partition lattice of a set S is the set of equivalence relations, partially
ordered by containment. The intersection of equivalence relations is an equiva-
lence relation, and thus intersection of relations is the meet in the partition
lattice. Since there is a unique maximal equivalence relation (with exactly one
class), the dual to Lemma 9-2.1 implies that the partitions of L form a lattice.
Alternately, one can easily construct the join directly: It is the operation of
taking the union and then transitive closure of relations.

The following proposition is a combination of part of LTF Theorem 12 and
LTF Exercise I.3.60. See also Corollary 9-5.17.

Proposition 9-5.13. If L is a lattice, then ConL is a lattice, specifically a
sublattice of the partition lattice of L. The meet in ConL is the intersection
of relations, and the join is the transitive closure of the union of relations.

Proof. It is easy to see that the intersection of two congruence relations is a
congruence relation. It is only slightly harder to see that ConL is also closed
under taking union and then transitive closure. Given two congruences α,β ∈
ConL, write γ for the transitive closure of their union. Then x≡y (mod γ) if
and only if there is a sequence x = x0 , . . . , xk = y such that for each i = 1, . . . , k,
either xi−1 ≡xi (mod α) or xi−1 ≡xi (mod β). For any z ∈ L, since α and
β are congruences, either xi−1 ∧ z ≡ xi ∧ z (mod α) or xi−1 ∧ z ≡ xi ∧ z
(mod β) for all i = 1, . . . , k, and we conclude that x ∧ z ≡ y ∧ z (mod γ).
Similarly, x∨ z ≡y ∨ z (mod γ), and we conclude by Exercise 9.35 that γ is a
congruence.

By Proposition 9-5.13, for any elements a and b of a lattice L, there
is a unique smallest congruence relation on L with a ≡ b (the meet of all
congruences with a ≡ b). We write con(a, b) for this congruence. If j is
a join-irreducible element, then we write con(j) for con(j∗, j). This is the
unique smallest congruence contracting j. We now characterize join-irreducible
congruences on finite lattices.

Proposition 9-5.14. If L is a finite lattice and α ∈ ConL, then the following
are equivalent.

(i) α is join-irreducible in ConL.

(ii) α = con(a, b) for some covering pair a ≺ b.

(iii) α = con(j) for some join-irreducible element j.
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Proof. As an immediate consequence of Proposition 9-5.12, α is the join∨
con(j) over all join-irreducible elements j contracted by α. Thus if α is

join-irreducible in ConL, then it is of the form con(j). That is, (i) implies (iii).
Keeping in mind that con(j) means con(j∗, j), we see that (iii) implies (ii).

Suppose a ≺ b and suppose β ∨ γ = con(a, b) in ConL. By Proposition
9-5.13, there is a sequence of elements a = x0 , . . . , xk = b such that for
each i = 1, . . . , k, either xi−1 ≡xi (mod β) or xi−1 ≡xi (mod γ). Defining
yi = (xi ∨ a) ∧ b for each i, we obtain a sequence a = y0 , . . . , yk = b such that
yi−1 ≡yi (mod β or γ) for each i. Furthermore, each xi ∨ a is above a, and
therefore each yi is between a and b. But a ≺ b so each yi is either a or b, and
we conclude that either a≡b (mod β) or a≡b (mod γ). Thus either β or γ
equals con(a, b). We see that con(a, b) is join-irreducible in ConL. That is,
(ii) implies (i).

When L is infinite, each con(a, b) for a ≺ b is join-irreducible, but there
may be join-irreducible congruences not of this form. See LTF Section III.1.4.

9-5.4 Forcing among edges and join-irreducible elements

We call a cover relation in a finite lattice an edge, because it is an edge in the
Hasse diagram. A congruence α contracts an edge a ≺ b if a≡b (mod α).
This use of the term “contract” is not at odds with our earlier use: a congruence
α contracts a join-irreducible element j if and only if it contracts the edge
j∗ ≺ j. The following fact is an immediate consequence of Proposition 9-5.14
(and indeed was stated in part in the proof of Proposition 9-5.14).

Corollary 9-5.15. A congruence α on a finite lattice L is determined by
the set of join-irreducible elements it contracts or by the set of edges it con-
tracts. Specifically, α is the join

∨
con(j) over all join-irreducible elements j

contracted by α. Also, α is the join
∨

con(a, b) over all edges a ≺ b it contracts.

We say that an edge a ≺ b forces an edge c ≺ d if con(a, b) ≥ con(c, d).
Equivalently, a ≺ b forces c ≺ d if every congruence contracting a ≺ b also
contracts c ≺ d, or in other words, if c ≡d (mod con(a, b)). One approach
to understanding congruences on a finite lattice is to determine the forcing
relation on edges. We will see in Section 9-6 that the forcing relation on
Pos(A, B) is given by simple local rules when A is tight with respect to B.

For join-irreducible j, we continue to write con(j) for con(j∗, j), the smallest
congruence contracting j. Given join-irreducible elements j and j′ of L, we
say j forces j′ and write j → j′ if con(j) ≥ con(j′) in ConL. The reflexive-
transitive closure of the forcing relation is a pre-order on the join-irreducible
elements of L, taking the convention that→ corresponds to ≥ . Setting two join-
irreducible elements j and j′ to be equivalent if and only if con(j) = con(j′),
the forcing relation defines a partial order on equivalence classes of join-irreduc-
ible elements by the usual construction of a partial order from a pre-order. (See
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LTF Section I.1.2.) We write [j] for the equivalence class of a join-irreducible
element. Call this partial order the forcing order on (equivalence classes of)
join-irreducible elements. The notation ConJi L stands for the subposet of
ConL induced by join-irreducible congruences. In light of Proposition 9-5.14,
the following proposition is simply a rephrasing of the definition of the forcing
order.

Proposition 9-5.16. The map [j] ,→ con(j) is an isomorphism from the
forcing order to ConJi L. Thus the congruence lattice ConL is isomorphic to
the poset of down-sets in the forcing order.

The poset of downsets in an arbitrary poset is distributive.5 Thus Proposi-
tion 9-5.16 implies the following corollary. The same result holds for arbitrary
lattices. (See LTF Theorem 149.)

Corollary 9-5.17. The congruence lattice ConL of a finite lattice L is dis-
tributive.

For emphasis, we also mention the following immediate corollary to Propo-
sition 9-5.16.

Corollary 9-5.18. Suppose L is a finite lattice and α and β are congruences
on L such that J is the set of join-irreducible elements contracted by α and K
is the set of join-irreducible elements contracted by β. Then α ∧ β contracts
exactly the join-irreducible elements J ∩K and α ∨ β contracts exactly the
join-irreducible elements J ∪K.

When the forcing relation is acyclic, the forcing order is a partial order
on join-irreducible elements of L, rather than on equivalence classes of join-
irreducible elements. In this case, the map j ,→ con(j) is a bijection from
join-irreducible elements of L to join-irreducible elements of ConL. Lattices
with this property and the dual property6 are called congruence uniform by
Day [116]. (Unfortunately, this terminology conflicts with the terminology of
LTF Section IV.4.5.) This very natural combinatorial condition turns out to
coincide with another very natural combinatorial condition and with a less
combinatorial condition of great lattice-theoretic interest. Doubling an interval
in a lattice means replacing the interval by its product with a 2-element chain
and defining order relations between the doubled interval and the rest of the
lattice in a natural way as explained in Section 3-2.7. A lattice that is the
quotient of a finitely generated free lattice modulo a bounded congruence in
the sense of Remark 9-5.3 is often called a bounded lattice. However, since

5Indeed, a finite lattice is distributive if and only if it is the poset of downsets in some
poset. (See LTF Theorem 107 and Corollary 108.) This result is sometimes called the
Fundamental Theorem of Finite Distributive Lattices [421, Section 3.4].

6The dual property is: The map m #→ con(m,m∗) is a bijection from meet-irreduc-
ible elements of L to join-irreducible elements of ConL. Here m∗ is the unique element
covering m.
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this definition conflicts with a very common usage of the term “bounded” to
refer to a poset with a unique minimal and a unique maximal element, we
will avoid using the term “bounded lattice” here. In the following theorem,
the equivalence of (i) and (iii) is obtained by combining Lemma 3-2.33 and
Corollary 3-2.35 and the equivalence of (ii) and (iii) is Theorem 3-2.40. The
assertion about semidistributivity is Lemma 3-2.18. We mark Theorem 9-5.19
with a diamond here because Theorem 3-2.40 is also a diamond theorem.

♦ Theorem 9-5.19. For a finite lattice L, the following are equivalent:

(i) L is congruence uniform (in the sense of Day).

(ii) L is obtained from a one-element lattice by a sequence of doublings of
intervals.

(iii) L is the quotient of a finitely generated free lattice modulo a bounded
congruence.

If these conditions hold, then L is semidistributive.

In a finite congruence uniform lattice, for each edge a ≺ b, there is a unique
join-irreducible element j such that con(a, b) = con(j∗, j). The map sending
a ≺ b to this j and the dual map to meet-irreducible elements are made explicit
in the following proposition, which is proved as Exercise 9.48.

Proposition 9-5.20. Let L be a finite congruence uniform lattice and let
a ≺ b be a cover relation in L.

(i) The unique join-irreducible element j of L with con(a, b) = con(j∗, j) is
j =

∧
{x ∈ L | x ≤ b, x ̸≤ a}. Furthermore, j ≤ b but j ̸≤ a.

(ii) The unique meet-irreducible element m of L with con(a, b) = con(m,m∗)
is m =

∨
{x ∈ L | x ≥ a, x ̸≥ b}. Furthermore, m ≥ a but m ̸≥ b.

In particular, if j is a join-irreducible element and m is a meet-irreducible
element with con(j∗, j) = con(m,m∗), then j =

∧
{x ∈ L | x ≤ m∗, x ̸≤ m}

and m =
∨
{x ∈ L | x ≥ j∗, x ̸≥ j}.

The bijection between meet-irreducible elements and join-irreducible el-
ements in Proposition 9-5.20 coincides with the map κ which appears in
Theorem 3-1.4 in the more general context of join-semidistributive lattices.
(In the more general context, the map need not be a bijection.)

We briefly discuss a weaker condition than congruence uniformity. Recall
from Section 3-2.7 that a lattice is called congruence normal if whenever j is
join-irreducible and m is meet-irreducible and con(j∗, j) = con(m,m∗) then
j " m. Theorem 3-2.39 says that a finite lattice is congruence normal if and
only if it is obtained from a one-element lattice by a sequence of doublings of
convex sets. Theorem 3-2.41 says that a finite lattice is congruence uniform if



444 9. Lattice Theory of the Poset of Regions

and only if it is both congruence normal and semidistributive. We quote a result
that characterizes congruence normality of a finite lattice L combinatorially in
terms of edge labelings.

A join-fundamental pair of chains is a pair C = x0 ≺ x1 ≺ · · · ≺ xk

and D = y0 ≺ y1 ≺ · · · ≺ yℓ with x0 = y0 and xk = yℓ = x1 ∨ y1 . Each
chain is unrefinable, meaning that adjacent elements of the chain are related
by cover relations in L. Dually, we can define meet-fundamental pairs. A
CN-labeling of a finite lattice L is a map γ from the set of edges of L to
some poset P , satisfying the following properties for each join-fundamental
C = x0 ≺ x1 ≺ · · · ≺ xk and D = y0 ≺ y1 ≺ · · · ≺ yℓ, and satisfying the dual
properties for each meet-fundamental pair of chains.

(i) γ(x0 , x1 ) = γ(yℓ−1 , yℓ).

(ii) If 1 < i < k, then γ(xi−1 , xi) < γ(x0 , x1 ) and γ(xi−1 , xi) < γ(xk−1 , xk).

(iii) The labels γ(xi−1 , xi) for 1 ≤ i ≤ k are all distinct.

♦ Theorem 9-5.21. A finite lattice is congruence normal if and only if
it admits a CN-labeling. In this case, the map taking an edge x ≺ y to
con(x, y) ∈ ConJi(L) is a CN-labeling.

9-5.5 Congruences on quotients

Since a quotient L/α is isomorphic to πα
↓ L, we will describe congruences on

both representations of the quotient, beginning with L/α.
First, we prove one of the standard Isomorphism Theorems7 for finite

lattices. For a congruence α on L, the notation x/α stands for the α-class
of x ∈ L. Given a lattice L and congruences α and β on L such that α ≤ β,
define a relation β/α on L/α by setting x/α≡y/α (mod β/α) if and only
if x≡y (mod β).

Theorem 9-5.22. Let L be a finite lattice and let α be a congruence on L.
Then the map β ,→ β/α is an isomorphism from {β ∈ ConL | β ≥ α} to
Con(L/α).

Proof. Suppose β ≥ α. Then each β-class C is an interval [x, y] and is a
union of α-classes. The set of α-classes contained in C is a β/α-class and

equals the interval [x/α, y/α] in L/α. We see that πβ/α
↓ (x/α) = (πβ

↓ x)/α.
Suppose C1 and C2 are α-classes with C1 ≤ C2 , so that by Proposition
9-5.4, there exist x ∈ C1 and y ∈ C2 with x ≤ y. Then πβ

↓ x ≤ πβ
↓ y, so

πβ/α
↓ (x/α) = (πβ

↓ x)/α ≤ (πβ
↓ y)/α = πβ/α

↓ (y/α) by Proposition 9-5.4. The

7Although the theorems are standard, their numbering is apparently not. This theorem
appears (in a more general setting) as LTF Lemma 220, where it is called the Second
Isomorphism Theorem. Some other references call this the Third Isomorphism Theorem.
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dual argument shows that π↑
β/α is also order-preserving, so β/α is a congruence

by Proposition 9-5.2.
It is immediate for β ≥ α and γ ≥ α that β ≤ γ if and only if β/α ≤ γ/α,

so the map β ,→ β/α is an isomorphism from {β ∈ ConL | β ≥ α} to its
image, which is an induced subposet of Con(L/α). We need to show that
this image is all of Con(L/α). If β′ is a congruence on L/α, let β be the
equivalence relation on L with x ≡ y (mod β) if and only if x/α ≡ y/α
(mod β′). To see that β is a congruence, let C be a β-class and let C ′ be
the corresponding β′-class. By Proposition 9-5.4, C is the interval between
the bottom element of the bottom α-class in C ′ and the top element of the
top α-class in C ′. The projection πβ

↓ takes an element x ∈ L to the bottom

element of πβ′

↓ (x/α). If x ≤ y then x/α ≤ y/α by Proposition 9-5.4, and then

πβ′

↓ (x/α) ≤ πβ′

↓ (y/α). Then Proposition 9-5.4 says that some element of the

α-class πβ′

↓ (x/α) is less than or equal to some element of πβ′

↓ (y/α), but then

since πα
↓ is order-preserving, we see that the bottom element of πβ′

↓ (x/α) is

less than or equal to the bottom element of πβ′

↓ (y/α). We have shown that πβ
↓

is order-preserving, and the dual argument shows that π↑
β is order-preserving,

so β is a congruence by Proposition 9-5.2. Therefore β′ = β/α, and the proof
is complete.

Given a congruence α on L and a subset U of L, we write α|U for the
restriction of the equivalence relation α to U . The following rephrasing of
Theorem 9-5.22 is immediate in light of Proposition 9-5.5.

Corollary 9-5.23. Let L be a finite lattice and let α be a congruence on L.
Then the map β ,→ β|πα

↓ L is an isomorphism from {β ∈ ConL | β ≥ α} to

Con(πα
↓ L).

We can also relate join-irreducible congruences on a quotient of L to join-
irreducible congruences on L. Recall from Proposition 9-5.10 that the cover
relations in πα

↓ L are exactly πα
↓ x ≺ y such that y ∈ πα

↓ L and x ≺ y in L.

Proposition 9-5.24. Let L be a finite lattice and let α be a congruence on L.
Suppose y ∈ πα

↓ L and suppose x ≺ y in L. Then the congruence con(x/α, y/α)
on L/α is (con(x, y) ∨ α)/α. Equivalently, the congruence con(πα

↓ x, y) on
πα
↓ L is the restriction of con(x, y) ∨α to πα

↓ L.

Proof. Theorem 9-5.22 implies that con(x/α, y/α) is β/α such that β is the
smallest congruence greater than or equal to α such that x≡y (mod β). In
other words, β = con(x, y) ∨α. The second statement is equivalent in light of
Proposition 9-5.5.

By Proposition 9-5.14, the congruences on L/α described in Proposi-
tion 9-5.24 are exactly the join-irreducible congruences. Thus we can relate
ConJi(L/α) to ConJi(L).
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Proposition 9-5.25. Suppose L is a finite lattice and α is a congruence on L.
Then the map [j] ,→ (con(j) ∨α)/α is an isomorphism from the forcing order,
restricted to equivalence classes of join-irreducible elements not contracted
by α, to ConJi(L/α). Thus the congruence lattice Con(L/α) is isomorphic
to the poset of down-sets in the restriction of the forcing order to classes of
join-irreducible elements not contracted by α.

If we realize the quotient as πα
↓ L instead, then the isomorphism takes [j]

to the restriction of con(j) ∨α to πα
↓ L.

Proof. Proposition 9-5.16 implies that the map [j] ,→ con(j) restricts to an
isomorphism from the forcing order, restricted to equivalence classes of join-
irreducible elements not contracted by α, to its image inside ConJi L. The
congruence α corresponds to the downset (↓α) ∩ ConJi L in ConJi L, and
con(j)∨α corresponds to the downset generated by con(j) and (↓α)∩ConJi L.
Thus the map [j] ,→ (con(j) ∨α) is an isomorphism to the set of congruences
in ↑α ⊆ ConL that cover exactly one other congruence in ↑α. Applying
Theorem 9-5.22, we see that [j] ,→ (con(j) ∨ α)/α is an isomorphism to
ConJi(L/α).

9-5.6 Semidistributive lattices

Recall that semidistributivity was considered at length in Chapters 3–6 and
very briefly in Section 9-2.2. The following appears as part of Corollary 3-1.22,
but here we give a proof using the tools of this section.

Proposition 9-5.26. If L is a finite semidistributive lattice and α is a
congruence on L, then L/α (or equivalently πα

↓ L) is semidistributive. The
same is true for join- or meet-semidistributivity separately.

Proof. Suppose L is join-semidistributive and suppose x, y, z ∈ πα
↓ L have

x∨y = x∨z in πα
↓ L. Because π

α
↓ L is a join-subsemilattice of L by Proposition

9-5.8, we have x ∨ y = x ∨ z in L as well. Since L is join-semidistributive,
x ∨ (y ∧ z) = x ∨ y in L. Because x, y, and z are in πα

↓ L, Proposition 9-5.5
implies that x∨(y∧z) = x∨y in πα

↓ L. We see that πα
↓ L is join-semidistributive,

or in other words, by Proposition 9-5.5, that L/α is join-semidistributive.
The assertion for meet-semidistributivity holds by the dual proof (using

the analogous results on π↑
α).

Remark 9-5.27. The finiteness hypothesis in Proposition 9-5.26 is indispensable:
Quotients of infinite semidistributive lattices need not be semidistributive.
Indeed, free lattices are semidistributive and every lattice is a quotient of some
free lattice. See, however, Exercise 9.49.

Definition 9-5.28. Suppose L is a finite lattice. A join representation for
x ∈ L is an identity of the form x =

∨
U for some U ⊆ L. A join representation
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x =
∨

U is irredundant if there does not exist a proper subset U ′ # U such
that x =

∨
U ′. If x =

∨
U is irredundant, then in particular U is an antichain

in L. For subsets U and V of L, say U ≪ V if, for every u ∈ U , there exists a
v ∈ V with u ≤ v. In other words, U ≪ V if and only if down(U) ⊆ down(V ).
This relation is called join-refinement because if U ≪ V then

∨
U ≤

∨
V . It

restricts to a partial order on antichains. (See Exercise 9.50.) The expression
x =

∨
U is called the canonical join representation of x if it is irredundant

and if any other join representation x =
∨

V has U ≪ V . The elements of U
are called the canonical joinands of x. Exercise 9.51 shows that x =

∨
U is

the canonical join representation of x if and only if U is the unique minimal
(in the sense of ≪) antichain joining to x. Exercise 9.52 shows that if x has
a canonical join representation, then each canonical joinand of x is join-irre-
ducible. (Exercise 3.1(a) establishes something even stronger.) Exercise 9.53
shows that x has exactly one canonical joinand (which equals x itself) if and
only if x is join-irreducible.

Recall that Theorem 3-1.4 states, among other assertions, that a finite
lattice L is join-semidistributive if and only if every element of L has a canonical
join representation.

Proposition 9-5.29. Suppose L is a finite join-semidistributive lattice and
α is a congruence on L. Then an element x ∈ L is in πα

↓ L if and only if none
of its canonical joinands is contracted by α. If x ∈ πα

↓ L then its canonical join
representation in πα

↓ L coincides with its canonical join representation in L.

Proof. Let J be the set of canonical joinands of x, so that x =
∨

J is the
canonical join representation of x. By Exercise 9.52, each j ∈ J is join-irre-
ducible, and we write j∗ for the unique element covered by j.

Suppose α contracts some j ∈ J . Writing x′ for j∗ ∨
∨

(J \ {j}), we have
x ≡x′ (mod α) because x = j ∨

∨
(J \ {j}) and j ≡j∗ (mod α). But since∨

J is irredundant, J ≪̸ (j∗ ∪J \ {j}), and then since x =
∨

J is the canonical
join representation of x, we see that x′ < x. We conclude that x ̸∈ πα

↓ L.
Conversely, suppose x ̸∈ πα

↓ L, so that there exists x′ < x with x≡x′ (mod α).
Because x =

∨
J and because x′ < x, there exists j ∈ J such that x′ $ j.

Since x≡x′ (mod α), we have j=j ∧ x≡j ∧ x′ (mod α), but j ∧ x′ ≤ j∗, so
j ≡j∗ (mod α).

When x ∈ πα
↓ L, we have showed that no element of J is contracted.

Proposition 9-5.8 implies that x =
∨

J is also the canonical join representation
of x in πα

↓ L.

The proof of Theorem 3-1.4 includes an explicit construction of canonical
join representations in finite (join-)semidistributive lattices. We pause to point
out a construction of canonical join and meet representations in the special
case of congruence uniform lattices, using Proposition 9-5.20. In the spirit of
that proposition, given a cover relation a ≺ b in a finite congruence uniform
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lattice L, define ja≺ b to be
∧
{x ∈ L | x ≤ b, x ̸≤ a} and define ma≺ b to be∨

{x ∈ L | x ≥ a, x ̸≥ b}. The following proposition is proved as Exercise 9.54.

Proposition 9-5.30. If L is a finite congruence uniform lattice and x ∈ L,
then the canonical join representation of x is x =

∨
{jw≺ x | w ≺ x} and the

canonical meet representation of x is x =
∧
{mx≺ w | x ≺ w}.

9-6. Polygonal lattices

We now introduce a lattice property called polygonality and discuss its con-
sequences. We also show that polygonality is inherited by quotients. Our
motivation for introducing this property will be made clear in Theorem 9-6.10,
which asserts that tightness and polygonality coincide for posets of regions.

Definition 9-6.1. A polygon in a lattice is an interval [x, y] that is the union
of two finite maximal chains from x to y, with these chains disjoint except
at x and y. A given lattice may have many polygons or none. A lattice L is
called polygonal if the following two dual conditions hold:

(i) If distinct elements y1 and y2 both cover an element x, then [x, y1 ∨ y2 ]
is a polygon.

(ii) If an element y covers distinct elements x1 and x2 , then [x1 ∧ x2 , y] is a
polygon.

Less formally, a polygonal lattice is a lattice that has as many polygons as
possible.

Example 9-6.2. Recall that Example 9-3.7 features a lattice of regions
Pos(A, B) such that (A, B) is not tight. The regions R1 and R2 with separating
sets {1, 2} and {1, 4} both cover the region Q with separating set {1}, but
[Q,R1 ∨R2 ] is not a polygon. Thus Pos(A, B) is not polygonal.

Maximal chains in a polygonal lattice are related by local changes in
polygons, as we now describe. Suppose L is a polygonal lattice and x ≤ y in
L. Distinct maximal chains x = x0 ≺ · · · ≺ xk = y and x = y0 ≺ · · · ≺ yℓ = y
in the interval [x, y] are related by a polygon move if there exist i, j with
0 ≤ i < j ≤ k such that the interval [xi, xj ] is a polygon in L and such that
the two chains coincide except in that interval. That is, the two chains differ
only in that one chain covers one side of the polygon while the other chain
covers the other side.

Lemma 9-6.3. Suppose L is a finite polygonal lattice and x ≤ y in L. Then
any two maximal chains in [x, y] are related by a sequence of polygon moves.
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Proof. It is immediate that any interval in a polygonal lattice is itself a
polygonal lattice. Thus we may as well argue in the case where x = 0. We
argue by induction on the height h(y) of y in L, the length (the number of
edges) of the longest chain from 0 to y. If h(y) ≤ 1, then there is a unique
maximal chain in [0, y], so suppose h(y) > 1. Given two distinct maximal
chains in [0, y], write the (weakly) longer one as 0 = x0 ≺ · · · ≺ xk = y and
write the shorter one as 0 = x′

k−m ≺ · · · ≺ x′
m = y. The argument we will

make is illustrated in Figure 9-6.1.

x0

x1 x′
k−my1

xi−1 x′
i−1

yq−1

xi yq

xi+1 x′
i+1zn z′p

xj−2 x′
j−2zj−2 z′j−2

xj−1 x′
j−1

xj

xj+1

xk

Figure 9-6.1: An illustration of the proof of Lemma 9-6.3

There exists a smallest integer j with 1 < j ≤ k such that xℓ = x′
ℓ for all

ℓ = j, . . . , k. In particular, xj−1 and x′
j−1 are distinct elements covered by xj .

Since L is polygonal, writing y for the meet xj−1 ∧x′
j−1 , the interval [y, xj ] is a

polygon. Choose any maximal chain 0 ≺ y1 ≺ · · · ≺ yq = y in the interval [0, y].
Let C be the maximal chain obtained by concatenating 0 ≺ y1 ≺ · · · ≺ yq with
the side of the polygon containing xj−1 and then xj ≺ · · · ≺ xk. This is the
chain containing elements of the form zi in Figure 9-6.1. Let C ′ agree with C
except that we take the side of the polygon containing x′

j−1 . This is the chain
with elements z′i in Figure 9-6.1. By induction, the chains 0 = x0 ≺ · · · ≺ xj−1

and 0 ≺ y1 ≺ · · · ≺ yq ≺ zn ≺ · · · ≺ zj−1 = xj−1 are related by a sequence
of polygon moves. The corresponding polygon moves also relate the chains
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0 = x0 ≺ · · · ≺ xk = y and C. Similarly, the chains 0 = x′
k−m ≺ · · · ≺ x′

m = y
and C ′ are related by a sequence of polygon moves. The chains C and C ′

are, by construction, related by a single polygon move. Thus the original
chains 0 = x0 ≺ · · · ≺ xk = y and 0 = x′

k−m ≺ · · · ≺ x′
m = y are related by a

sequence of polygon moves.

Exercise 9.57 gives another proof of Lemma 9-6.3 and appears to generalize
the lemma to lattices with 0 and 1 having no infinite chains. The next result,
proved as Exercise 9.58, shows that such a generalization is meaningless.

Proposition 9-6.4. If L is a polygonal lattice having 0 and 1 and having no
infinite chains, then L is finite.

9-6.1 Congruences on polygonal lattices

Recall from Section 9-5.4 that an edge a ≺ b forces an edge c ≺ d if every
congruence contracting a ≺ b also contracts c ≺ d, or in other words, if
c≡d (mod con(a, b)). If a lattice L is itself a polygon [x, y], then edge forcing
on L is entirely straightforward. There are two edges incident to x that we
call bottom edges of the interval and two edges incident to y that we call top
edges of the interval. The remaining edges in the interval are called side edges.
In Exercise 9.59, we verify that the only forcing relations are as follows: Each
bottom edge forces the opposite top edge (the top edge in the other chain)
and also forces all side edges. Each top edge forces the opposite bottom edge
(the bottom edge in the other chain) and also forces all side edges.

Accordingly, given edges a ≺ b and c ≺ d, we say a ≺ b forces c ≺ d in a
polygon if there is some polygon in L containing a ≺ b and c ≺ d such that
one of the following holds:

(i) a ≺ b is a bottom edge of the polygon and c ≺ d is the opposite top edge.

(ii) a ≺ b is a bottom edge of the polygon and c ≺ d is a side edge.

(iii) a ≺ b is a top edge of the polygon and c ≺ d is the opposite bottom edge.

(iv) a ≺ b is a top edge of the polygon and c ≺ d is a side edge.

Figure 9-6.2 illustrates cases (i) and (ii) of forcing in a polygon. Contracted
edges are indicated by gray shading. The picture shows that a bottom edge of
a polygon forces the opposite top edge and all side edges. The other forcing
relations in a polygon are dual.

The following theorem holds more generally for polygonal lattices without
infinite bounded chains, but we prove it here only for finite polygonal lattices.
See the Notes to this chapter.
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=⇒

Figure 9-6.2: Forcing in a polygon

Figure 9-6.3: A simplicial arrangement and its poset of regions

Theorem 9-6.5. If L is a finite polygonal lattice, then the edge forcing relation
on L is the transitive closure of forcing in polygons. That is, given an edge
a ≺ b that forces another edge c ≺ d, there exists a sequence of edges

(a ≺ b) = (a0 ≺ b0 ), (a1 ≺ b1 ), . . . , (ak ≺ bk) = (c ≺ d)

such that ai−1 ≺ bi−1 forces ai ≺ bi in a polygon for all i = 1, . . . , k.

Example 9-6.6. Figure 9-6.3 shows a simplicial arrangement A and its poset
of regions, taking B to correspond to the small triangle inside all of the circles
shown. One can verify directly (or, later, as a result of Theorem 9-6.10) that
this poset is a polygonal lattice. Figure 9-6.4 shows the steps in applying
Theorem 9-6.5 to find the smallest congruence contracting two given edges. As
before, contracted edges are shaded. The given edges are shaded in the top-left
picture of the figure and the smallest congruence is shown in the bottom-right
picture. We will see in Example 10-3.2 that A is a Coxeter arrangement and
in Example 10-6.3 that the congruence shown is a Cambrian congruence.

Remark 9-6.7. Arbitrary finite lattices have a property weaker than, but similar
in spirit to, the conclusion of Theorem 9-6.5. Specifically, one can replace
forcing in polygonal intervals with forcing in sublattices that are isomorphic
to polygons. The main result of [203] is that in any finite lattice, the edge
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Figure 9-6.4: Applying Theorem 9-6.5

forcing relation is the transitive closure of forcing in such “polygon-sublattices.”
Thus we can understand Theorem 9-6.5 to say that, in a polygonal lattice,
congruences can be understood in a more “local” way than in general lattices.

The proof of Theorem 9-6.5 rests on the following proposition.

Proposition 9-6.8. Suppose L is a finite polygonal lattice and E is a collection
of edges of L that is closed under forcing in polygons.

(i) The relation θE generated by E (by reflexive-transitive closure) is a
congruence relation.

(ii) An edge a ≺ b has a≡b (mod θE) if and only if a ≺ b is in E.

Proof. We verify the first assertion using Proposition 9-5.2. Let C be a
θE -class and suppose x and y are both in C, so that there exists a path
x = x0 , . . . , xk = y with every edge (xi−1 , xi) in E . A local maximum in the
path is xi with i ∈ {1, . . . , k − 1} and xi−1 ≺ xi ≻ xi+1 . We claim that there
is a path from x to y consisting of edges in E and having no local maxima.

Again, we write h(x) for the height of x in L, the length of the longest
chain from 0 to x. If the path x = x0 , . . . , xk = y has a local maximum, then
choose xi to maximize h(xi) among local maxima. If xi−1 = xi+1 , then we
modify the path by deleting xi and xi+1 to create a new path with all edges
in E . Otherwise, since L is polygonal, the interval [xi−1 ∧xi+1 , xi] is a polygon.
Since the top edges of this polygon are in E and since E is closed under forcing
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in polygons, all edges of the polygon are in E . Replacing xi−1 , xi, xi+1 by the
path along the bottom of the polygon, we obtain a new path from x to y with
all edges in E , and in this path, the maximum of h(x) among local maxima x
is either lower or is attained fewer times than in the original path. Repeating,
we eventually construct a path with no local maxima, thus proving the claim.

Now suppose that x and y are elements of C that are minimal in L among
elements of C. By the claim, there is a path from x to y with all edges in E
and having no local maxima. Since x and y are both minimal, we conclude
that x = y. The dual argument (using the dual claim) shows that C contains
only one maximal element. Write a for the minimal element of C and b for
the maximal element.

We next show that C is the entire interval [a, b], and indeed that every edge
in [a, b] is in E . By the claim (taking a and b for x and y), there exists a path
a = x0 , . . . , xk = b with all edges in E , having no local maxima. This path is
therefore a maximal chain a = x0 ≺ · · · ≺ xk = b in [a, b]. If a = y0 ≺ · · · ≺
ym = b is a maximal chain related to a = x0 ≺ · · · ≺ xk = b by a polygon
move, then since E is closed under forcing in polygons, a = y0 ≺ · · · ≺ ym = b
also has all edges in E . Lemma 9-6.3 says that any maximal chain in [a, b] can
be obtained from a = x0 ≺ · · · ≺ xk = b by a sequence of polygon moves. We
conclude that every maximal chain in [a, b] has all edges in E , and thus that
every edge in [a, b] is in E . In particular, C is all of [a, b].

We have verified condition (i) of Proposition 9-5.2 for θE . We write πE
↓ for

the map sending each element of L to the bottom element of its θE -class. To
verify condition (ii), it is enough (Exercise 9.21) to consider elements x and y
of L with x ≺ y and show that πE

↓x ≤ πE
↓ y. If x and y are equivalent mod θE ,

then πE
↓x = πE

↓ y, so assume they are not equivalent. We argue by induction on

the length of a maximal chain from πE
↓ y to y. If y = πE

↓ y, then πE
↓x ≤ x ≺ πE

↓ y.
Otherwise, there exists z ≺ y with z ≡ y in θE . Since L is polygonal, the
interval [x ∧ z, y] is a polygon consisting of chains x ∧ z = x0 ≺ · · · ≺ xk = y
(with xk−1 = x) and x ∧ z = z0 ≺ · · · ≺ zℓ = y (with zℓ−1 = z). Since E is
closed under forcing in polygons, we have z1 ≡y and x ∧ z ≡x in θE . By
induction, πE

↓ (x ∧ z) ≤ πE
↓ z1 but these equal πE

↓x and πE
↓ y respectively, so

πE
↓x ≤ πE

↓ y and we have proved condition (ii). Condition (iii) is proved by
the dual argument. We have verified all three conditions of Proposition 9-5.2,
so θE is a lattice congruence. We have also verified that an edge a ≺ b is
contracted by θE if and only if a ≺ b is in E .

Proof of Theorem 9-6.5. As discussed above (and verified in Exercise 9.59), if
a ≺ b forces c ≺ d in a polygon, then a ≺ b forces c ≺ d in the usual sense.
Thus the transitive closure of forcing in polygons is contained in the edge
forcing relation. Given an edge a ≺ b, let E be the smallest set of edges that
contains a ≺ b and is closed under forcing in polygons. If an edge c ≺ d is
not contained in E , then Proposition 9-6.8 implies that θE is a congruence
and c ̸≡d (mod θE). Since there is a congruence contracting a ≺ b but not
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c ≺ d, by definition a ≺ b does not force c ≺ d. Thus the edge forcing relation
is contained in the transitive closure of forcing in polygons.

9-6.2 Quotients of polygonal lattices

We now show that polygonality is inherited by quotient lattices.

Proposition 9-6.9. Suppose L is a finite polygonal lattice and α is a con-
gruence on L. Then L/α is polygonal.

Proof. Suppose a1/α, a2/α, and b/α are distinct α-classes such that a1/α ≺
b/α and a2/α ≺ b/α. We want to show that [(a1/α) ∧ (a2/α), b/α] is a
polygon. Propositions 9-5.5 and 9-5.10 imply that we can choose b ∈ πα

↓ L
and a1 , a2 ∈ L such that a1 ≺ b and a2 ≺ b in L. Then [a1 ∧ a2 , b] (the
meet and the interval in L) is a polygon because L is a polygonal lattice.
The top and bottom edges of this interval are not contracted, because a1/α,
a2/α, and b/α are distinct α-classes. Thus α only contracts side edges of the
interval. In particular, the quotient of [a1 ∧ a2 , b] mod the restriction of α is a
polygon. Lemma 9-5.7 says that this quotient is isomorphic to the interval
[(a1 ∧ a2 )/α), b/α] in L/α. The latter equals [(a1/α)∧ (a2/α), b/α], which is
therefore a polygon. We have established the second condition of Definition
9-6.1 and the first condition holds by the dual argument.

Proposition 9-6.9 says that the class of finite polygonal lattices is closed
under passing to quotients. Exercise 9.62 verifies that the class is closed under
finite products. However, the class is not closed under passing to sublattices.
(See Exercise 9.63 and/or 9.64.)

9-6.3 Polygonality and tightness

Theorem 9-6.10. The poset of regions Pos(A, B) is a polygonal lattice if and
only if A is tight with respect to B.

Proof. If A is tight with respect to B, then Lemmas 9-1.26(v) and 9-1.27(v)
combine with Theorem 9-3.2 to imply that Pos(A, B) is a polygonal lattice.

Conversely, suppose Pos(A, B) is a polygonal lattice. Let R be a region
and let F1 and F2 be lower facets of R, with facet-defining hyperplanes H1

and H2 respectively. Let Q1 and Q2 be the regions covered by R sharing the
facets F1 and F2 respectively with R. Write Q for Q1 ∧Q2 . Since Pos(A, B)
is polygonal, the interval [Q,R] is a polygon. By Lemma 9-1.20 the interval
[Q,−B] in Pos(A, B) is isomorphic, by the identity map, to the interval [Q,−B]
in Pos(A, Q). Since [Q,R] is a polygon, the region R has exactly two lower
facets with respect to Q, namely F1 and F2 , and thus Lemma 9-3.13 implies
that F1 ∩ F2 is (n− 2)-dimensional.
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Figure 9-6.5: Two maximal chains related by a rank-two move

Remark 9-6.11. Looking at Theorems 9-3.8 and 9-6.10 together, one might be
tempted to guess that semidistributivity implies polygonality and/or vice versa
in a general finite lattice. Exercises 9.60 and 9.61 ask for counterexamples to
both directions of implication. The hint to Exercise 9.60 suggests that the
relationship between polygonality and congruence uniformity is also interesting.
The relationship between polygonality and congruence normality is addressed
in Exercises 9.55 and 9.56.

Combining Lemma 9-6.3 and Theorem 9-6.10, we obtain a useful result on
maximal chains in intervals in Pos(A, B) when (A, B) is tight. Two distinct
maximal chains Q = Q0 ≺ · · · ≺ Qk = R and Q = R0 ≺ · · · ≺ Rk = R in
the interval [Q,R] are related by a rank-two move if there exist a rank-two
subarrangement A′ of A and indices i and j with 1 ≤ i < j ≤ k such that

(i) Qm = Rm for m ∈ {0, . . . , i} ∪ {j, . . . , k}.

(ii) A′ ∩ S(Qi) = ∅.

(iii) S(Qj) = S(Qi) ∪A′.

In the last two requirements, it is useful to remember that Qi = Ri and
Qj = Rj . These requirements immediately imply that for m ∈ {i+ 1, . . . , j},
the hyperplane defining the common facet of Qm−1 and Qm is in A′ and the
hyperplane defining the common facet of Rm−1 and Rm is in A′. Informally,
the two chains are the same except that they go opposite ways around A′ as
illustrated schematically in Figure 9-6.5. The picture should be understood in
the context of the stereographic-projection pictures of rank-three arrangements
that have appeared earlier.

It is immediate that the rank-two moves in Pos(A, B) are exactly the
polygon moves. Thus the following lemma is Lemma 9-6.3 in the special case
of tight lattice of regions.
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Lemma 9-6.12. Suppose A is tight with respect to B and suppose Q ≤ R in
Pos(A, B). Then any two maximal chains in [Q,R] are related by a sequence
of rank-two moves.

We stated and proved Lemma 9-6.12 here with the hypothesis of tightness,
but it holds without that hypothesis. See the Notes at the end of the chapter.

9-7. Shards

In this section, we define certain closed polyhedral cones called shards, obtained
by decomposing the hyperplanes in an arrangement. The name is meant to
suggest breaking the hyperplane, like a pane of glass, into pieces. We will
mostly consider shards in the case where (A, B) is tight, although the same or
analogous results may hold whenever Pos(A, B) is a lattice.

To define shards, we first define a binary relation on A called cutting.

Definition 9-7.1. Recall from Definition 9-1.23 the notion of a rank-two
subarrangement A′ of A and the notion of the basic hyperplanes in A′. Given
two distinct hyperplanes H1 and H2 , let A′ be the rank-two subarrangement
containing them. We say H1 cuts H2 if H1 is basic in A′ and H2 is not
basic in A′. This definition depends on the choice of B via the definition of
basic hyperplanes in A′. The cutting relation is irreflexive and may fail to be
transitive. It is, however, antisymmetric, because by definition if H1 cuts H2

then H2 does not cut H1 .

Definition 9-7.2. Let H be a hyperplane in A. For each hyperplane H ′ that
cuts H, the intersection H ∩H ′ is an (n− 2)-dimensional subspace contained
in H. In particular, removing H ′ ∩ H from H “cuts” H into two pieces
along the intersection. The shards in H are the closures of the connected
components of H \

⋃
(H ′∩H), where the union is taken over all H ′ that cut H.

Informally, each of the hyperplanes H ′ slices H, leaving a collection of pieces
whose closures are the shards in H . We use the term “shards of A” to refer to
the set of all shards in all hyperplanes of A. To emphasize the dependence
on B, we may call these the shards of A with respect to B, or the shards of
(A, B). Each shard Σ belongs to a unique hyperplane in A, and we write HΣ

for this hyperplane. Since each shard is a subset of a hyperplane in A and is
cut out by hyperplanes in A, it is a union of facets of A.

Example 9-7.3. When the rank of A is 2, there is only one rank-two subar-
rangement, A itself. The two basic hyperplanes are the facet-defining hyper-
planes of B. The shards are illustrated in Figure 9-7.1 for an arrangement
with 6 hyperplanes. Hyperplanes in R2 are lines. Two of the shards are lines,
and the remaining shards are halflines (rays) containing the origin. However,
in the figure, the halflines are offset from the origin for clarity. (Otherwise, a
picture of all of the shards in A would be indistinguishable from a picture of
all of the hyperplanes in A.)
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B

Figure 9-7.1: The shards in a hyperplane arrangement of rank 2

B

Figure 9-7.2: The shards in a hyperplane arrangement of rank 3

Example 9-7.4. Figure 9-7.2 shows the shards in the arrangement from
Example 9-1.7 (Figure 9-1.2) and a particular choice of base region B. Recall
that that picture shows a stereographic projection of the intersection of the
arrangement with a sphere about the origin. Thus lines in R3 become pairs
of antipodal points in the picture. In particular, when the hyperplanes are
cut into shards at rank-two subarrangements, the picture looks locally like a
rank-two picture as in Example 9-7.3. In each of these local pictures, we have
offset the shards just as in Example 9-7.3 (Figure 9-7.1) for the same reason.
The gray dots and the gray color of one shard is explained in Example 9-7.6.

9-7.1 Shards and join-irreducible elements

Definition 9-7.5. Suppose Σ is a shard. An upper region of Σ is a region R
that intersects Σ in dimension n− 1 and has HΣ ∈ S(R). A lower region of
Σ is a region R that intersects Σ in dimension n− 1 and has HΣ ̸∈ S(R). In
particular, if R is an upper region of Σ, then HΣ is a lower hyperplane of R
in the sense of Definition 9-1.16, and if R is a lower region of Σ, then HΣ is
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an upper hyperplane of R. If R is an upper or lower region of Σ, then HΣ

defines a facet of R, and this facet equals Σ ∩R, so that we might reasonably
say that Σ defines a facet of R. Write Upper(Σ) for the set of upper regions of
Σ and Lower(Σ) for the set of lower regions of Σ. We will think of Upper(Σ)
as partially ordered by the order induced by Pos(A, B).

Example 9-7.6. The shard shaded gray in Figure 9-7.2 has four upper regions,
and those four regions are marked with gray dots.

Lemma 9-7.7. The partial order Upper(Σ) is connected.

Proof. Let Q and R be regions in Upper(Σ). Consider the collection Ã =
{H ∩HΣ | H ∈ A \ {HΣ}} as an arrangement of hyperplanes in the vector
space HΣ. The (n − 1)-dimensional cones Q ∩ HΣ and R ∩ HΣ are regions
of Ã. Lemma 9-1.12 says that there exists a sequence of Ã-regions Q ∩HΣ =
F0 , . . . , Fk = R ∩ HΣ with Fi−1 adjacent to Fi for i = 1, . . . , k such that,
moving from Q∩HΣ to R∩HΣ in the sequence, no hyperplane of Ã is crossed
more than once. The shard Σ is a closed polyhedral cone in HΣ whose facet-
defining hyperplanes are certain hyperplanes in Ã. The sequence F0 , . . . , Fk

does not cross any of these facet-defining hyperplanes more than once, and
since it starts in Σ and ends in Σ, the entire sequence is in Σ.

The sequence F0 , . . . , Fk of Ã-regions corresponds to a sequence Q =
R0 , . . . , Rk = R of regions in Upper(Σ) with Ri−1 ∩Ri ∩HΣ having dimension
n−2 for each i from 1 to k. For some i, let A′ be the rank-two subarrangement
consisting of hyperplanes containing Ri−1 ∩Ri∩HΣ. Besides HΣ, the rank-two
subarrangement A′ contains another facet-defining hyperplane of Ri−1 and
another facet-defining hyperplane of Ri. (The latter two hyperplanes might
coincide.) Since HΣ is not cut along the intersection of the hyperplanes in A′,
we see that HΣ is basic in A′. The set Ri−1 ∩Ri∩HΣ is an (n−2)-dimensional
face of A, so Lemma 9-1.25 implies that the separating sets of Ri−1 and
Ri differ only by hyperplanes in A′. Since both separating sets contain HΣ,
Lemma 9-1.24 implies that either Ri−1 ≤ Ri or Ri−1 ≥ Ri. We conclude that
Q and R are in the same connected component of the partial order induced
on Upper(Σ).

Proposition 9-7.8. Suppose A is a tight arrangement with respect to B, and
let Σ be a shard of (A, B). The set Upper(Σ) has a unique minimal region
JΣ, which is also the unique join-irreducible region of Pos(A, B) in Upper(Σ).
Every join-irreducible region of Pos(A, B) is JΣ for some unique Σ.

Proof. First, suppose J is a minimal region of Upper(Σ). Then J covers the
region J∗ that shares with J the facet J ∩ Σ. If J is not join-irreducible,
then J also covers some region R with HΣ ∈ S(R). Let A′ be the rank-two
subarrangement containing HΣ and the hyperplane H defining the common
facet of J and R. Since A is tight with respect to B, we apply Lemma 9-1.27 to
conclude that the region J∗∧R has separating set S(J)\A′ and that there is a
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region Q covering J∗∧R and strictly below J , having HΣ ∈ S(Q), and sharing
with J∗∧R a facet defined by HΣ. The hyperplane HΣ is basic in A′, so HΣ is
not cut at the intersection H ∩HΣ. We see that Q ∈ Upper(Σ), contradicting
the minimality of J , since Q < J . We conclude from this contradiction that J
is join-irreducible in Pos(A, B). The unique region covered by J is J∗.

Suppose now that there is some region R ∈ Upper(Σ) that is not above J .
By Lemma 9-7.7, there exists a sequence J = R0 , . . . , Rk = R of regions in
Upper(Σ) such that either Ri−1 ≤ Ri or Ri−1 ≥ Ri for each i from 1 to k. We
can assume Ri ̸= J for all i > 0. Since J is minimal, J = R0 < R1 . Let Ri be
the first region in the sequence that is not above J . In particular, Ri−1 > J
and Ri < Ri−1 . Let Qi−1 be the region in Lower(Σ) that shares a facet
with Ri−1 . Since S(Qi−1 ) = S(Ri−1 ) \ {HΣ}, we see that J ∨ Qi−1 = Ri−1

and Ri ∨Qi−1 = Ri−1 . By Theorem 9-3.8, Pos(A, B) is semidistributive, so
(J ∧Ri)∨Qi−1 = Ri−1 . Since Ri $ J , we have J ∧Ri < J , so that J ∧Ri ≤ J∗.
Therefore, HΣ ̸∈ S(J ∧Ri). Since also S(Qi−1 ) = S(Ri−1 )\{HΣ}, we see that
(J ∧Ri) ∨Qi−1 ≤ Qi−1 < Ri−1 . This contradiction shows that every region
of Upper(Σ) is above J , so that J is the unique minimal region.

Now, every region in Upper(Σ) covers a region in Lower(Σ). If J ′ is a
join-irreducible region in Upper(Σ), then the only region covered by J ′ is in
Lower(Σ). In particular every region R strictly below J ′ has HΣ ̸∈ S(R), and
thus R ̸∈ Upper(Σ). We see that J ′ is minimal in Upper(Σ), so that J ′ = J .

Finally, any join-irreducible region J is in Upper(Σ), where Σ is the unique
shard separating J from the unique region J∗ covered by J . Thus HΣ ̸∈ S(J∗),
so J must be JΣ. Since every JΣ′ has its unique lower facet contained in Σ,
we see that J does not equal JΣ′ for any Σ′ ̸= Σ.

An interval [a, b] is prime if and only if it has exactly two elements. Equiv-
alently, a ≺ b. Prime intervals [a, b] and [c, d] are perspective if either a∧ d = c
and a∨d = b or b∧ c = a and b∨ c = d. Two intervals are projective if they are
related in the transitive closure of the perspectivity relation. See LTF Section
I.3.5. The notion of projectivity give more insight into the lattice-theoretic
significance of shards. If Q ≺ R in Pos(A, B), then Q and R share a common
facet, and that common facet is contained in some shard. We write Σ(Q,R)
for this shard.

Proposition 9-7.9. Suppose (A, B) is tight and let [Q,R] and [Q′, R′] be
prime intervals in Pos(A, B). Then [Q,R] and [Q′, R′] are projective if and
only if Σ(Q,R) = Σ(Q′, R′).

Proof. Write Σ for Σ(Q,R). Proposition 9-7.8 says that JΣ ≤ R. Let J∗ be
the unique region covered by JΣ. Since S(J∗) = S(JΣ) \ {HΣ} and S(Q) =
S(R) \ {HΣ}, we see that Q ∧ JΣ = J∗ and Q ∨ JΣ = R. Thus [J∗, JΣ] and
[Q,R] are perspective. Therefore if Σ(Q,R) = Σ(Q′, R′), then [Q,R] and
[Q′, R′] are projective.
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To prove the converse, we may as well take [Q,R] and [Q′, R′] to be
distinct perspective intervals, and without loss of generality, Q ∧R′ = Q′ and
Q ∨R′ = R. Let H be the hyperplane defining the common facet of Q and R,
and let H ′ be the hyperplane defining the common facet of Q′ and R′. In
particular S(R) = S(Q)∪ {H} and S(R′) = S(Q′)∪ {H ′}. Since Q∧R′ = Q′,
we have Q′ ≤ Q and R′ " Q, and therefore H ′ ̸∈ S(Q). Since Q ∨R′ = R, we
have R′ ≤ R, and therefore H ′ ∈ S(R). We conclude that H = H ′.

Write J for JΣ(Q,R) and J ′ for JΣ(Q′,R′). Then J ∨ Q = R and also
Q ≤ J ′ ∨ Q ≤ R′ ∨ Q = R, but since H ∈ S(J ′), we see that J ′ ∨ Q = R.
Theorem 9-3.8 says that Pos(A, B) is semidistributive, so (J ∧ J ′) ∨Q = R.
If Σ(Q,R) ̸= Σ(Q′, R′), then J ̸= J ′, so J ∧ J ′ is strictly below J or J ′ or
both. But every element strictly below J does not have H in its separating
set, and similarly for J ′, so H ̸∈ S(J ∧ J ′). Therefore since J ∧ J ′ ≤ R, also
J ∧ J ′ ≤ Q, contradicting the fact that (J ∧ J ′) ∨Q = R. This contradiction
implies that Σ(Q,R) = Σ(Q′, R′).

9-7.2 Shards and canonical join representations

Definition 9-7.10. A lower shard of a region R is a shard Σ such that R is
an upper region of Σ in the sense of Definition 9-7.5. Write Λ(R) for the set
of lower shards of R. The lower facets of R are the sets Σ ∩R for Σ ∈ Λ(R).

Theorem 9-7.11. Suppose A is tight with respect to B. Then the canonical
join representation of a region R is R =

∨
{JΣ | Σ ∈ Λ(R)}.

Our proof of Theorem 9-7.11 uses Theorem 9-3.8 (connecting tightness to
semidistributivity) but does not rely on Theorem 3-1.4 (connecting semidis-
tributivity to existence of canonical join representations). We begin with the
following lemma, which strengthens Proposition 9-7.8 and also provides more
insight into the statement of Theorem 9-7.11.

Lemma 9-7.12. Suppose A is tight with respect to B, let R be a region, and
let Σ be a lower shard of R. Then JΣ is the unique minimal element of the set
{Q ≤ R | HΣ ∈ S(Q)}.

Proof. Proposition 9-7.8 implies that JΣ ≤ R andHΣ ∈ S(JΣ). The separating
set of the unique region covered by JΣ does not contain HΣ, so JΣ is minimal
in {Q ≤ R | HΣ ∈ S(Q)}. If J ′ is minimal in {Q ≤ R | HΣ ∈ S(Q)}, then J ′

covers a unique element J ′
∗ with S(J ′

∗) = S(J ′) \ {HΣ}. Let Q0 be the region
with Q0 ≺ R and S(Q0 ) = S(R) \ {HΣ}. Then Q0 ∧ J ′ = J ′

∗ and Q0 ∨ J ′ = R.
By Proposition 9-7.9, Σ(J ′

∗, J) = Σ(Q0 , R) = Σ, so J ′ = JΣ.

Proof of Theorem 9-7.11. Given a lower hyperplane H of R, there is a unique
lower shard of R containing the facet R ∩H of R, and given a lower shard Σ,
the hyperplane HΣ is a lower hyperplane. Thus Lemmas 9-3.14 and 9-7.12
together imply that R =

∨
{JΣ | Σ ∈ Λ(R)} is a join representation of R.
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Let Σ1 and Σ2 be distinct shards in Λ(R). Let Q1 be the region sharing
with R a facet defined by HΣ1 and let Q2 be the region sharing with R a facet
defined by HΣ2 . Since A is tight with respect to B, Lemma 9-1.27 says that
S(Q1 ∧Q2 ) = S(R) \A′, where A′ is the rank-two subarrangement containing
HΣ1 and HΣ2 . Furthermore, in the interval [Q1 ∧Q2 , R], there is a region with
separating set (S(R) \ A′) ∪ {HΣ1}. This region is in {Q ≤ R | HΣ1 ∈ S(Q)}
but does not haveHΣ2 in its separating set. Lemma 9-7.12 implies that JΣ1 also
does not have HΣ2 in its separating set. By Lemma 9-3.14, we conclude that
no proper subset of {JΣ | Σ ∈ Λ(R)} joins to R. Thus R =

∨
{JΣ | Σ ∈ Λ(R)}

is an irredundant join representation of R.
Finally, for any Σ ∈ Λ(R) and any join representation R =

∨
U , Lemma

9-3.14 implies that there exists a region Q ∈ U with HΣ ∈ S(Q). Thus Q ≥ JΣ
by Lemma 9-7.12. We have shown that {JΣ | Σ ∈ Λ(R)} ≪ U for any join
representation R =

∨
U .

9-7.3 Shards and congruences

We have seen in Theorem 9-6.10 that when (A, B) is tight, then Pos(A, B) is
polygonal. Applying Theorem 9-6.5, we obtain a description of the congruence
lattice ConPos(A, B) in the tight case via forcing in polygons. We now use the
forcing-in-polygons description to describe ConPos(A, B) in terms of shards
and incidences among shards. The description in terms of shards is more
compact than the description in terms of polygons and refers directly to the
geometry of (A, B). As a corollary (Corollary 9-7.22) to the description, we
characterize the posets of regions which are congruence uniform lattices (in
the sense of Day), or equivalently the posets of regions which are quotients of
finitely generated free lattices modulo bounded congruences.

Recall that for elements a and b of a lattice L, the notation con(a, b) denotes
the smallest congruence relation on L with a≡b. It is an easy exercise (or a
consequence of the much stronger LTF Theorem 230) that given projective
intervals [a, b] and [c, d], a congruence α has a≡b (mod α) if and only if c≡d
(mod α). In other words, con(a, b) = con(c, d). Thus Proposition 9-7.9 has
the following immediate consequence.

Proposition 9-7.13. Suppose (A, B) is tight. For regions Q ≺ R, the con-
gruence con(Q,R) on Pos(A, B) depends only on Σ(Q,R).

Definition 9-7.14. Given a shard Σ, there exist adjacent regions Q and R
such that Q ∩ R ⊆ Σ. We write con(Σ) to mean con(Q,R). Proposition
9-7.13 says that con(Σ) is well-defined. Let α be a congruence on a lattice
of regions Pos(A, B). Say α removes the shard Σ(Q,R) if Q ≡R (mod α).
Proposition 9-7.13 also implies that the notion of removing shards is well-
defined. Equivalently, α removes a shard Σ if con(Σ) ≤ α in ConPos(A, B).
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The term “removing” shards will make more sense in Section 9-8 when
we discuss the geometry of quotients of Pos(A, B). We will see that such a
quotient is a partial order on the cones cut out by the unremoved shards.

Propositions 9-5.14 and 9-7.13 together imply that the join-irreducible
congruences of a tight lattice of regions are exactly the congruences con(Σ).
(Possibly some join-irreducible congruence may be con(Σ) for more than
one shard Σ.) Since a congruence is determined by which join-irreducible
congruences it contracts, Proposition 9-7.13 implies the following fact.

Proposition 9-7.15. Suppose Pos(A, B) is a lattice. Then a congruence on
Pos(A, B) is determined uniquely by the set of shards it removes.

To characterize the congruences of Pos(A, B), we must thus determine
which collections of shards can be removed. We give a complete determination
when (A, B) is tight in terms of a directed graph on shards that we now define.

Definition 9-7.16. The shard digraph is the directed graph whose vertices are
the shards of (A, B) with a directed edge Σ1 → Σ2 if and only if HΣ1 cuts HΣ2

and Σ1 ∩Σ2 has dimension n− 2. The reflexive-transitive closure of the shard
digraph is a pre-order on the shards of A, again taking the convention that →
corresponds to ≥ . We set two shards Σ and Σ′ to be equivalent if and only if
there is a directed path from Σ1 to Σ2 in the shard digraph and a directed
path from Σ2 to Σ1 in the shard digraph. The shard digraph defines a partial
order on equivalence classes of shards by the usual construction. (See LTF
Section I.1.2 or compare Section 9-5.4.) We call this poset the shard poset even
though it is a partial order on equivalence classes rather than on shards. Say a
set ∆ of shards is closed under arrows if it satisfies the following condition: If
Σ1 ∈ ∆ and Σ1 → Σ2 , then Σ2 ∈ ∆. Essentially, ∆ is a down-set in the shard
digraph (keeping in mind that the shard digraph may have directed cycles).

Theorem 9-7.17. Suppose A is tight with respect to B, and suppose Σ1 and
Σ2 are shards. Then con(Σ1 ) ≥ con(Σ2 ) if and only if there is a directed path
in the shard digraph from Σ1 to Σ2 .

Proof. For one direction, it is enough to show that if Σ1 → Σ2 then con(Σ1 ) ≥
con(Σ2 ). Suppose Σ1 → Σ2 and suppose α is a congruence removing Σ1 . Write
H1 for HΣ1 and H2 for HΣ2 . The intersection Σ1 ∩Σ2 is an (n− 2)-dimensional
closed polyhedral cone contained in the (n− 2)-dimensional subspace H1 ∩H2 .
Since each shard is a union of facets of A, the intersection Σ1 ∩Σ2 is a union of
faces of A, and at least one of these must be (n− 2)-dimensional. Let F be an
(n−2)-dimensional face ofA in Σ1∩Σ2 . LetA′ be the rank-two subarrangement
of A consisting of hyperplanes containing F . Since Σ1 → Σ2 , H1 is basic in
A′ but H2 is not. Lemma 9-1.25 says that the regions containing F constitute
an interval [Q,R] in Pos(A, B) isomorphic to the poset Pos(A′, B′) where
B′ is the A′-region containing B. The left picture of Figure 9-7.3 illustrates
the situation. The picture represents the shards containing F , with F itself
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Σ1

Q

R

X1

Y

X2

Σ′

QR

Figure 9-7.3: Illustrations for the proof of Theorem 9-7.17

represented by the origin. The Hasse diagram of [Q,R] is superimposed in
gray. All of the shards contain F but in the picture certain shards are offset
from the center to indicate that they do not continue through F . We adopt
the labeling of regions shown in the figure. Since Σ1 is removed by α, we have
Q≡X1 (mod α). Since edge forcing in polygons implies edge forcing (this is
the easy direction of Theorem 9-6.5), we see that Q≡Y (mod α) and X2 ≡R
(mod α). Thus α removes all of the shards pictured, except possibly the shard
labeled Σ′ in the figure. One of the removed shards is Σ2 .

Now suppose con(Σ1 ) ≥ con(Σ2 ). Let Q1 ≺ R1 and Q2 ≺ R2 be
edges in Pos(A, B) such that Σ1 = Σ(Q1 , R1 ) and Σ2 = Σ(Q2 , R2 ). Then
con(Q1 , R1 ) = con(Σ1 ) ≥ con(Σ2 ) = con(Q2 , R2 ), so Theorem 9-6.5 implies
that there is sequence of edges, starting at Q1 ≺ R1 and ending at Q2 ≺ R2

such that each edge in the sequence forces the following edge in a polygon
in Pos(A, B). Thus we can complete the proof by showing that whenever an
edge Q ≺ R forces an edge Q′ ≺ R′ in a polygon, either Σ(Q,R) = Σ(Q′, R′)
or Σ(Q,R) → Σ(Q′, R′). Since (A, B) is tight, the polygon is an interval
consisting of all regions containing some codimension-2 face of A. The situ-
ation is illustrated in the right picture of Figure 9-7.3, which coincides with
the left picture except for labels on regions and shards. (The case pictured
is where Q ≺ R is a bottom edge of the polygon. If Q ≺ R is a top edge
in the polygon, then we should draw a similar picture, but upside-down.)
The picture shows the polygon in gray and indicates the shards associated
to each edge in the polygon. If the edge Q′ ≺ R′ is the right-top edge of the
polygon in the figure, then Σ(Q,R) = Σ(Q′, R′). Otherwise, since Q ≺ R
forces Q′ ≺ R′ in the polygon, Q′ ≺ R′ is one of the side edges, in which case
Σ(Q,R)→ Σ(Q′, R′).

The following rephrasing of Theorem 9-7.17 is immediate.

Theorem 9-7.18. Suppose A is tight with respect to B and suppose ∆ is a
set of shards. Then there exists a congruence on Pos(A, B) removing exactly
the shards in ∆ if and only if ∆ is closed under arrows.
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B

Figure 9-7.4: The shards not removed by a certain lattice congruence

Theorem 9-7.17 implies in particular that con(Σ1 ) = con(Σ2 ) if and only
if Σ1 and Σ2 are equivalent in the sense of Definition 9-7.16. In particular,
the map Σ ,→ con(Σ) factors through a map con from equivalence classes to
congruences. Thus we have a further rephrasing of Theorem 9-7.17.

Theorem 9-7.19. Suppose A is tight with respect to B. The map con is an
isomorphism from the shard poset to the poset ConJi Pos(A, B) of join-irreduc-
ible congruences of Pos(A, B).

Example 9-7.20. This is a continuation of Example 9-7.4. Figure 9-7.4
shows the shards not removed by a certain congruence α. Specifically, α
is the smallest congruence in ConPos(A, B) that removes the shard shaded
gray in Figure 9-7.2. This congruence removes exactly two shards besides the
gray-shaded shard.

Example 9-7.21. In Theorem 9-7.18, the hypothesis that (A, B) is tight
cannot be weakened to the hypothesis that Pos(A, B) is a lattice. To see
why, we continue Example 9-3.7, which exhibited a non-tight pair (A, B)
such that Pos(A, B) is a lattice (Figure 9-3.2). In this arrangement, all rank-
two subarrangements contain exactly two hyperplanes, so each hyperplane
is a shard and the shard digraph has no arrows. Let Σ be the hyperplane
numbered 1. Then {Σ} is a set of shards that is closed under arrows. Suppose
there is a congruence α removing only Σ. Then Q ≡ R (mod α) if and
only if Q = R or S(Q) and S(R) differ only by the hyperplane labeled 1.
Naming regions by their labels in Figure 9-3.2, we have 2≡12 (mod α). But
2 ∨ 24 = 24 and 12 ∨ 24 = 1234 and these two regions are not equivalent
modulo α, contradicting the supposition that α is a congruence.
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In the following corollary to Theorem 9-7.19, we mean (as usual) congruence
uniform in the sense of Day.

Corollary 9-7.22. The poset of regions Pos(A, B) is a congruence uniform
lattice (or equivalently it is the quotient of a finitely generated free lattice
modulo a bounded congruence) if and only if A is tight with respect to B and
the shard digraph is acyclic.

Proof. A finite congruence uniform lattice is in particular a semidistributive
lattice by Theorem 9-5.19. Theorem 9-3.8 says that Pos(A, B) is a semidis-
tributive lattice if and only if A is tight with respect to B. Thus it remains to
show, for (A, B) tight, that Pos(A, B) is congruence uniform if and only if the
shard digraph is acyclic.

The shard digraph is acyclic if and only if the shard poset is a partial order
on shards (rather than on equivalence classes). By Theorem 9-7.19, this is
equivalent to the statement that the map Σ ,→ con(Σ) is a bijection from the
set of shards to the set of join-irreducible congruences. By Proposition 9-7.8,
the map J ,→ ΣJ is a bijection from join-irreducible elements of Pos(A, B)
to shards, and by Proposition 9-7.13 we see that con(J) = con(ΣJ). Thus
Σ ,→ con(Σ) is a bijection if and only if J ,→ con(J) is a bijection from
join-irreducible elements of Pos(A, B) to join-irreducible congruences. Since
Pos(A, B) is self-dual (Exercise 9.4), the latter condition holds if and only if
its dual condition holds.

Exercise 9.69 exhibits a poset of regions Pos(A, B) which is a semidistribu-
tive lattice but not congruence uniform.

It is instructive to see how Corollary 9-7.22 follows from the other equivalent
characterization of congruence uniformity in Theorem 9-5.19. If the shard
poset is a partial order on shards (rather than on equivalence classes), then any
linear extension Σ1 ≺ Σ2 ≺ · · · ≺ Σk of the shard poset gives rise to a maximal
chain α0 ≺ α1 ≺ · · · ≺ αk of congruences in ConPos(A, B) such that each αi

removes the shards Σ1 , . . . ,Σi but not the shards Σi+1 , . . . ,Σk. One can check
that Pos(A, B)/αi is obtained from Pos(A, B)/αi+1 by doubling an interval.
We leave the details to Exercise 9.70.

9-7.4 The shard intersection order

Although our main motivation for considering shards is to understand lattice
congruences on Pos(A, B), we pause to mention a construction that deserves
more lattice-theoretic attention. Let Ψ(A, B) be the set of shard intersections :
sets that arise as intersections of collections of shards. By convention, the
intersection of an empty set of shards is interpreted to be Rn and is an element
of Ψ(A, B). The results quoted here were proved for shard intersections in
simplicial arrangements. We see no obvious obstacle to generalizing them to
tight arrangements, but this work has not been carried out. Define a map
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ψ : R(A)→ Ψ(A, B) sending a region R to the intersection of its lower shards.
Define a map ρ : Ψ(A, B)→ R(A) sending a shard intersection Γ to

∨
Σ⊇ Γ JΣ.

The join takes place in Pos(A, B) and is indexed by all shards containing Γ.
The following theorem is proved as [372, Proposition 4.7(i)].

♦ Theorem 9-7.23. Suppose A is simplicial. Then the map ψ is a bijection
from R(A) to Ψ(A, B) with inverse ρ.

Theorem 9-7.23 is particularly interesting because Ψ(A, B) admits a natural
lattice structure, which we call the shard intersection order. As a partial order
on shard intersections, it is reverse containment. That is, Γ1 ≤ Γ2 if and only
if Γ1 ⊇ Γ2 . Thus the join operation is intersection. Since Rn is a unique
minimal element of the shard intersection order, Lemma 9-2.1 implies that
the shard intersection order is a lattice. By Theorem 9-7.23, we interpret the
shard intersection order as an alternate lattice structure on regions. As a
partial order on regions, the shard intersection order is weaker than the poset
of regions. (That is, ρ is order-preserving [372, Proposition 4.7(ii)].)

Precisely how much weaker the shard intersection is can be seen in the
following theorem. The result is proved in [427] for the case of Coxeter
arrangements (see Section 10-2), but the argument given there works for
arbitrary simplicial arrangements. Recall the notation L(R) for the set of
lower hyperplanes of R in the sense of Definition 9-1.16.

♦ Theorem 9-7.24. Suppose A simplicial. The regions Q and R have Q ≤ R
in the shard intersection order if and only if Q ≤ R in the poset of regions and⋂

H∈L(Q) H ⊆
⋂

H∈L(R) H.

We conclude by quoting a result on the shard intersection order that
suggests generalizations. For any R in Pos(A, B), define J (R) to be the set
{JΣ(M,N) | (

∧
P≺ R P ) ≤ M ≺ N ≤ R}. The following is [372, Proposition 5.7].

♦ Theorem 9-7.25. Suppose A simplicial. The regions Q and R have Q ≤ R
in the shard intersection order if and only if J (Q) ⊆ J (R).

Theorem 9-7.25 suggests a generalization of the shard intersection order
beyond posets of regions. For simplicity’s sake, suppose L is a congruence
uniform lattice (in the sense of Day), so the map j ,→ con(j) is a bijection from
join-irreducible elements of L to join-irreducible congruences on L. Equiva-
lently, by Theorem 9-5.19, L is the quotient of a finitely generated free lattice
modulo a bounded congruence. In this case, for any x in L, one can define
J (x) = {con(a, b) | (

∧
w≺ x w) ≤ a ≺ b ≤ x}, and then put an alternate partial

order on L by setting x ≤ ′ y if and only if J (x) ⊆ J (y). Exercise 9.73 is to
show that the relation ≤ ′ is a partial order when L is congruence uniform,
but can fail to be antisymmetric otherwise. As a consequence of Proposition
9-7.13, this alternate partial order coincides with the shard intersection order
in the case where Pos(A, B) is congruence uniform (the case characterized in
Corollary 9-7.22).
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The fact that the shard intersections for a simplicial arrangement form
a lattice is immediate; what is hard to prove is Theorem 9-7.23, which says
that the shard intersection order is in fact a partial order on the regions. For
general congruence uniform L, the alternate partial order is defined a priori as
a partial order on the set L, but without the geometric information provided
by shards, the lattice property is not obvious. It would be interesting to know
for which congruence uniform L this alternate partial order is a lattice. (See
Problem 9.5.) Furthermore, does the alternate partial order provide any insight
into the structure of congruence uniform lattices? The case where L is the weak
order on a finite Coxeter group (see Chapter 10) is encouraging in this regard,
as the shard intersection order in this case appears to capture fundamental
combinatorics of Coxeter groups. The case where L is a Cambrian lattice is
even more encouraging. Here the alternate partial order is, surprisingly, the
corresponding noncrossing partition lattice. (See Theorem 10-6.34.)

9-8. Quotients of posets of regions

In this section, we describe the properties of quotients of lattices Pos(A, B) of
regions, focusing, as in Section 9-7, on the case where A is tight with respect
to B. Some of these properties follow immediately from the corresponding
properties of Pos(A, B). More interestingly, we discuss how the interplay
between geometry and lattice theory is inherited by quotients.

First, quotients of finite lattices inherit the properties of semidistributiv-
ity and polygonality, as established in Propositions 9-5.26 and 9-6.9. Thus
Theorems 9-3.8 and 9-6.10 imply the following theorem.

Theorem 9-8.1. Suppose A is tight with respect to B and suppose α is a con-
gruence on Pos(A, B). Then Pos(A, B)/α is semidistributive and polygonal.

Quotients of finite congruence uniform lattices also inherit the property
of congruence uniformity. (See the Notes to this section.) However, we say
something stronger about congruence uniformity of quotients of Pos(A, B)
later as Corollary 9-8.20, without relying on Corollary 9-7.22.

9-8.1 The geometric viewpoint

When (A, B) is tight, a quotient Pos(A, B)/α can be realized as a partial
order on n-dimensional cones in Rn.

Definition 9-8.2. Given A tight with respect to B, a congruence α on
Pos(A, B), and an α-class C, the union

⋃
R∈C R of the regions in C will be

called an α-cone. The following proposition justifies the term.

Proposition 9-8.3. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B).
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(i) Each α-cone is a closed polyhedral cone.

(ii) The α-cones are the closures of the connected components of Rn \ (
⋃

Σ),
where the union runs over all shards of A not removed by α.

(iii) The interior of each α-cone is a connected component of Rn \ (
⋃

Σ).

(iv) Given an α-cone U , each facet of U is U ∩ Σ for a unique shard Σ not
removed by α.

Proof. Proposition 9-5.2 says that each α-class is an interval in Pos(A, B).
Exercise 9.12 is to show that the union

⋃
R∈I R over any interval I is a closed

polyhedral cone. This proves the first assertion of the proposition.
Each shard is a closed set, and there are finitely many shards. Thus each

connected component of Rn \ (
⋃

Σ) is open and in particular full-dimensional.
Since the shards not removed by α are pieces of the hyperplanes that define
the regions of A, the closure of each component of Rn \ (

⋃
Σ) is a union of

regions. By Proposition 9-5.15, two regions Q and R are in the same α-class
if and only if there exists a sequence of adjacent regions Q = R0 , . . . , Rk = R
such that Ri−1 ≡Ri (mod α) for all i = 1, . . . , k. Equivalently, each shard
Σ(Ri−1 , Ri) or Σ(Ri, Ri−1 ) is removed by α. We see that each α-cone U is
contained in the closure of some component of Rn \ (

⋃
Σ). On the other hand,

U has facets that are unions of facets of A (facets of regions of A). Each
facet of A contained in a facet of U is necessarily contained in a shard that is
not removed by α. Thus the boundary of U is covered by unremoved shards,
and we conclude that U is the closure of an entire connected component of
Rn \ (

⋃
Σ). We have proved the second assertion of the proposition.

Since each α-cone U is the closure of a connected component V of the
complement Rn \ (

⋃
Σ) and since V is open, V ⊆ intU . If intU ̸⊆ V , then

some unremoved shard Σ intersects the interior of U . Therefore there are
adjacent regions R1 and R2 in C whose common facet is contained in Σ.
Since R1 ≡R2 (mod α), the shard Σ = Σ(R1 , R2 ) is removed by α. This
contradiction implies that V = intU . This is the third assertion of the
proposition.

Finally, given an α-cone U and a facet F of U , there is some region
R ⊆ U such that R ∩ F is a facet of R. Proposition 9-1.8 says that there
exists an adjacent region Q with Q ∩R ⊆ F . Necessarily, Q ̸⊆ U . We claim
that F = U ∩ Σ(Q,R). Write H for HΣ(Q,R), so that F = U ∩ H. Thus
F ⊇ U ∩ Σ(Q,R). If F ≠ U ∩ Σ(Q,R), then there are regions Q′ and R′

with Q′ ∩R′ ⊆ F and Σ(Q′, R′) ̸= Σ(Q,R). A line segment from the relative
interior of Q∩R to the relative interior of Q′ ∩R′ exits Σ(Q,R) at some point
in the relative interior of F . That exit point is in the boundary of Σ, so it is
contained in some hyperplane H ′ that cuts H , and thus also contained in some
shard Σ′ with Σ′ → Σ. But since H does not cut H ′, the shard Σ′ extends on
both sides of H, and in particular intersects the interior of U , contradicting
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the third assertion of the proposition. We conclude that F = U ∩ Σ(Q,R).
Since Σ(Q,R) is the unique shard containing Q∩R, it is also the unique shard
with F = U ∩ Σ(Q,R).

Example 9-8.4. An example of Proposition 9-8.3 and of later results in this
section is provided by Figure 9-7.4 (Example 9-7.20).

Proposition 9-8.3 is our first indication that lattice quotients of tight lattices
Pos(A, B) of regions have a geometric structure that echoes the geometric
definition of the poset of regions. Just as the hyperplanes of A cut Rn into
open convex sets whose closures are the regions, the unremoved shards of a
congruence α on Pos(A, B) cut Rn into open convex sets whose closures are
the α-cones. Since α-cones are in particular in bijection with the α-congruence
classes, in what follows, the quotient Pos(A, B)/α will be realized as a lattice
on the set of α-cones. To understand this realization of the quotient, we
first prove versions of Propositions 9-1.8 and 9-1.15 and Lemma 9-1.18 for
quotients.

Proposition 9-8.5. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B). If U and V are distinct α-cones and U∩V is (n−1)-dimensional,
then U ∩ V is a facet of U and a facet of V . If U is an α-cone, then every
facet of U is shared by a unique other α-cone V .

Proof. Since U is some union of regions, and V is some union of regions, the
intersection U ∩ V is a union of intersections Q ∩ R of regions with Q ⊆ U
and R ⊆ V . If U ∩ V is (n− 1)-dimensional, then there is at least one such
intersection Q ∩R that is (n− 1)-dimensional, so that in particular Q and R
are adjacent regions. Let H be the hyperplane defining their common facet.
Since U and V are distinct α-cones and both are closed polyhedral cones by
Proposition 9-8.3(i), the hyperplane H defines a facet H ∩ U of U and a facet
H ∩ V of V . We need to show that H ∩ U = H ∩ V .

The set H ∩ U is a union of facets H ∩ Q′ of certain regions Q′ of A
contained in U . These facets are the regions of a hyperplane arrangement
in H, namely Ã = {H ′ ∩ H | H ′ ∈ A \ {H}}. In light of Lemma 9-1.12
and since Q ∩ R is a Ã-region, to prove that H ∩ U ⊆ V , it is enough to
show that whenever F and G are adjacent Ã-regions such that F ⊆ U ∩ V
and G ⊆ U , then also G ⊆ V . Consider the set of shards containing the
(n− 2)-dimensional set F ∩G, and consider the rank-two subarrangement A′

consisting of hyperplanes of A containing F ∩G. By Proposition 9-8.3, one
of the shards (call it Σ) contains F and G, because they are both contained
in the same facet of U . Therefore H equals HΣ and is basic in A. By the
same proposition, no unremoved shard intersects the interior of U , so no other
unremoved shard containing F and G continues through its intersection with
Σ. In particular, the shard Σ′ containing F ∩G and contained in the other
basic hyperplane of A is removed by α. But Σ′ arrows every other shard
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(besides Σ) containing F ∩G, so Theorem 9-7.18 implies that Σ is the only
unremoved shard containing F ∩G. Thus by Proposition 9-8.3 again, since F
is in V , also G is in V . We have shown that H ∩U ⊆ H ∩V , and by symmetry
we conclude that H ∩ U = H ∩ V .

We have proved the first assertion of the proposition. For the second
assertion, suppose F is a facet of an α-cone U and let R be a region contained
in U such that R ∩ F is (n − 1)-dimensional. Proposition 9-1.8 says that
there exists a unique region Q sharing the facet R ∩ F with R. The α-cone V
containing Q is the unique α-cone sharing the facet F with U .

Since α-cones are in bijection with α-classes, we may think of the quotient
Pos(A, B)/α as a partial order on the α-cones. Just as for regions, we will
say that two α-cones are adjacent if they share a facet in common. Just as
we defined the adjacency graph of A, we can define the adjacency graph on
α-cones. The following proposition implies that the undirected Hasse diagram
of Pos(A, B)/α is isomorphic to the adjacency graph on α-cones.

Proposition 9-8.6. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B). Then U ≺ V is a cover relation in the quotient Pos(A, B)/α if
and only if U and V are adjacent and the hyperplane defining their common
facet separates V from B.

Proof. Proposition 9-5.4 says that U ≺ V if and only if there exist regions
Q ⊆ U and R ⊆ V with Q ≺ R in Pos(A, B). By Proposition 9-1.15, this
is if and only if there exist Q in U and R in V that are adjacent and have
S(R) = S(Q) ∪ {H}, where H defines the common facet of Q and R. If such
Q and R exist, then Proposition 9-8.5 says that H also defines a common facet
of U and V and separates V from B. Conversely, if U and V are adjacent
and the hyperplane H defining their common facet separates V from B, then
as argued in the first paragraph of the proof of Proposition 9-8.5, there exist
adjacent regions Q ⊆ U and R ⊆ V . The common facet of Q and R is defined
by H, and S(R) = S(Q) ∪ {H}.

The following lemma is immediate by Proposition 9-8.6 and Lemma 9-1.18.

Lemma 9-8.7. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B). Let b be a vector in the interior of B. Suppose U and V
are adjacent α-cones and let n be a normal vector to their shared facet with
⟨x,n⟩ > 0 for all x in the interior of U . Then U ≺ V if and only if ⟨b,n⟩ > 0.

Proposition 9-8.5 and Theorem 9-1.10 together imply the following fact.

Corollary 9-8.8. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B). Then the α-cones are the maximal cones of a fan.

Some fans have a special property of being normal fans of polytopes. (See
[464, Section 7.1] for definitions.) The vertex-edge graph of the polytope is the
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adjacency graph on maximal cones of the fan, and each edge of the polytope
is normal to the corresponding codimension-1 cone in the fan. The following
theorem is immediate from Lemma 9-8.7 and Corollary 9-8.8.

Theorem 9-8.9. Suppose A is tight with respect to B and α is a congruence
on Pos(A, B). If the fan defined by α-cones is the normal fan of a polytope P ,
then the undirected Hasse diagram of the quotient Pos(A, B)/α is isomorphic
to the vertex-edge graph of P . If X ≺ Y in Pos(A, B)/α, then the isomorphism
maps X to a vertex x and Y to a vertex y such that ⟨b,x⟩ > ⟨b,y⟩, where b
is any vector in the interior of B.

It is helpful to pass between two points of view on a quotient of Pos(A, B)
modulo α. We continue to write Pos(A, B)/α for the partial order on α-cones
obtained by identifying α-cones with α-classes. We will write πα

↓ (Pos(A, B))
for the subposet of Pos(A, B) induced by the regions πα

↓ (Pos(A, B)). Recall
that Proposition 9-5.5 states that these two posets are isomorphic. To more
easily pass between the two points of view, we extend πα

↓ to a map from
α-cones to πα

↓ (Pos(A, B)) in the obvious way: an α-cone maps to the minimal
region (in Pos(A, B)) that it contains. We also define a map Coneα from
Pos(A, B) to α-cones taking a region to the union of the regions in its α-
class. The map Coneα restricts to an isomorphism from πα

↓ (Pos(A, B)) to
Pos(A, B)/α with inverse πα

↓ .

9-8.2 Canonical join representations

Definition 9-8.10. Suppose Σ is a shard not removed by α. An upper α-cone
of Σ is an α-cone U such that U ∩ Σ has dimension (n− 1) and such that U
is greater, in the quotient, than the unique α-cone (Proposition 9-8.5) sharing
the facet U ∩ Σ with U . Write Upperα(Σ) for the set of upper α-cones of Σ.
(Compare Definition 9-7.5.)

Proposition 9-8.11. Suppose A is a tight arrangement with respect to B
and suppose α is a congruence on Pos(A, B). The join-irreducible regions of
πα
↓ (Pos(A, B)) are exactly the regions JΣ such that Σ is not removed by α. If Σ

is not removed by α, then the set Upperα(Σ) has a unique minimal element
Coneα(JΣ), which is also the unique join-irreducible element of Pos(A, B)/α
in Upperα(Σ). Every join-irreducible element of Pos(A, B)/α is Coneα(JΣ)
for some unique Σ not removed by α.

Proof. By Definition 9-7.14, a shard Σ is removed by α if and only if JΣ is
not contracted by α. Thus Proposition 9-5.11 immediately implies the first
assertion. Passing between two points of view on the quotient, we see that
the join-irreducible elements of Pos(A, B)/α are exactly the cones Coneα(JΣ)
for shards Σ not removed by α. It remains only to show that Coneα(JΣ) is
the unique minimal element of Upperα(Σ). But every cone in Upperα(Σ) is
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Coneα(R) for some region R ∈ Upper(Σ). We have JΣ ≤ R by Proposition
9-7.8, and so

Coneα(JΣ) = Coneα(πα
↓ JΣ) ≤ Coneα(πα

↓ R) = Coneα(R)

because πα
↓ is order-preserving on Pos(A, B) and because Coneα restricts to

an isomorphism from πα
↓ (Pos(A, B)) to Pos(A, B)/α.

Definition 9-8.12. A lower shard of an α-cone U is a shard Σ such that U
is an upper α-cone of Σ in the sense of Definition 9-8.10. No lower shard of
U is removed by α. Write Λ(U) for the set of lower shards of U . (Compare
Definition 9-7.10.)

The following proposition is an immediate consequence of Propositions
9-1.15, 9-5.10 and 9-8.6.

Proposition 9-8.13. Suppose (A, B) is tight, α is a congruence on Pos(A, B),
and U is a α-cone. Then the lower shards of the α-cone U are exactly the
lower shards of the region πα

↓ U .

The following generalization of Theorem 9-7.11 follows immediately from
Proposition 9-5.29, Theorem 9-7.11, and Proposition 9-8.13.

Theorem 9-8.14. Suppose A is tight with respect to B and suppose α is
a congruence on Pos(A, B). Then the canonical join representation of an
α-cone U is U =

∨
{Coneα(JΣ) | Σ ∈ Λ(U)}.

Remark 9-8.15. The shard intersection order described just after Theorem
9-7.23 interacts nicely with congruences. Given a simplicial arrangement
A, a base region B, and a congruence α on Pos(A, B), one may naturally
consider the subset of the shard intersection order consisting of intersections
of shards not removed by α. This turns out to be a join-subsemilattice of the
shard intersection order. Furthermore, the map φ restricts to a bijection from
the quotient Pos(A, B)/α to the join-subsemilattice, and thus we obtain an
alternate lattice structure on the quotient. Theorem 9-7.25 also generalizes, as
do many of the properties of the shard intersection order, as explained in [372,
Section 7].

9-8.3 Congruences on quotients

Definition 9-8.16. Suppose U and V are α-cones and suppose U ≺ V
in Pos(A, B)/α. Proposition 9-7.13 and Theorem 9-5.22 imply that the
congruence con(U, V ) on Pos(A, B)/α depends only on the shard Σ(U, V )
defining the common facet of U and V . We write conα(Σ) for the congruence
con(U, V ) on Pos(A, B)/α. A congruence β on Pos(A, B)/α removes the
shard Σ(U, V ) if U ≡V (mod β).
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The following generalizations of Theorems 9-7.17 and 9-7.18 follow from
the original theorems and Proposition 9-5.25.

Theorem 9-8.17. Suppose A is tight with respect to B, and suppose α is a
congruence on Pos(A, B). Suppose Σ1 and Σ2 are shards not removed by α.
Then conα(Σ1 ) ≥ conα(Σ2 ) if and only if there is a directed path in the shard
digraph from Σ1 to Σ2 .

Theorem 9-8.18. Suppose A is tight with respect to B, suppose α is a
congruence on Pos(A, B), and suppose ∆ is a set of shards not removed by α.
Then there exists a congruence on Pos(A, B)/α removing exactly the shards
in ∆ if and only if ∆ is closed under arrows among shards not removed by α.

For shards Σ1 and Σ2 not removed by α, Theorem 9-7.17 says that con(Σ1 )
and con(Σ2 ) on Pos(A, B) are equal if and only if Σ1 and Σ2 are equivalent
in the sense of Definition 9-7.16. As in the case of congruences on Pos(A, B),
the map Σ ,→ conα(Σ) from unremoved shards to join-irreducible congruences
on Pos(A, B)/α factors through a map conα from equivalence classes to
congruences. Thus we have the following generalization of Theorem 9-7.19.

Theorem 9-8.19. Suppose A is tight with respect to B, and suppose α is a
congruence on Pos(A, B). The map conα is an isomorphism from the shard
poset, restricted to shards not removed by α, to the poset ConJi(Pos(A, B)/α)
of join-irreducible congruences of Pos(A, B)/α.

Finally, a version of Corollary 9-7.22 follows from Theorem 9-8.19 just as
Corollary 9-7.22 follows from Theorem 9-7.19.

Corollary 9-8.20. Suppose A is tight with respect to B and suppose α is a
congruence on Pos(A, B). Then Pos(A, B)/α is a congruence uniform lattice
(or equivalently it is the quotient of a finitely generated free lattice modulo
a bounded congruence) if and only if the restriction of the shard digraph to
shards not removed by α is acyclic.

9-9. Exercises

Basic notions

9.1. Given a non-redundant expression
⋂

n∈N H−
n for an n-dimensional

cone R in Rn, show that for each n ∈ N , the intersection R ∩Hn (a
facet of R) is (n− 1)-dimensional.

9.2. Given a full-dimensional closed polyhedral cone R in Rn and a vector
n such that H−

n ⊇ R and Hn ∩R is (n− 1)-dimensional, show that
Hn ∩R is a facet of R. That is, show that the halfspace H−

n appears
in every non-redundant expression for R as a finite intersection of
closed halfspaces.
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9.3. Verify the antisymmetric property of the order (the poset of regions)
defined by Q ≤ R if and only if S(Q) ⊆ S(R). Specifically, prove
that R ,→ S(R) is an injective map from R(A) to subsets of A. (Put
another way, a region is uniquely determined by its separating set.)

9.4. Show that the poset of regions is self-dual (meaning isomorphic to
its dual). The isomorphism takes a region R to its antipodal region
−R = {−x | x ∈ R}.

9.5. A finite lattice L is orthocomplemented if there exists an order-
reversing involution (an orthocomplementation) x ,→ x⊥ on L with
x⊥ ∧ x = 0 and x⊥ ∨ x = 1 for all x ∈ L. In a non-lattice with
a smallest element 0 and largest element 1, one can interpret the
statement x⊥ ∧ x = 0 to mean “the element 0 is the greatest lower
bound of x and x⊥ ” and interpret x⊥ ∨x = 1 similarly, and thus define
the notion of an orthocomplemented poset. Show that Pos(A, B) is
orthocomplemented.

9.6. Show that if |A| > 1 then the number of maximal chains in Pos(A, B)
is even. (Use Exercise 9.4.)

9.7. Prove Proposition 9-1.15.

9.8. Show that the function h(R) = |S(R)| has the property that Q ≺ R
if and only if Q ≤ R and h(R) = h(Q) + 1. In other words, h is a
rank function for Pos(A, B), which is therefore graded.

9.9. Prove Proposition 9-1.19.

9.10. Prove Lemma 9-1.24. (One way to do this: Consider the obvious
map from R(A) to R(A′). What are the possible separating sets
of regions of A′ with respect to B′, the region of A′ containing B?
Another way: Use Proposition 9-1.19.)

9.11. Let Q ∈ Pos(A, B) and let X1 and X2 be distinct regions covering
Q in Pos(A, B). Let R be a minimal upper bound of {X1 , X2}
in Pos(A, B). By Lemma 9-1.17, there are upper hyperplanes H1

and H2 of Q such that S(Xi) = S(Q) ∪ {Hi} for each i ∈ {1, 2}.
Prove that there exist regions Y1 and Y2 covered by R with S(Yi) =
S(R) \ {Hi} for each i ∈ {1, 2}, and furthermore, Y1 and Y2 are the
only regions covered by R in [Q,R]. (Possibly Q has other upper
covers besides X1 and X2 . See for example Figure 9-3.2.)

9.12. Suppose I is an interval in Pos(A, B). Show that the union
⋃

R∈I R
of regions in I is a closed polyhedral cone. Give a precise description
of the cone in terms of the vectors nH defined in Proposition 9-1.19.

Lattice-theoretic shortcuts

9.13. Show that a poset is well-founded if and only if it satisfies the
Descending Chain Condition.
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9.14. Find a well-founded partially ordered set satisfying condition (iii) of
Lemma 9-2.3 but not conditions (i) and (ii).

9.15. Recall the definition of completeness from the last paragraph of Sec-
tion 9-2.1. Show that a well-founded meet-semilattice is a complete
meet-semilattice. Conclude that the condition “P is a complete
meet-semilattice” can be added to the list of equivalent conditions
in Lemma 9-2.3. (Use the implication (i) =⇒ (ii) in Lemma 9-2.3
and adapt the argument that (ii) =⇒ (i).)

9.16. Lemma 9-2.4 says that a lower finite join-semilattice P is a lattice.
Show that this lattice is a complete meet-semilattice but need not
be a complete join-semilattice. (Use Exercise 9.15.)

9.17. Under the hypotheses of Lemma 9-2.5, show that P is a complete
meet-semilattice. (Use Exercise 9.15.)

9.18. Prove Lemma 9-2.7.

9.19. Find a counterexample to the following false BEZ Lemma for dis-
tributivity (an incorrect dualization of Lemma 9-2.7): Suppose L is a
finite lattice such that the distributive law x∨(y∧z) = (x∨y)∧(x∨z)
holds whenever y and z cover a common element. Then L is dis-
tributive.

9.20. Since Lemma 9-2.8 is only about joins, one might consider weakening
the hypotheses of Lemma 9-2.8 to only require L to be a lower
finite join-semilattice. Show that the lemma fails with this weaker
hypothesis. (To find a counterexample faster, recall Lemma 9-2.4.)

9.21. Call a poset P interval-finite if every interval is finite. Recall that
P is lower finite if the downset ↓x of every element x ∈ P is finite.

(a) Show that a lower finite lattice is interval-finite.

(b) Show that in a interval-finite poset, the order relation ≤ is the
reflexive-transitive closure of the cover relation ≺ .

(c) If P is interval-finite, show that a map η from P to a poset P ′

is order-preserving if and only if x ≺ y =⇒ η(x) ≤ η(y).

9.22. Let P be a poset with 0 and let I be a down-set in P that is a lower
finite meet-semilattice. Write ∨I for the join in I if it exists and
similarly ∨P . Suppose I and P satisfy the following condition.

If x, y ∈ I cover a common element and x∨I y exists then x∨P y
exists and x ∨I y = x ∨P y.

Prove that for any x, y ∈ I, if x ∨I y exists then x ∨P y exists and
x ∨I y = x ∨P y.
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Tight posets of regions

9.23. Let C be a simplicial cone in Rn. Show that every pair of facets of
C intersects in a face of C of dimension n− 2.

9.24. Show that if R has no lower hyperplanes with respect to B, then
R = B.

9.25. Recall that the adjacency graph of A is the graph G(A) whose
vertices are regions and whose edges are pairs of adjacent regions.
Two hyperplane arrangements are called weakly combinatorially
isomorphic if they have isomorphic adjacency graphs. (See Remark
9-3.20.)

(a) Suppose A and A′ are hyperplane arrangements and B and B′

are respective base regions. Show that if Pos(A, B) is isomor-
phic to Pos(A′, B′), then A and A′ are weakly combinatorially
isomorphic.

(b) Suppose A and A′ are weakly combinatorially isomorphic and
write R ,→ R′ for the combinatorial isomorphism. Show that for
any base region B of A, the map R ,→ R′ is also an isomorphism
from Pos(A, B) to Pos(A′, B′).

Biconvexity and rank-two biconvexity

9.26. Show that the intersection of convex subsets of A (with respect to B)
is a convex subset of A (with respect to B).

9.27. Show that for any S ⊆ A, the closure S of S is the intersection of
all convex sets containing S.

9.28. Recall from Definition 8-3.1 that a closure operator on a set Ω is an
isotone and idempotent map ϕ from the powerset of Ω to itself that
is extensive (i.e., X ⊆ ϕ(X) for all X ⊆ Ω) and that has ϕ(∅) = ∅.
Recall also that if ϕ is a closure operator on Ω, then (Ω,ϕ) is a convex
geometry if ϕ(X ∪ {p}) = ϕ(X ∪ {q}) and p ̸= q imply together that
p ∈ ϕ(X) (equivalently, q ∈ ϕ(X)), for all p, q ∈ P and all X ⊆ Ω.

Pick any Ω ⊆ Rn \ {0} such that no two distinct elements of Ω are
collinear (i.e., related by scaling). Denote by cone(X) the convex
cone generated by X, for any X ⊆ Rn, and set ϕ(X) = cone(X)∩Ω.
Prove that if cone(Ω) ∩ (− cone(Ω)) = {0}, then (Ω,ϕ) is a convex
geometry. Find an example where (Ω,ϕ) is not a convex geometry.

9.29. Show that a set S ⊆ A of hyperplanes is convex with respect to B in
the sense of Definition 9-4.1 if and only if the set {nB(H) | H ∈ S}
of vectors is convex with respect to {nB(H) | H ∈ A}.

9.30. Recall that B(R) is the set of boundary hyperplanes of a region R,
the hyperplanes defining facets of R. Show that B(B) (in the sense
of Definition 9-4.1) is A.



9-9. Exercises 477

9.31. Show that the intersection of any collection of rank-two convex
subsets of A is a rank-two convex subset of A.

9.32. Suppose a set S ⊆ A of hyperplanes is convex with respect to B.
Show that S is rank-two convex with respect to B.

9.33. Suppose A is simplicial and let B be a base region. Formulate two
descriptions of the meet in Pos(A, B), in terms of convexity and in
terms of rank-two convexity. (Use Theorem 9-4.8 and Exercise 9.4
but phrase the description without reference to antipodal regions.)

9.34. Prove the first assertion of Lemma 9-4.12.

Lattice congruences for combinatorialists

9.35. Suppose α is an equivalence relation on a lattice L such that, for all
x1 , x2 , y ∈ L, if x1 ≡x2 (mod α) then x1 ∧ y ≡x2 ∧ y (mod α) and
x1 ∨ y ≡x2 ∨ y (mod α). Show that α is a congruence.

9.36. Find a lattice L and a congruence on L that fails to have the property
that every congruence class is an interval. (In light of Proposition
9-5.2, L must be infinite.) Among such examples, find an example
that minimizes the number of congruence classes.

9.37. Suppose L is a lattice and suppose π↑ : L→ L and π↓ : L→ L are
order-preserving maps satisfying

(i) π↓(x) ≤ x ≤ π↑(x) for every x ∈ L,

(ii) π↑ ◦ π↑ = π↑, π↑ ◦ π↓ = π↑, π↓ ◦ π↓ = π↓, and π↓ ◦ π↑ = π↓.

Then the fibers of π↑ determine the same equivalence relation on L as
the fibers of π↓ and this equivalence relation is a lattice congruence
with projection maps π↑ and π↓.

9.38. Suppose L is a finite lattice and α is a congruence on L. Show that,
for any x ∈ L, the element πα

↓ x is the unique maximal element of
(↓x) ∩ πα

↓ L.

9.39. Prove Proposition 9-5.8.

9.40. Prove the following assertion for an arbitrary lattice L and deduce
Proposition 9-5.2 in the special case where L is finite. An equivalence
relation α is a lattice congruence if and only if

(i) Each equivalence class is a convex sublattice of L.

(ii) If x ≤ y and x ≡ x′ (mod α) then there exists y′ such that
x′ ≤ y′ and y ≡y′ (mod α).

(iii) If x ≤ y and y ≡ y′ (mod α) then there exists x′ such that
x′ ≤ y′ and x≡x′ (mod α).
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9.41. Prove the following assertion for an arbitrary lattice L and deduce
Proposition 9-5.2 in the special case where L is finite. An equivalence
relation α is a lattice congruence if and only if

(i) Each equivalence class is a convex sublattice of L.

(ii) If w ≤ x and w ≤ y and w ≡x (mod α) then there exists z
such that x ≤ z and y ≤ z and y ≡z (mod α).

(iii) If x ≤ z and y ≤ z and y ≡z (mod α) then there exists w such
that w ≤ x and w ≤ y and w ≡x (mod α).

9.42. Recall the definition of a complete lattice from the last paragraph of
Section 9-2.1. A complete congruence on a complete lattice L is a
congruence α such that if xi ≡yi (mod α) for all i ∈ I, then

∨
{xi |

i ∈ I}≡
∨
{yi | i ∈ I} (mod α) and similarly for meets. (See LTF

Section IV.4.10.) A map η : L → L′ is a complete homomorphism
if η (

∨
S) =

∨
{η(x) | x ∈ S}, and similarly for meets, for any set

S ⊆ L. Show that Propositions 9-5.1, 9-5.2 and 9-5.5 hold if the
phrase “finite lattice” is replaced with “complete lattice” throughout
and the adjective “complete” is added to the phrases “(lattice)
congruence” and “(lattice) homomorphism” throughout.

9.43. Do Propositions 9-5.1, 9-5.2, and/or 9-5.5 hold when the phrase
“finite lattice” is replaced by “interval-finite lattice” throughout? (See
Exercise 9.21 for the definition of interval-finite.)

9.44. Say a surjective homomorphism η between lattices is bounded if each
of its fibers η−1 (x) is an interval. Show that Proposition 9-5.1 holds
for arbitrary lattices L and L′ if the adjective “bounded” is placed
before the phrase “lattice homomorphism.”

9.45. Say a congruence on a lattice is bounded if every congruence class
is an interval. Show that Proposition 9-5.2 holds for an arbitrary
lattice L if the adjective “bounded” is placed before the phrase
“lattice congruence.”

9.46. Show that the assertion about cover relations in Proposition 9-5.4
holds in one direction for arbitrary lattices: If distinct α-classes
C1 and C2 have x ∈ C1 and y ∈ C2 with x ≺ y then C1 ≺ C2 .
Give a counterexample to the converse in general, but show that the
converse hold when L is interval-finite. (See Exercise 9.21.)

9.47. Prove Proposition 9-5.8 in the more general setting of an arbitrary
lattice L and a bounded congruence α.

9.48. Prove Proposition 9-5.20.

9.49. Show that Proposition 9-5.26 holds if L is an arbitrary semidistribu-
tive lattice and α is a bounded congruence.

9.50. Show that the relation ≪ of Definition 9-5.28 restricts to a partial
order on antichains.
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9.51. Show that x =
∨
U is the canonical join representation of x if and

only if U is the unique minimal (in the sense of ≪) antichain joining
to x.

9.52. Suppose x =
∨

U is the canonical join representation of x in L.
Show that each element of U is join-irreducible in L.

9.53. Let x be an element of a finite lattice. Show that x has canonical
join representation

∨
{x} if and only if x is join-irreducible.

9.54. Prove Proposition 9-5.30.

Polygonal lattices

9.55. Suppose L is a finite polygonal lattice. Use Theorem 9-5.21 to
show that L is congruence normal if and only if, for every polygon
[x, y] and each maximal chain x = z0 ≺ · · · ≺ zk = y in [x, y], the
congruences con(zi−1 , zi) are all distinct.

9.56. Suppose L is a finite polygonal lattice with the property that, for
every maximal chain 0 = x0 ≺ · · · ≺ xk = 1, the congruences
con(xi−1 , xi) are all distinct. Show that L is congruence normal.

9.57. Denote by Γ(P ) the set of all maximal chains in a poset P . For
X,Y ∈ Γ(P ), say X ≍P Y holds if there exist a, b ∈ X ∩ Y such
that a ≤ b, X ∩ ↓ a = Y ∩ ↓ a, X ∩ ↑ b = Y ∩ ↑ b, and

(9-9.1) x ∧ y = a and x ∨ y = b within [a, b] , whenever

(x, y) ∈ X ×Y , a < x < b , and a < y < b .

The transitive closure ≡P of ≍P is an equivalence relation on Γ(P ).

(a) Suppose u ≤ v in P , U ∈ Γ(↓u), V ∈ Γ(↑ v), and X,Y ∈
Γ([u, v]). Show that if X ≍[u,v] Y , then U∪X∪V ≍P U∪Y ∪V .
Show also that if X ≡[u,v] Y , then U ∪X ∪ V ≡P U ∪ Y ∪ V .

(b) Show that part (a) of the exercise fails if the phrase “within
[a, b]” is deleted from (9-9.1).

(c) Show that if P is a bounded poset with no infinite chains and
X,Y ∈ Γ(P ), then X ≡P Y . (Since P has no infinite chains,
its poset of closed intervals under containment is well-founded.
Thus we can argue by induction this poset of closed intervals
and use part (a).)

(d) Use part (c) to give an alternate proof of Lemma 9-6.3.

9.58. This exercise proves Proposition 9-6.4. Suppose L is a polygonal
lattice having 0 and 1 and having no infinite chains. We want to
show that L is finite.
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Figure 9-9.1: A polygonal lattice for Exercise 9.63

(a) Show that it is enough to consider the special case where L is
infinite but every proper interval in L is finite. In parts (b) and
(c), we reach a contradiction in this special case.

(b) Recall that an atom of L is an element covering 0. Show that
no two atoms a and b of L have a ∨ b = 1.

(c) Given an atom a, show that there exists an atom b such that
a ∨ b = 1. (Consider the set

⋃
x∈↑ a\{1} ↓x.)

9.59. Suppose L is a polygon [x, y]. Verify the following two assertions:
Each bottom edge forces the opposite top edge (the top edge in the
other chain) and also forces all side edges. Each top edge forces the
opposite bottom edge (the bottom edge in the other chain) and also
forces all side edges.

9.60. Find a small example of a lattice that is semidistributive but not
polygonal. (There is a seven-element congruence uniform example.)

9.61. Find a small example of a lattice that is polygonal but not semidis-
tributive. (Again, seven elements is enough.)

9.62. Prove that the class of finite polygonal lattices is closed under finite
products.

9.63. Find a finite polygonal lattice with a non-polygonal sublattice. (See
the lattice of Figure 9-9.1.)

9.64. Find a congruence uniform polygonal finite lattice with a sublattice
that is not polygonal. (There is a seven-element congruence uniform
example for Exercise 9.60 that is not subdirectly irreducible, but rather
embeds into N5 ×N5 , which is congruence uniform and polygonal.
Here N5 is the 5-element non-modular lattice.)

9.65. Let L be a meet semidistributive lattice and let x1 and x2 be distinct
elements of L that both cover their meet a = x1 ∧ x2 .

(a) Let yi be a lower cover of b = x1∨x2 in [xi, b], for each i ∈ {1, 2}.
Prove that y1 ∧ y2 = a.

(b) Prove that y1 and y2 are the only lower covers of b in [a, b].

(c) Prove that if L is semidistributive, then x1 and x2 are the only
upper covers of a in [a, b].
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How does this exercise relate to Exercise 9.60?

9.66. Taking (A, B) as in Example 9-3.5 (Figure 9-3.1), use Theorems
9-6.10 and 9-6.5 to compute the following congruences on Pos(A, B),
perhaps by shading the contracted edges on a copy of the diagram
of Pos(A, B).

(a) con(5, 25)

(b) con(5, 235)

(c) con(5, 245)

(Here elements are represented by their separating sets, written
without commas or set braces.) For each congruence α listed above,
use Proposition 9-5.5 to draw a representation of the quotient lattice
Pos(A, B)/α. (Cf. Exercise 9.67.)

Shards

9.67. Consider (A, B) as in Example 9-3.5 (Figure 9-3.1).

(a) Find the shards (perhaps drawing the shards on a copy of the
figure), find JΣ for each shard, and find the shard digraph.

(b) Find ConJi Pos(A, B) (the partial order on join-irreducible con-
gruences of Pos(A, B). Represent ConJi Pos(A, B) as a partial
order on join-irreducible elements of Pos(A, B).

9.68. Show that the poset of regions Pos(A, B) is a distributive lattice if
and only if a set of vectors, one normal to each hyperplane in A, is
linearly independent. Describe the poset of regions precisely in this
case.

9.69. Consider the hyperplane arrangement A shown in Figure 9-9.2 and
take B to be the region marked with a dot in the picture. Note
that five of the hyperplanes shown intersect “at infinity” in this
stereographic projection. Show that Pos(A, B) is a semidistributive
lattice but is not congruence uniform (equivalently, not a bounded
homomorphic image of a finitely generated free lattice).

9.70. Show directly (that is, not using Theorem 9-5.19 and Corollary 9-
7.22) that when A is tight with respect to B and the shard digraph is
acyclic, then Pos(A, B) can be obtained from a one-element lattice by
a sequence of doublings of intervals. (For the definition of doubling,
see Section 3-2.7.)

9.71. Suppose Pos(A, B) is a lattice, suppose H ∈ A, let A′ = A \ {H},
and for any A-region R, let R′ be the A′-region containing R. Show
that Pos(A, B) is obtained from Pos(A′, B′) by doubling a convex set
if and only if the map R ,→ R′ is a homomorphism from Pos(A, B)
to Pos(A′, B′). (See Exercise 9.70.)
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Figure 9-9.2: A hyperplane arrangement and base region such that Pos(A, B)
is semidistributive but not congruence uniform

9.72. Given a total order H1 , . . . , Hk on A, define A′ = A \ {Hk}, and
define B′ to be the A′-region containing B. Then H1 , . . . , Hk is a
quotient order (with respect to B) if Pos(A, B) is obtained from
Pos(A′, B′) by doubling a convex set and H1 , . . . , Hk−1 is a quotient
order on A′ (with respect to B′). Show that A has a quotient order
with respect to B if and only if the cutting relation (Definition 9-7.1)
is acyclic.

9.73. Show that the alternate order ≤ ′, defined in Section 9-7.4, is a partial
order when L is congruence uniform. Give an example of a lattice
for which ≤ ′ fails to be antisymmetric.

Quotients of posets of regions

9.74. Consider the hyperplane arrangement A shown in Figure 9-9.2 and
take B to be the region marked with a dot in the picture. Exer-
cise 9.69 shows that Pos(A, B) is a semidistributive lattice but is not
congruence uniform. Find a minimal lattice quotient of Pos(A, B)
that is semidistributive but not congruence uniform.

9-10. Notes

Basic notions

Edelman first defined the poset of regions in [139], but he credits Purdy [360]
with studying the same poset in R2 . The results in Section 9-1.4 are due to
Björner, Edelman, and Ziegler [139, 70], although for convenience we have
added some more detailed statements. We give here a few specific citations
beyond what appears in the text. Theorem 9-1.21 is [70, Theorem 3.1].
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Exercise 9.4 is [139, Proposition 2.1]. Exercise 9.6 is part of [139, Theorem 2.2].
Proposition 9-1.15 is part of the proof of [139, Proposition 1.1], which is a
more general version of Exercise 9.8. Lemma 9-1.26 is essentially a special
case of [139, Lemma 2.3]. Exercise 9.11 was suggested by Friedrich Wehrung.

Cordovil [102] later generalized the definition and basic results on posets
of regions to the setting of oriented matroids. Using the framework of [70,
Section 6], we expect that most of the results of this chapter can be extended
to the generality of oriented matroids, but we have seen no reason to do so
here. One can imagine a possible reason to generalize these results to oriented
matroids: One might contemplate a statement along the lines of “A lattice
has Property X if and only if it is isomorphic to Pos(A, B) for (A, B) having
Property Y.” But a true statement along these lines would almost certainly
involve oriented matroids rather than posets of regions.

Lattice-theoretic shortcuts

The most basic shortcuts (Lemmas 9-2.1, 9-2.3, and 9-2.4) for proving the
(semi-)lattice property are well known. The BEZ Lemma (Lemma 9-2.2) is [70,
Lemma 2.1] and is named for the authors Björner, Edelman, and Ziegler. (This
name for the lemma has apparently not appeared in the literature before.)
The other BEZ-type lemmas have not appeared in the literature, except that
Lemma 9-2.9 recently appeared as [310, Lemma 2.2.1] and Lemma 9-2.6 follows
from another BEZ-type lemma [310, Lemma 2.2.2]. Other BEZ-type lemmas
include [380, Lemma 2.6] and Exercise 9.22. The main result of [202] is similar
in spirit to the BEZ lemmas. The proof of Theorem 9-4.8 is modeled after
the proof of the BEZ lemma. The author gratefully acknowledges extensive
conversations with David Speyer on the topic of BEZ-type lemmas, including
some of the lemmas proved here.

Tight posets of regions

The notion of tightness and Theorems 9-3.2 and 9-3.8 and Proposition 9-3.11
are new, but the definition (under a different name) and results were given
independently by McConville [309] while this chapter was being written. The
result in [309] goes further than Theorem 9-3.8 by establishing that Pos(A, B)
is semidistributive if and only if it is crosscut simplicial. Corollary 9-3.4 is [70,
Theorem 3.4]. Corollary 9-3.9 appeared as [364, Theorem 3].

Theorem 9-3.15 is part of a result of Edelman and Reiner [143, Theorem 3.3].
The theorem there is equivalent but phrased differently (as alluded to at the
beginning of Section 9-3.2): It states that the simplicial complex defined by
the regions of A is balanced. The proof in [143] relies on [123, Proposition 1.12],
which is a special case of Lemma 9-6.12, which is in turn a special case of
Lemma 9-6.3. The proof given here uses the lattice property directly without
appealing to [123, Proposition 1.12].
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Biconvexity and rank-two biconvexity

Theorem 9-4.3 is equivalent, by a standard affinization argument, to [397,
Lemma 6.1], and the argument given here is taken from [397]. Theorems 9-4.5
and 9-4.8 are inspired by [70, Theorem 5.5], which has the weaker hypothesis
that Pos(A, B) is a lattice but characterizes regions and the join only in terms
of convexity, not in terms of rank-two convexity.

As far as the author is aware, the rank-two convexity statement in Theorems
9-4.5 has not appeared in print except here and in [308, Theorem 5.4]. Similarly,
the rank-two convexity statement in Theorem 9-4.8 has not appeared in
print except here and in [308, Theorem 5.1]. The latter is stronger than
Theorem 9-4.8, in that it has the weaker hypothesis of tightness, rather than
simpliciality. For rank-two convexity in the special case where A is a finite
Coxeter arrangement, see the Notes to Chapter 10.

Exercise 9.29 is taken from [70, Remark 5.3], and Exercise 9.28 is a lin-
earization of Example 1 of [141, Section 3].

Lattice congruences for combinatorialists

As mentioned in the text, probably none of the results proved in this section
are surprising to lattice-theorists. Some of them are standard. For example,
Proposition 9-5.2 has appeared in several of the author’s papers (with the
proof omitted). It follows fairly easily from Dorfer [130, Corollary 3.4] or from
Chajda and Snášel [95], as verified in Exercises 9.40 and 9.41. The exercises
themselves (aside from deducing Proposition 9-5.2) are results of [130] and [95]
respectively. See also Kolibiar [281] and Grätzer [202, Lemma 2]. Some of
the other results in the section have also appeared in the author’s earlier
papers. Proposition 9-5.12 is [170, Lemma 2.32]. Proposition 9-5.14 is [170,
Theorem 2.30], which is attributed to Dilworth [127]. The Fundamental
Theorem of Distributive Lattices (used in the proof of Corollary 9-5.17) is
due to Birkhoff [63, Theorem 17.3]. Theorem 9-5.19 is due to Day ([113,
Lemma 4.2] and [113, Theorem 5.1]). See also [170, Theorem 2.20] and [170,
Corollary 2.43] and more generally all of [170, Section II.3]. Exercise 9.37 was
suggested by Vincent Pilaud and Aram Dermenjian.

Theorem 9-5.21 is [364, Theorem 4], which was inspired by the notion of
HH-lattices in [91]. Unfortunately, the definition of CN-labelings is misstated
in [364]. Specifically, the dual requirement on meet-fundamental pairs is
omitted. Since the lattices considered in [364] are posets of regions, which are
self dual (Exercise 9.4), and since the labelings used there respect that duality,
the results of [364] are not affected by the misstatement.

Polygonal lattices

The results of this section have not, to our knowledge, appeared in the literature.
However, the HH-property, defined in [91], is stronger than polygonality. A
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related notion is in [146]. See the Notes to Chapter 10. Exercises 9.57, 9.58,
9.62, 9.63, 9.64, and 9.65 were suggested by Friedrich Wehrung. Proposition 9-
6.4 and Theorem 9-6.5 are both due to Wehrung, in response to questions
posed in an early version of this chapter. Wehrung’s proof of Theorem 9-6.5
is based on ideas from [445] and applies more generally to polygonal lattices
without infinite bounded chains. The proof given here is quite different and is
based on an earlier argument for tight lattices of regions.

Lemma 9-6.12 is due to Deligne [123, Proposition 1.12] in the case of
simplicial arrangements. Edelman proved that the simplicial case of Lemma
9-6.12 follows from the fact that the poset of regions of a simplicial arrangement
is a lattice. Edelman’s proof is unpublished but was communicated to the
author by Vic Reiner, and the proof of Lemma 9-6.3 given here is Edelman’s
proof, generalized to polygonal lattices. In fact, Lemma 9-6.12 holds without
the hypothesis of tightness. This was proved by Salvetti [391, Lemma 11] and
also by Cordovil and Moreira [103, Theorem 2.4] in the more general setting
of oriented matroids. The proof also appears, with definitions and notation
more in the style of the current chapter, as [373, Theorem 3.4]. For even
stronger and more general results of this kind, see Athanasiadis, Edelman, and
Reiner [40] and Athanasiadis and Santos [42].

Shards

Shards were first defined in [364] in order to prove versions of Theorem 9-7.19
and Corollary 9-7.22 for simplicial arrangements. They appeared again in [365]
as part of the proof of an upper bound on the order dimension of Pos(A, B).
(For more on order dimension, see Trotter [436].) In [364, 365], closures were not
taken in the definition of shards, but this difference is inconsequential except
for changing the phrasing of some definitions and results. More detailed studies
of shards were carried out in [366] (expanding on Theorem 9-7.19) and in [372]
(studying the shard intersection order mentioned in connection with Theorem
9-7.23). Most of the results of Section 9-7 appear in those references, under
the stronger hypothesis of simpliciality (rather than tightness). In particular,
Theorem 9-7.11 appeared for simplicial arrangements as [372, Theorem 3.6].
(See also [381, Theorem 8.1].) Theorems 9-7.18, 9-7.17, and 9-7.19 generalize
the second assertion of [364, Theorem 25] to tight arrangements and remove
the requirement that the shard digraph be acyclic. Exercises 9.71 and 9.69
are results from [364], while Exercise 9.72 generalizes [364, Theorem 26].
Exercise 9.73 was suggested by Friedrich Wehrung. Corollary 9-7.22 generalizes
the first assertion of [364, Theorem 25] to tight arrangements. The shard
intersection order on permutations was also studied by Bancroft [48, 49] and
the shard intersection order on the classical Coxeter groups was studied further
by Petersen [348]. Theorem 9-7.24 is [427, Proposition 4.47].
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Quotients of posets of regions

The results of this section overlap slightly with [367, Theorem 5.1], but most
of the contents of [367, Theorem 5.1] are not in the section and most of the
contents of this section are not in [367, Theorem 5.1]. Other than this small
overlap, the results of this section are new. The fact that quotients of finite
congruence uniform lattices inherit the property of congruence uniformity is
proved as [170, Corollary 2.17].

9-11. Problems

Problem 9.1. Find a necessary and sufficient local condition on (A, B) for
Pos(A, B) to be a lattice. Specifically, the condition should be based on local
configurations of hyperplanes/regions. This problem is posed in [70], where the
sufficient condition of simpliciality is discussed. A weaker sufficient condition
is tightness (see Theorem 9-3.2), but tightness is not necessary, as illustrated
by Example 9-3.7.

Problem 9.2. Characterize the lattices Pos(A, B) for (A, B) tight and/or,
more generally, the lattices that appear as Pos(A, B). For example, develop the
equational theory of such lattices. (Is it decidable? Is there a lattice identity
that holds in all lattices Pos(A, B), or in such lattices with (A, B) tight, that
does not hold for all lattices? Compare [398].) What other “non-equational”
properties do these lattices have? (See also Problem 10.1 in Section 10-10.)

Problem 9.3. Find the order dimension of the poset of regions of a simplicial
hyperplane arrangement. More generally, find the order dimension of Pos(A, B)
when A is tight with respect to B. This problem is considered in the special
case of the weak order on a Coxeter group in [365]. The problem is solved there
for some Coxeter groups, including the symmetric group. In the latter case, the
problem was solved earlier by Flath [154]. There are no known counterexamples
to the guess that the order dimension is the rank (the dimension of the linear
span of normal vectors to the hyperplanes in A). The rank n is an obvious
lower bound, as it is easy to find in Pos(A, B) a subposet isomorphic to the
standard example [436, Example 5.1] of a poset of dimension n. (See also
Problem 10.2 in Section 10-10.)

Problem 9.4. Let L be a lattice and let α be an arbitrary equivalence relation
on L (not necessarily a congruence). Define a relation “≤ ” on α-classes by
setting C1 ≤ C2 if and only if there exist x ∈ C1 and y ∈ C2 with x ≤ y.
(Compare Proposition 9-5.4.) When is the set L/α of equivalence classes,
endowed with the relation ≤ , a lattice? A necessary condition for L/α to
be a poset is that each α-class be order-convex (that is, closed under taking
intervals). One might specialize this problem to special classes of lattices L or
generalize it to allow L to be a poset. This problem was posed by Christian
Stump.
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Problem 9.5. The paragraphs after Theorem 9-7.25 define an “alternate”
partial order on a congruence uniform lattice L. This alternate partial order
is important when L is the weak order on a finite Coxeter group or when L
is a Cambrian lattice. (In the latter case, the alternate partial order is the
noncrossing partition lattice. See Theorem 10-6.34.) For which congruence
uniform L is the alternate partial order a lattice?

Problem 9.6. Can every finite, congruence uniform lattice be embedded into
a finite, congruence uniform, polygonal lattice? Can it be embedded into a
congruence uniform lattice of regions for some tight (simplicial) arrangement?
This problem is suggested by Exercise 9.64 and was posed by Friedrich Wehrung.



Chapter

10

Finite Coxeter Groups and the

Weak Order

N. Reading

In this chapter, we develop the basic theory of finite Coxeter groups, drawing
on results already proved for posets of regions. There are two main points to
this chapter: First, to show how the geometry and lattice theory of hyperplane
arrangements underlies the theory of finite Coxeter groups, and second, to
point out the weak orders on finite Coxeter groups as an important class of
lattice-theoretic examples. A broader class of examples is obtained as lattice
quotients of weak orders. Several examples of such quotients are given in
Sections 10-6 and 10-7.

10-1. Coxeter groups and the weak order

A Coxeter group is a group presented by generators and relations of a very
specific form. There is a finite1 set S of generators, and for each pair s, t of
distinct generators, we choose a quantity m(s, t), which must be either an

1Some authors allow S to be infinite, but we have no need to do so.
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integer ≥ 2 or ∞. We require that m(s, t) = m(t, s) for each pair s, t. The
Coxeter group is the group W given by the presentation

(10-1.1) W =
〈
S
∣∣ s2 = 1∀s ∈ S, (st)m(s,t) = 1∀s ̸= t ∈ S

〉

Here 1 is the identity element. If m(s, t) =∞, then the notation (st)m(s,t) = 1
means that no relation of the form (st)k = 1 is imposed. We call S the set of
defining generators of W . The cardinality of S is called the rank of W .

For readers not familiar with groups presented by generators and relations,
we provide a brief explanation. We restrict our attention to the presentation
(10-1.1), in order to avoid some complications that can arise for general group
presentations. A formal treatment of generators and relations is found in
most modern algebra texts. Least formally, the group W is the largest group
generated by the symbols S such that all the defining relations s2 = 1 and
(st)m(s,t) = 1 hold. Here, “largest” means that any other group generated by
S and satisfying the defining relations is a quotient (i.e., a group-homomorphic
image) of W .

Suppose we are given a group W and a map s ,→ s̄ from S into W such
that the image S̄ of the map generates W . Suppose also that the defining
relations of W hold in W with respect to the given map s ,→ s̄. In other
words, suppose that for each s ∈ S the element s̄2 equals the identity in W
and for each s ≠ t in S, the element (s̄ t̄ )m(s,t) equals the identity in W . There
are some immediate consequences of the fact that the defining relations hold.
First, the fact that W is generated by S̄ means that each element of W is a
product a1 · · · ak where each ai either is in S̄ or is the inverse of an element
of S̄. But because the defining relations hold, in particular each element of
S̄ is its own inverse, so a1 · · · ak is a sequence of elements of S̄. We call such
a sequence a word in the alphabet S̄. Second, given a word a1 · · · ak, if we
identify a sequence of adjacent entries in a1 · · · ak that is identical to some s̄s̄
or to some s̄ t̄ s̄ t̄ · · · with 2m(s, t) letters, then we can delete that subsequence
without changing the product of the word. Third, if we insert the word s̄s̄
or the 2m(s, t)-letter word s̄ t̄ s̄ t̄ · · · between two adjacent letters of a word
a1 · · · ak, then the product of the word is unchanged. Now suppose that the
word a1 · · · ak is a relation in W , meaning that its product is the identity. We
say that the relation a1 · · · ak is a consequence of the defining relations if it can
by transformed into the empty word by a sequence of insertions or deletions
of s̄s̄ or s̄ t̄ s̄ t̄ · · · (with 2m(s, t) letters).

We can now define W more formally: A group W is isomorphic to W if and
only if there is a map s ,→ s̄ from S to W such that the image of S generates
W , such that the defining relations of W hold in W with respect to s ,→ s̄,
and such that every relation in W is a consequence of the defining relations.

Most formally, W is the quotient of the free group generated by S, modulo
the smallest group congruence having s2 congruent to 1 for all s ∈ S and
(st)m(s,t) congruent to 1 for all s ≠ t in S. In fact, the term “group congruence”
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is not typically used, although the term makes sense in the context of universal
algebra. Rather, the usual phrasing is that W is the free group on S modulo
the smallest normal subgroup containing s2 for all s ∈ S and containing
(st)m(s,t) for all s ̸= t in S. The normal subgroup is the congruence class of 1,
and this normal subgroup determines the congruence completely.

In general, groups presented by generators and relations are difficult to
understand. For example, the Word Problem (deciding whether two words
describe the same element) is known to be recursively unsolvable for some
such groups, and the Finiteness Problem for such groups (deciding whether
the group is finite) is known to be recursively unsolvable.

Some group presentations are more tractable than others, however, and
Coxeter groups are a particularly well-behaved case. But a priori, we can’t
rule out certain “bad” behavior on the part of the Coxeter group W given
by (10-1.1). For example, we can’t show that a given generator s is not the
identity element. That is, we can’t rule out, a priori, the possibility that the
relation s = 1 is not a consequence of the defining relations. Similarly, the
relation (st)m(s,t) = 1 implies that the order of the element st is a divisor of
m(s, t), but we can’t rule out the possibility that the order of st is a proper
divisor of m(s, t). We can’t even rule out the possibility that the order of st is
1, or in other words that s = t in W for distinct elements s, t ∈ S. We rule out
all these bad behaviors for finite Coxeter groups later in Proposition 10-2.17,
using the geometry of hyperplane arrangements.

Given any group presented by generators and relations, there is a natural
partial order called the prefix order. In the case of Coxeter groups, the prefix
order is called the weak order and has particularly nice properties. Let W be
the Coxeter group defined in (10-1.1). A finite sequence a1 · · · ak of generators
in S whose product is w ∈W is called a word for w of length k. The length ℓ(w)
of an element w is the minimal k such that there exists a word a1 · · · ak for
w. A word of this minimal length is called a reduced word. Given v and w in
W , we say v ≤ w in the weak order2 if there exists a reduced word a1 · · · ak
for w and an index i such that a1 · · · ai is a word for v. Informally, we might
say that v is a prefix of w. Equivalently, v ≤ w if ℓ(v) + ℓ(v−1w) = ℓ(w). The
cover relations of the weak order are given by w ≺ ws for any w ∈ W and
s ∈ S such that ℓ(ws) > ℓ(w).

Example 10-1.1. When S = {s1 , s2} (i.e., when the rank of W is 2), the
number of elements of W is 2m(s1 , s2 ). The rank-two Coxeter groups for
m(s1 , s2 ) ∈ {2, 3, 4, 5} are shown arranged in the weak order in Figure 10-1.1.

The first goal of this chapter is to show that the weak order on a finite
Coxeter group is a lattice, and to establish some of its lattice-theoretic proper-
ties. We do this by showing that finite Coxeter groups are essentially the same

2This is the right weak order. There is also a left weak order, isomorphic but not identical,
with left and right switched in the definition. Thus left weak order is the postfix order.
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Figure 10-1.1: The weak order on some Coxeter groups of rank 2

as finite reflection groups (finite groups generated by reflections), showing that
each finite reflection group defines a hyperplane arrangement, and showing
that the poset of regions of that arrangement is isomorphic to the weak order
on the Coxeter group. Similar results exist for infinite Coxeter groups, but to
realize infinite Coxeter groups as reflection groups, one must leave behind the
comfort of Euclidean geometry. An indication that finiteness and Euclidean
geometry go hand-in-hand is found in Proposition 10-2.7.

10-2. Finite reflection groups

A Euclidean (orthogonal) reflection in Rn is a linear transformation that fixes
an (n− 1)-dimensional subspace H and negates vectors in the 1-dimensional
subspace orthogonal to H . Orthogonality is defined in terms of the usual inner
product on Rn. A (finite, real, Euclidean) reflection group 3 is a finite group
generated by Euclidean reflections in Rn. In this section, we consider reflection
groups and the hyperplane arrangements that arise from reflection groups.
Specifically, let W be a reflection group and let T be the set of reflections in W .
By hypothesis, the group W is generated by reflections, but T may be larger
than the generating set because additional elements may act as reflections.
For each reflection t ∈ T , let Ht be the hyperplane fixed by t (the reflecting
hyperplane of t). Foreshadowing the connection to finite Coxeter groups, the
arrangement A = {Ht | t ∈ T} is called a Coxeter arrangement. The group W
is uniquely determined by A.

3Other versions of reflection groups replace the real numbers with another field and/or
relax the requirement of finiteness (thus necessarily deleting the adjective Euclidean). We
will see in Proposition 10-2.7 that a slightly broader definition, keeping the adjectives “finite”
and “real” but not requiring a priori that the reflections preserve a Euclidean metric, is
essentially equivalent to this definition of finite reflection groups.
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10-2.1 Coxeter arrangements are simplicial

The first goal of this section is to prove the following theorem, which will let us
apply results from Chapter 9 on simplicial (or tight) arrangements to Coxeter
arrangements.

Theorem 10-2.1. Every essential Coxeter arrangement is simplicial.

Recall that an essential hyperplane arrangement is an arrangement A such
that

⋂
H∈A H is the origin. We emphasize that for every non-essential Coxeter

arrangement, an essential Coxeter arrangement can be obtained in the quotient
vector space Rn/

⋂
H∈A H by taking the quotient modulo

⋂
H∈A H of each

hyperplane in A. The quotient arrangement is a Coxeter arrangement for a
finite reflection group in Rn/

⋂
H∈A H that is isomorphic to the original finite

reflection group.
Of key importance in what follows will be the action of a reflection group

W on the hyperplanes and regions of the Coxeter arrangement for W . We
write wH for the image of a hyperplane H under the action of w ∈ W and
write wR for the image of a region R under the action of w.

Theorem 10-2.1 is immediate from the following two propositions.

Proposition 10-2.2. Let A be a Coxeter arrangement defined by a finite
reflection group W . Then W acts transitively on the set of regions.

We will see soon, as an easy consequence of Theorem 10-2.5, that W acts
simply transitively on regions.

Proof. The action of W permutes the hyperplanes of A, because if w ∈ W
and t ∈ T , then wtw−1 is a reflection with Hwtw−1 = wHt. (This is verified
in Exercise 10.1.) Thus also W permutes the set of regions. Suppose Q
and R are regions of A. Lemma 9-1.12 constructs a sequence of regions
Q = R0 , . . . , Rk = R with Ri−1 adjacent to Ri for i = 1, . . . , k. The common
facet of each pair Ri−1 , Ri is contained in some hyperplane of A, which is a
reflecting hyperplane for some reflection ti ∈ T . Since W permutes the regions,
we see that Ri = tiRi−1 . Thus R = tktk−1 · · · t1Q.

Proposition 10-2.3. Every essential central arrangement has at least one
simplicial region.

Proof. A line of A is a 1-dimensional linear subspace of Rn that is the inter-
section of some collection of hyperplanes in A. We argue, by induction on n,
an assertion that is stronger than the proposition: If A is essential and H0 is
a hyperplane containing no line of A, then there exists a simplicial region R
of A with H0 ∩R = {0}. (Such a hyperplane H0 is necessarily not in A.)

Let H0 be a hyperplane containing no line of A. Let v be a nonzero normal
vector to H0 and write H1 for the set v +H0 . Since H0 contains no line of A,
every line of A intersects H1 in exactly one point.
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Choose a hyperplane H ∈ A. Exercise 10.2 verifies that there exists a line
of A not contained in H. Among all lines of A not contained in H, choose a
line ℓ of A to minimize the distance from the point p = ℓ∩H1 to the set H∩H1 .
Each hyperplane H ′ of A containing ℓ intersects H in a linear subspace of
dimension n − 2. Thus the set A′ = {H ′ ∩ H | ℓ ⊆ H ′ ∈ A} is a central
hyperplane arrangement in H ∼= Rn−1 . Furthermore, A′ is essential because

the intersection of all of its hyperplanes is
(⋂

ℓ⊆ H′∈A H ′
)
∩H = ℓ ∩H = {0}.

Every line of A′ is also a line of A, so the hyperplane H0 ∩H contains no line
of A′.

By induction on n, there is a simplicial region R′ of A′ whose intersection
with H0 ∩H is {0}. Since R′ ⊆ H, we know that H0 ∩R′ is also {0}. Thus
(up to passing from R′ to −R′) we can take R′ to be on the same side of H0

as H1 . Let R be the nonnegative linear span of R′ ∪ p. This is a simplicial
cone whose facet-defining hyperplanes are all in A. (One of the facet-defining
hyperplanes is H. The others are the hyperplanes H ′ containing ℓ such that
H ′ ∩H is a facet-defining hyperplane of R′ as a subset of H.) Since R′ is on
on the same side of H0 as H1 , also R is on the same side of H0 as H1 .

We complete the proof by showing that R is a region of A. Since the
facet-defining hyperplanes of R are in A, this amounts to showing that R is
not the union of more than one region of A. The cone R is the nonnegative
linear span of a set of n vectors. We may as well take all of these vectors to
lie in H1 , so that one of them is p, and write p1 , . . . ,pn−1 for the others. The
region R′ of A′ is the nonnegative linear span of p1 , . . . ,pn−1 .

Now suppose for the sake of contradiction that R is the union of more than
one region. Then there exists a hyperplane H̃ ∈ A with some of the points
p,p1 , . . . ,pn−1 strictly on one side of H and some strictly on the other side.
If p is contained in H̃ and some pair of points pi and pj are on opposite sides

of H̃ , then H̃ ∩H is in A′, and we obtain a contradiction to the fact that R′ is
a region of A′. Otherwise, for some i from 1 to n− 1, the points p and pi are
on opposite sides of H̃ . Now p is ℓ ∩H1 and also pi is ℓ′ ∩H1 for some line ℓ′

of A′. Since A′ = {H ′ ∩H | ℓ ⊆ H ′ ∈ A}, there is a set A′′ of hyperplanes, all
containing ℓ, such that the intersection U of A′′ has H ∩ U = ℓ′. Thus U is
the span of ℓ and ℓ′. But U ∩ H̃ is a line of A, and the point (U ∩ H̃) ∩H1 is
in the interior of the line segment ppi. This point is strictly closer to H ∩H1

than p, contradicting our choice of p.

We have proved Theorem 10-2.1. Recall that Theorem 9-3.15 and Corollary
9-3.16 define colorings of the rays (and more generally of the faces) of a
simplicial arrangement. In the case of Coxeter arrangements, the colorings are
compatible with the action of the associated reflection group.

Proposition 10-2.4. If A is an essential Coxeter arrangement defined by a
finite reflection group W , then the ray coloring of Theorem 9-3.15 (and more
generally the face coloring of Corollary 9-3.16) is preserved by the action of W .
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Proof. It is enough to prove the statement about the ray coloring. Since W is
generated by reflections, it is enough to show that each reflection preserves the
ray coloring. Let t be a reflection and let R be a region. Since W permutes
the regions, there is a region tR.

By Lemma 9-1.12, there is a sequence R = R0 , . . . , Rk = tR with Ri−1

adjacent to Ri for i = 1, . . . , k. Since R and tR are on opposite sides of Ht,
there is some i such that R0 and Ri are on the same side of Ht but Ri+1 is on
the opposite side of Ht. In particular, Ri shares with tRi a facet contained in
Ht. The rest of the proof considers only the subsequence R = R0 , . . . , Ri. We
show by induction on j, that t takes the ray coloring of Ri−j to the ray coloring
of tRi−j . The base case of the induction, where j = 0, is immediate because
Ri and tRi share a facet contained in Ht. If j > 0, then by induction, t takes
the ray coloring of Ri−j+1 to the ray coloring of tRi−j+1 . Since t also takes
the unique ray of Ri−j not contained in Ri−j+1 to the unique ray of tRi−j not
contained in tRi−j+1 , we conclude that t also takes the ray coloring of Ri−j

to the ray coloring of tRi−j . This fact, for j = i, completes the proof.

Not only do reflection groups provide examples of simplicial arrangements,
but also simplicial arrangements provide insight into reflection groups. This
insight is more fully realized in Section 10-2.3. For now, we point out a
fundamental result: the correspondence between regions and group elements.

Theorem 10-2.5. Let A be a Coxeter arrangement defined by a finite reflec-
tion group W and let B be any region of A. Then the map w ,→ wB is a
bijection from W to regions of A.

Proof. It is enough to prove the proposition in the case where A is essential.
The set wB is a region by Proposition 10-2.2, which furthermore implies that
the map w ,→ wB is surjective. Suppose two elements v and w of W have
vB = wB = R for some region R. Proposition 10-2.4 implies that each ray
of B is taken to the same ray of R by v and by w. Take a nonzero vector xρ

in each ray ρ of B. If v(xρ) ̸= w(xρ), then w−1v(xρ) is a positive, non-unit
scalar multiple of xρ. In particular, w−1v is of infinite order, contradicting the
fact that W is finite. Therefore, v(xρ) = w(xρ) for each ρ. Since the xρ are a
basis for Rn and the maps v and w are linear, we conclude that v = w.

10-2.2 Generalized reflection groups

Our main focus will be finite reflection groups in a Euclidean vector space.
We pause briefly to consider more general reflections and in particular to
show that we can safely relax the definition of finite reflection groups without
losing the results of this section. Dropping the relationship with a Euclidean
metric, we define a generalized reflection in Rn to be a linear map having
an (n − 1)-dimensional 1-eigenspace (i.e., having a fixed hyperplane) and
an eigenvalue −1. A generalized reflection group is a group generated by
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generalized reflections, without any a priori requirement that the reflections
preserve the Euclidean metric.

In dealing with generalized reflections, it is useful to introduce a symmetric
bilinear form to take the place of the usual Euclidean inner product. This is a
map from pairs of vectors in Rn to real numbers that is linear in each entry
and symmetric in exchanging the vectors. We will continue to use ⟨ · , · ⟩ for
the usual Euclidean inner product and refer to other symmetric bilinear forms
by letters such as f . Vectors x and y are orthogonal with respect to the form
f if f(x,y) = 0. A linear transformation w is an isometry of the form f if
f(wx, wy) = f(x,y) for all vectors x and y. A form is preserved by a group
of transformations if every element of the group is an isometry of the form.
The following basic facts are left as Exercise 10.3.

Proposition 10-2.6. Let f be a symmetric bilinear form.

(i) If f(x,x) ̸= 0, then the map rx,f : Rn → Rn with rx,f (y) = y− 2 f(x,y)
f(x,x)x

is an isometry of f .

(ii) If f(x,x) ̸= 0, then x⊥
f = {y ∈ Rn | f(x,y) = 0} is a hyperplane.

(iii) If f(x,x) ̸= 0, then the map rx,f is a reflection with fixed hyperplane x⊥
f

and (−1)-eigenspace Rx.

(iv) A reflection is an isometry of f if and only if its fixed space is orthogonal,
with respect to f , to its (−1)-eigenspace.

(v) Suppose r is a reflection and x is an (−1)-eigenvector of r. If f(x,x) ̸= 0,
then r is an isometry of f if and only if r = rx,f .

Given a symmetric bilinear form f , there is a matrix M such that f(x,y) =
xTMy, where x and y are column vectors and xT is the transpose of x. The
matrix M is real and symmetric, so it has a basis v1 , . . . ,vn of eigenvectors
with real eigenvalues λ1 , . . . ,λn, and furthermore v1 , . . . ,vn can be taken to
be an orthonormal basis with respect to the usual Euclidean inner product.4

Orthogonality of the eigenvectors with respect to the usual Euclidean product
implies orthogonality of the eigenvectors with respect to the form f , because
f(vi,vj) = vT

i Mvj = vT
i λjvj = λj⟨vi,vj⟩.

The form f is called Euclidean or positive definite if f(x,x) > 0 for all
nonzero vectors x. The form f is Euclidean if and only if all of the eigenvalues
of M are positive, in which case we replace each vi with vi/

√
λi to obtain

a basis on which f is described by the identity matrix. Thus a Euclidean
form f is essentially the same as the usual Euclidean inner product; the only
difference is the choice of basis.

4This standard result, or its generalization to Hermitian matrices, is known as the
Spectral Theorem and is found in most linear algebra textbooks.
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Given a symmetric bilinear form f , a reflection group with respect to f is
a group generated by reflections rx,f . The main point of our discussion of
generalized reflection groups is the following proposition, which says that, up
to a change of basis, every finite generalized reflection group is a (Euclidean)
reflection group.

Proposition 10-2.7. Any generalized finite reflection group W in Rn is a
reflection group with respect to some Euclidean form f .

For the proof, we use the following standard trick.

Proposition 10-2.8. Given any finite group of linear transformations, there
is a Euclidean symmetric bilinear form preserved by the group.

Proof. Define a bilinear form f by f(x,y) =
∑

w∈W ⟨wx, wy⟩. The form f is
symmetric and Euclidean (positive definite) because the usual Euclidean inner
product is. We see that f is preserved by W as well, because for any u ∈W ,

f(ux, uy) =
∑

w∈W

⟨wux, wuy⟩ =
∑

v∈W

⟨vx, vy⟩ = f(x,y).

Proof of Proposition 10-2.7. By Proposition 10-2.8, W preserves a Euclidean
form f , and so W is generated by reflections that are isometries of f .

10-2.3 Finite Coxeter groups and finite reflection groups

In this section, we show that finite reflection groups and finite Coxeter groups
are essentially the same (in particular, justifying the name “Coxeter arrange-
ment” for the set of reflecting hyperplanes for a finite reflection group). Specif-
ically, we prove the following theorems.

Theorem 10-2.9. Let W be a finite reflection group with Coxeter arrange-
ment A. Choose any region B and let S be the set of reflections in facet-defining
hyperplanes of B. For each pair s ≠ t in S, define m(s, t) to be π divided
by the angle between Hs and Ht. Then W is the Coxeter group with the
presentation (10-1.1).

Theorem 10-2.10. Every finite Coxeter group is isomorphic to some finite
reflection group. The isomorphism can be chosen so that it restricts to a
bijection from the set S of defining generators of W to the set of reflections
in the facet-defining hyperplanes of some region B of the associated Coxeter
arrangement. Given s ≠ t in S, the angle between the reflecting hyperplanes
corresponding to s and t is π

m(s,t) .

Theorem 10-2.9 has been stated in a slightly informal way. In the re-
flection group, the elements of S are certain linear transformations. In the
presentation (10-1.1), those same elements play the role of formal symbols
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that generate a free group. The quotient of that free group, modulo some
normal subgroup N , is the Coxeter group. More formally, Theorem 10-2.9
asserts not that the two groups are identical, but rather that S generates the
reflection group and that the map taking each s ∈ S to the coset sN extends
to an isomorphism from the reflection group to the Coxeter group.

We now prepare to prove Theorem 10-2.9. The key geometric insight is
the following well known fact which is proved as Exercise 10.4.

Proposition 10-2.11. Suppose s and t are Euclidean reflections whose re-
flecting hyperplanes Hs and Ht meet at an angle θ. Then the composition st
is a rotation through an angle 2θ fixing the subspace Hs ∩Ht.

The other key to the proof is the facet coloring of A. Corollary 9-3.16
colors the facets of A with n distinct colors, each of which is an (n−1)-element
subset of {1, . . . , n}. We write ⟨i⟩ for the (n−1)-element subset {1, . . . , n}\{i}.
Choose any base region B, and let si denote the reflection in the hyperplane
defining the facet of B that is colored ⟨i⟩.

Lemma 10-2.12. Let w ∈ W and let i ∈ {1, . . . , n}. Then (wsi)B is the
region that shares a facet colored ⟨i⟩ with wB.

Proof. The regions B and siB are adjacent, sharing a facet colored ⟨i⟩. Thus
the regions wB and w(siB) = (wsi)B are adjacent, and Proposition 10-2.4
says that their common facet is colored ⟨i⟩.

Lemma 9-1.12 says that any region R is connected to B by a sequence
B = R0 , . . . , Rk = R with Ri−1 adjacent to Ri for i = 1, . . . , k. For each
i from 1 to k, set ai equal to the generator sj such that ⟨j⟩ is the color of
the facet shared by Ri−1 and Ri. Iterating Lemma 10-2.12, we see that R
is (a1 · · · ak)B. Theorem 10-2.5 now implies that every element of W can be
expressed as a product a1 · · · ak of reflections in facet-defining hyperplanes
of B. We have established one part of the proof of Theorem 10-2.9, which we
record as the following proposition.

Proposition 10-2.13. Let W be a finite reflection group and let B be any
region of the corresponding Coxeter arrangement. Then W is generated by the
set S of reflections in the facet-defining hyperplanes of B.

Another part of the proof of Theorem 10-2.9 is the following proposition:

Proposition 10-2.14. For S and m(s, t) as defined in Theorem 10-2.9, each
m(s, t) is an integer greater than or equal to 2. The relation s2 = 1 holds for
every s ∈ S and the relation (st)m(s,t) = 1 holds for every s ̸= t ∈ S.

Proof. Every s ∈ S is a reflection, so s2 is the identity. Let i and j be distinct
numbers in {1, . . . , n}, so that si and sj are distinct elements of S. The
intersection of the facets of B colored ⟨i⟩ and ⟨j⟩ is an (n−2)-dimensional face
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F colored with the set {1, . . . , n} \ {i, j}. The reflections si and sj each fix F .
Since W is finite, there is some smallest number k such that the alternating
product sisjsisj · · · of k generators is the identity. Then k cannot be odd,
because the determinant of a reflection is −1, so k = 2m for some integer
m ≥ 2. By Theorem 10-2.5, k is the smallest number such that that alternating
product, applied to B, returns B.

Lemma 10-2.12 implies that B, siB, sisjB, . . . , (sisj)mB is a sequence of
adjacent regions, each containing F , with the last term (sisj)mB equaling B.
Each region in the sequence has two facets whose intersection is F , and the
angle between these facets is the same for each region in the sequence. We
conclude that each angle is π

m . But this angle is the angle between the reflecting
hyperplanes Hsi and Hsj , so m = m(si, sj).

We now complete the proof of Theorem 10-2.9.

Proof of Theorem 10-2.9. It remains to show that every relation among the
generators S in the reflection group W is a consequence of the defining
relations of the Coxeter group. Let a1 · · · ak be such a relation. That is, the
product a1 · · · ak is the identity, or equivalently, (a1 · · · ak)B = B. Define
Ri = (a1 · · · ai)B for each i from 1 to k, so that B = R0 , R1 , . . . , Rk = B is a
sequence of adjacent regions by Lemma 10-2.12.

In the proof of Theorem 9-3.15, we showed inductively how to reduce
B = R0 , R1 , . . . , Rk = B to the singleton sequence B by a series of moves
of two types. The first type of move found an index i with Ri−1 = Ri+1

and deleted Ri. This means that ai = ai+1 , and the new sequence of regions
corresponds to the word obtained from a1 · · · ak by deleting ai and ai+1 .

The second type of move found an index with Ri−1 ̸= Ri+1 . Let c be the
color of the facet shared by Ri−1 and Ri and let d be the color of the facet
shared by Ri and Ri+1 . Thus ai = sc and ai+1 = sd. Let F be the intersection
of those two facets. The second type of move replaced Ri−1 , Ri, Ri+1 with a
new subsequence, consisting of all of the regions containing F except Ri. Since
F is colored by the set {1, . . . , n} \ {c, d}, the corresponding change in the
word a1 · · · ak is to replace aiai+1 with an alternating word ai+1ai · · · ai+1ai.
In light of Proposition 10-2.14 and Lemma 10-2.12, the alternating word
has 2m(ai, ai+1 ) − 2 entries. Replacing aiai+1 with the alternating word
ai+1ai · · · ai+1ai can be carried out in three steps. First, insert a different
alternating word aiai+1 · · · aiai+1 with m(ai, ai+1 ) elements between the orig-
inal ai and ai+1 , then remove aiai near the beginning of the inserted word,
and finally remove ai+1ai+1 near the end of the inserted word.

We have seen that both kinds of moves on the sequence of regions correspond
to changes in the word a1 · · · ak that are immediate consequences of the defining
relations of the Coxeter group. Since there is a sequence of such moves changing
a1 · · · ak to the empty word, we conclude that the relation a1 , . . . , ak is a
consequence of the defining relations.



500 10. Finite Coxeter Groups and the Weak Order

We now turn to the proof of Theorem 10-2.10. The difficult part of the proof
(aside from Theorem 10-2.9, which is also used) is the following proposition.

Proposition 10-2.15. Let B be a simplicial cone whose facet-defining hyper-
planes are H1 , . . . , Hn. Suppose, for any distinct indices i and j from 1 to n,
that the facets defined by Hi and Hj meet at an angle π

m(i,j) for some integer

m(i, j) ≥ 2. If the group W generated by Euclidean reflections in H1 , . . . , Hn

is finite, then B is a region in the Coxeter arrangement A associated to W .

Example 10-2.16. To clarify Proposition 10-2.15, consider a simple example.
Let L1 and L2 be lines through the origin in R2 meeting at an angle π

3 .
The reflection group generated by Euclidean reflections in these lines has
six elements, three of which are reflections. The third reflecting line is the
unique line meeting both L1 and L2 at an angle π

3 . The associated Coxeter
arrangement defines six regions, each of which is a sector with angle π

3 . A
sector with angle π

3 defined by L1 and L2 satisfies the hypotheses of the
proposition and is one of the regions in the Coxeter arrangement. A sector
with angle 2π

3 defined by L1 and L2 does not satisfy the hypotheses of the
proposition and is the union of two regions in the Coxeter arrangement.

Proof of Proposition 10-2.15. For each i, let si be the reflection in the hyper-
plane Hi. Suppose the group W generated by the si is finite. Since B is a
closed polyhedral cone defined by reflecting hyperplanes for reflections in W ,
it is a union of regions of A. If B is not a single region of A, then there exist
regions Q and R contained in B, with Q adjacent to R. The reflection t fixing
the common facet of Q and R has the property that R = tQ. This reflection is
in W , by the definition of A, and since W is generated by {s1 , . . . , sn}, there
is a word a1 · · · ak for t with each ai in {s1 , . . . , sn}.

We wish to make an argument similar to the proofs of Theorems 9-3.15
and 10-2.9, inductively applying a sequence of moves to a1 · · · ak, with every
move preserving the property that the product of the word is t. But we
must approach the induction differently in this case: Since we are trying to
prove that B is a region, we don’t know a priori that words in {s1 , . . . , sn}
correspond to sequences of adjacent region. In particular, the moves may not
interact well with separating sets.

Choose a unit vector v0 in the relative interior of the common facet of
Q and R. In particular, v0 is in the interior of B. For i from 1 to k, let Bi

be the cone (a1 · · · ai)B and let vi be (a1 · · · ai)v0 . Since v0 is in the interior
of B, each vi is in the interior of Bi. Let d(a1 · · · ak) be the maximum, over
i ∈ {1, . . . , k}, of the quantity 1− ⟨vi,v0 ⟩. We will say d(a1 · · · ak) is attained
at i if d(a1 · · · ak) = 1− ⟨vi,v0 ⟩. Given another word a′1 · · · a′ℓ, we say that
a′1 · · · a′ℓ is closer to v0 than a1 · · · ak if either d(a′1 · · · a′ℓ) < d(a1 · · · ak) or
d(a′1 · · · a′ℓ) = d(a1 · · · ak) but the maximum is attained fewer times on a′1 · · · a′ℓ
than on a1 · · · ak.
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We now show that whenever d(a1 · · · ak) > 0, there exists another word
a′1 · · · a′ℓ for t that is closer to v0 than a1 · · · ak. Suppose d(a1 · · · ak) is attained
at i. Since d(a1 · · · ak) > 0 and vk = (a1 · · · ak)v0 = tv0 = v0 , we know that
i < k. We consider two cases depending on whether Bi−1 = Bi+1 .

If Bi−1 = Bi+1 , then ai = ai+1 and we delete ai and ai+1 from a1 · · · ak.
The shortened word has the same product as a1 · · · ak, and it is closer to v0

than a1 · · · ak.
If Bi−1 ̸= Bi+1 , then consider the hyperplanes H, defining the common

facet of Bi−1 and Bi, and H ′, defining the common facet of Bi and Bi+1 . Since
Bi is the image of B under a Euclidean isometry, the angle between H and H ′ is
π
m for some integer m. By Proposition 10-2.11, the element aiai+1 is a rotation,
fixing H ∩H ′, about an angle 2π

m . In particular, (aiai+1 )m is the identity, and
since each reflection is its own inverse, aiai+1 equals (ai+1ai)m−1 . Thus, we
replace the letters aiai+1 in a1 · · · ak with an alternating word ai+1aiai+1ai · · ·
of length 2m− 2 to obtain a new word whose product is still t. We must verify
that the new word is closer to v0 .

The images of the vector vi under the group generated by ai and ai+1

form a convex polygon with 2n vertices in a plane orthogonal to H ∩H ′. The
neighbors of vi in this polygon are vi−1 and vi+1 . The vectors v0 and aiv0

are related by the reflection ai in the hyperplane defining the common facet of
B and aiB. Applying the transformation a1 · · · ai−1 throughout, we see that
vi−1 = (a1 · · · ai−1 )v0 is related to vi = (a1 · · · ai)v0 by reflection in H. In
particular, the vector vi − vi−1 is orthogonal to H. The reflection fixing H is
in W (it can be written a1a2 · · · ai · · · a2a1 ), so H is in A.

If H ≠ Ht, then since v0 is in the relative interior of the common facet of Q
and R and Ht is the hyperplane containing that facet, v0 is not in H , and thus
v0 is not orthogonal to vi − vi−1 . That is, ⟨vi − vi−1 ,v0 ⟩ ≠ 0, and therefore
⟨vi−1 ,v0 ⟩ and ⟨vi,v0 ⟩ are not equal except when H = Ht. Similarly, ⟨vi,v0 ⟩
and ⟨vi+1 ,v0 ⟩ are not equal when H ′ ̸= Ht. Since H ≠ H ′, the quantities
1 − ⟨vi−1 ,v0 ⟩ and 1 − ⟨vi+1 ,v0 ⟩ are not both equal to 1 − ⟨vi,v0 ⟩, and so
at least one is strictly less. Therefore, because ⟨ · ,v0 ⟩ is a linear map, the
maximum of the function 1 − ⟨ · ,v0 ⟩ on the polygon is attained either only
at the vertex vi or only on an edge of the polygon incident to vi. The effect
of replacing aiai+1 with ai+1aiai+1ai · · · is to replace vi−1 ,vi,vi+1 with the
other sequence of adjacent vertices of the polygon that starts at vi−1 and goes
to vi+1 . This replacement removes a vertex where the maximum d(a1 · · · ak)
is attained and inserts a number of vertices v′ with 1− ⟨v′,v0 ⟩ < d(a1 · · · ak).
We conclude that the new word is closer to v0 than a1 · · · ak.

In either case, we have replaced a1 · · · ak with a word strictly closer to v0 .
Each v′ in the W -orbit of v0 is a unit vector, so ⟨v′,v0 ⟩ ≤ 1, with equality if
and only if v′ = v0 . There are finitely many vectors in the orbit, so there are
finitely many inner products. Thus if we continue to find words strictly closer
to v0 , we eventually find a word a′1 · · · a′ℓ with d(a′1 · · · a′ℓ) = 0. In that case,
v0 is fixed by every element a′1 · · · a′i for 1 ≤ i ≤ ℓ. Since v0 is in the relative
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interior of the common facet of Q and R, Theorem 10-2.5 implies that an
element fixing v0 either fixes Q or maps Q to R, and thus that every element
fixing v0 is either the identity or the reflection t. In particular, either ℓ = 0 or
a′1 = t. If ℓ = 0, then Q = R, and if a′1 = t, then since a′1 is a reflection in one
of the facet-defining hyperplanes of B, the regions Q and R are not both in B.
In either case, we have a contradiction. We conclude that B contains only one
region of A, which region is therefore B.

Proof of Theorem 10-2.10. Let W be the group presented by (10-1.1), and
suppose W is finite. Let the elements of S be s1 , . . . , sn and let v1 , . . . ,vn

be a basis for Rn. We define a symmetric bilinear form g on Rn by setting

g(vi,vi) = 1 for all i and g(vi,vj) = − cos
(

π
m(si,sj)

)
for all i ≠ j. Define ri

to be the reflection rvi,g orthogonal to vi with respect to g. Let W ′ be the
group of transformations generated by r1 , . . . , rn.

We now show that (rirj)m(si,sj) = 1, for all i ̸= j. The element rirj fixes
the (n − 2)-dimensional intersection of the fixed space of ri and the fixed
space of rj . This fixed space, together with the vectors vi and vj , span Rn,
so it is enough to show that (rirj)m(si,sj) also fixes the plane Pij spanned
by the vectors vi and vj . Writing c = cos π

m(si,sj)
and s = sin π

m(si,sj)
, the

vector x = 1
s (cvi + vj) is in Pij and is orthogonal to vi with respect to g.

Using Proposition 10-2.6, we see that rirj fixes Pij as a set, and we compute
the matrix for the action of rirj on Pij , in terms of the basis {vi,x} to be[
2c2−1 −2cs
2cs 2c2−1

]
. Using double-angle formulas, we see that this is the rotation

matrix
[
cos θ − sin θ
sin θ cos θ

]
for rotation about an angle θ = 2π

m(si,sj)
. In particular,

(rirj)m(si,sj) fixes Pij pointwise.
We have verified that W ′ satisfies the defining relations of the Coxeter

group W . In particular, W ′ is a homomorphic image of W , which is finite.
Thus W ′ is finite, and Proposition 10-2.8 says that there exists a Euclidean
form f preserved by W ′. In particular, the reflections ri are isometries of f ,
and therefore of the form rxi,f for some vectors xi by Proposition 10-2.6(v).
Since the ri generate W ′, it is a reflection group with respect to f . Thus, up
to a change of basis, we can apply all of our results about finite reflection
groups to W ′.

By Proposition 10-2.11, each rirj acts by a rotation about some angle with
respect to f . Since rirj acts on Pij by rotation about an angle 2π

m(si,sj)
with

respect to g, it must act by rotation about the same angle with respect to f .
By Proposition 10-2.11 again, the reflecting hyperplanes for ri and rj meet at
the angle π

m(si,sj)
. Choose B to be a closed polyhedral cone defined by the

reflecting hyperplanes for r1 , . . . , rn such that the facets of B meet at internal
angles π

m(si,sj)
(rather than π− π

m(si,sj)
). Proposition 10-2.15 says that B is a

region in the Coxeter arrangement for W ′. Theorem 10-2.9 now implies that
W ′ is isomorphic to W .
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As a result of Theorem 10-2.10, we are able to rule out the conceivable
bad behaviors of Coxeter groups that we mentioned in Section 10-1. With the
tools we have developed here, we can only prove the following proposition for
finite Coxeter groups, but it is true in general.

Proposition 10-2.17. Let W be a finite Coxeter group given by the presenta-
tion (10-1.1). Then no element of S is the identity element in W . Furthermore,
for distinct generators s, t ∈ S, the order of the element st is m(s, t), and in
particular s and t are distinct elements of W .

Proof. By Theorem 10-2.10, we identify W with a reflection group W ′ and
identify S with the set of reflections in some region B of the Coxeter arrange-
ment A associated to W ′. Let s and t be distinct elements of S. Lemma
10-2.12, with w = 1, says in particular that sB ̸= B, so Theorem 10-2.5 implies
that s ≠ 1. Since Theorem 10-2.10 gives the angle between the reflecting
hyperplanes Hs and Ht as

π
m(s,t) , the composition st is a rotation through an

angle 2π
m(s,t) by Proposition 10-2.11. Thus the order of st is m(s, t). Since by

definition m(s, t) > 1, we have st ̸= 1, so that s ̸= t.

10-2.4 The classification of finite Coxeter groups

The ideas used in Section 10-2.3 are also central to the problem of classifying
finite Coxeter groups (and the related Cartan-Killing classification in Lie
theory). We state two theorems that we do not prove here. The first is the
main idea behind the classification.

♦ Theorem 10-2.18. Let W be the Coxeter group presented by (10-1.1). Let

M be the matrix [mij ] with mii = 1 for all i and mij = − cos
(

π
m(si,sj)

)
for

all i ̸= j. Then W is finite if and only if M is positive definite.

A symmetric matrix M is positive definite if and only if the associated
form (x,y) ,→ xTMy is positive definite. Equivalently, the eigenvalues of M
are all positive. The form associated to the matrix M from Theorem 10-2.18
appeared under the name g in the proof of Theorem 10-2.10. Thus Theorem
10-2.18 implies that g was already Euclidean.

To state the actual classification result, it is useful to introduce a standard
combinatorial shorthand for describing Coxeter groups. The Coxeter diagram
of a Coxeter group W is a graph whose vertices are the defining generators S,
with an edge connecting vertices r and s if and only if m(r, s) ≥ 3. If
m(r, s) = 3, then the edge is left unlabeled, and if m(r, s) > 3 then the edge is
labeled by m(r, s). A Coxeter group is irreducible if its diagram is a connected
graph. Every Coxeter group is a direct product of irreducible Coxeter groups.
(See Exercise 10.6.) The following theorem completely classifies finite Coxeter
groups (and thus in light of Theorems 10-2.9 and 10-2.10, finite reflection
groups).
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An (n ≥ 1)

Bn (n ≥ 2) 4

Dn (n ≥ 4)

E6

E7

E8

F4
4

H3
5

H4
5

I2 (m) (m ≥ 5) m

Figure 10-2.1: Coxeter diagrams of finite irreducible Coxeter groups

♦ Theorem 10-2.19. An irreducible Coxeter group W is finite if and only if
its diagram is on the list shown in Figure 10-2.1.

The subscripts in Figure 10-2.1 show the rank of W (the size of S). The
labels to the left of the diagrams are called the types of Coxeter groups. The
finite irreducible Coxeter groups consist of four infinite families An, Bn, Dn,
and I2 (m) and 6 exceptional groups. Some of these are familiar. For example,
the Coxeter group of type An is the symmetric group of permutations of n+ 1
symbols, which is isomorphic to the symmetry group of a regular n-dimensional
simplex. The group of type Bn is the symmetry group of an n-dimensional
cube, and the groups of type F4 , H3 , H4 and I2 (m) are also the symmetry
groups of regular polytopes. All of the finite Coxeter groups except H3 , H4

and most cases of I2 (m) appear as Weyl groups of semi-simple Lie groups/Lie
algebras. The group I2 (6) is a Weyl group, named G2 in the Cartan-Killing
classification of root systems. There is no Coxeter group called Cn because
the root systems of types Bn and Cn both define Coxeter groups of type Bn.

Example 10-2.20. As an example of Theorem 10-2.19, we list all of the
finite Coxeter groups W of rank 3. If the diagram of W has three connected
components, then W is of type A1×A1×A1 . If the diagram has two connected
components, then W is of type I2 (m)×A1 for any m ≥ 3. (If m = 3 or 4 then
I2 (m) is referred to as A2 or B2 in the classification.) If W is irreducible, then
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A1 ×A1 ×A1 B2 ×A1 A3

Figure 10-2.2: Some rank-3 Coxeter arrangements

B3

Figure 10-2.3: Another rank-3 Coxeter arrangement

W is of type A3 , B3 , or H3 . The rank-3 Coxeter arrangements are shown in
Figures 10-2.2, 10-2.3, and 10-2.4. (We have chosen I2 (4)×A1 (i.e., B2 ×A1 )
to represent the infinite family I2 (m)×A1 .)

10-2.5 Detecting Coxeter arrangements combinatorially

Corollary 9-3.16 and Theorem 10-2.10 provide a way to detect whether a
given hyperplane arrangement is combinatorially isomorphic to a Coxeter
arrangement, in the sense of Definition 9-3.18.

Theorem 10-2.21. An essential hyperplane arrangement is combinatorially
isomorphic to a Coxeter arrangement if and only if it is simplicial and the
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H3

Figure 10-2.4: One more rank-3 Coxeter arrangement

number of regions containing a given codimension-2 face F depends only on
the color of F in the coloring defined in Corollary 9-3.16.

Proof. We first prove the easy direction. Suppose A is a Coxeter arrangement
with base region B and consider any codimension-2 face F of A. Then there
exists a region R having F as a face, and Theorem 10-2.5 says that R = wB
for some w ∈ W . Proposition 10-2.4 implies that F is the image under w
of the face F ′ of B having the same color as F . Since w is an isometry
mapping regions to regions, we see that F is contained in the same number
of regions as F ′. We conclude that the number of regions containing a given
codimension-2 face F depends only of the color of F . Also A is simplicial by
Theorem 10-2.1. These properties are therefore also true of any arrangement
A′ that is combinatorially isomorphic to A.

Conversely, suppose that A is simplicial and that for every codimension-
2 face F of A, the number of regions of A containing F depends only on
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the color of F . Choose a base region B of A. We will define a group W
whose elements are the regions of A and whose product is defined as follows:
Given a region Q, Lemma 9-1.12 says that there is a sequence of regions
B = Q0 , . . . , Qk = Q with Qi−1 adjacent to Qi for i = 1, . . . , k, not crossing
any hyperplane twice. This defines a sequence c1 , . . . , ck of colors, where ci is
the color of the facet shared by Qi−1 and Qi. (Each cj is of the form ⟨i⟩ for
some i ∈ {i, . . . , n}.) Similarly, given another region R, we have a sequence of
regions B = R0 , . . . , Rℓ = R, not crossing any hyperplane twice, which defines
a sequence of colors d1 , . . . , dℓ. Concatenating the color sequences, we obtain
a sequence c1 , · · · , ck, d1 , . . . , dℓ which in turn defines a sequence of regions
starting at B. We define the product QR to the be the region at the end of
the sequence given by the colors c1 , · · · , ck, d1 , . . . , dℓ.

To see that QR is well-defined, note first that it is formally independent of
the path chosen from B to Q. Since the sequence B = R0 , . . . , Rℓ = R does
not cross any hyperplane twice, it is a maximal chain in the interval [B,R]
in Pos(A, B). Lemma 9-6.12 says that any two such choices of path from
B to R are related by a sequence of rank-two moves. Each rank-two move
involves all of the regions containing some codimension-2 face of F of A. If
there are 2k regions containing F , then the rank-two move alters the sequence
of colors by changing some subsequence ababab . . . of length to a sequence
bababa . . . of length k, where a and b are facet-colors. These alterations to
the sequence d1 , . . . , dℓ do not change the region at the end of the sequence
c1 , · · · , ck, d1 , . . . , dℓ, because for every codimension-2 face F of A, the number
of regions of A containing F depends only on the color of F . Thus QR is
well-defined.

The product is associative because concatenation is associative. The
element B is the identity element. Given R, we choose a sequence of adjacent
regions from B to R, interpret it as a sequence of colors and then reverse
the sequence of colors. The reversed sequence defines a path from B to some
region R′, and R′ is the inverse of R for this product. Thus we have defined a
group, which we call W . The regions adjacent to B correspond to the color
sequences of length 1, so we identify these regions with the set of facet-colors,
which we call S. The group W is generated by S, and we now show that W is
a Coxeter group.

First, each element of S is an involution. If r and s are elements of S, let
F be the intersection of the facets of B colored r and s and define m(r, s) to
be half the number of regions containing F . In particular, (rs)m(r,s) is the
identity in W . We have showed that W satisfies the defining relations of the
Coxeter group with generators S and these choices of m(r, s).

The argument that every relation in W is a consequence of the defining
relations of the Coxeter group now proceeds exactly as in the proof of Theorem
10-2.9, except that instead of appealing to Proposition 10-2.14 and Lemma
10-2.12 to know that the alternating sequence inserted has the right number
of entries, we appeal to the hypothesis that for every codimension-2 face F of
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A, the number of regions of A containing F depends only on the color of F .
By Theorem 10-2.10, there is a Coxeter arrangement A′ for a finite reflection

group isomorphic to W , with the isomorphism taking S to the set of reflections
in the facet-defining hyperplanes of some region B′ of A′. Recall that S was
defined as a set of facet-colors of A. Assign the corresponding colors to the
facets of B′. Each facet color is ⟨i⟩, so we assign the color i to the ray of B
opposite that facet. Complete this to a coloring of the rays, and then the
faces, of A as in Theorem 9-3.15 and Corollary 9-3.16. Since the elements of
W are the regions of A, Theorem 10-2.5 says that the elements of W are in
bijection with the regions of A′. Given two adjacent regions Q and R of A,
let s be the color of their common facet. The corresponding elements of W
are related by multiplication on the right by s. If Q′ and R′ are the regions
of A′ corresponding to Q and R, then Lemma 10-2.12 says that Q′ and R′

are adjacent and that s is the color of their common facet. The argument
reverses, and we see that the adjacency graphs of A and A′ are isomorphic,
by an isomorphism that preserves colors of edges. Proposition 9-3.19 now says
that A and A′ are combinatorially isomorphic.

10-3. The weak order and the poset of regions

Having established that every finite Coxeter group is isomorphic to some finite
reflection group, and vice versa, we now also make the connection between the
weak order on the Coxeter group and the poset of regions of the associated
Coxeter arrangement. In the process, we derive some well known combinatorial
facts about reduced words in Coxeter groups. The latter facts are necessarily
stated and proved here only for finite Coxeter groups, but hold more generally
for arbitrary Coxeter groups.

In what follows, when we consider a finite Coxeter group W with defining
generators S, we will assume that a specific representation has been chosen
for W as a finite reflection group and moreover we will identify W with that
reflection group. We will write A for the associated Coxeter arrangement, and
we will assume that a base region B has been chosen such that the defining
generators S are identified with the reflections in the facet-defining hyperplanes
of B. Theorem 10-2.10 validates these assumptions. We will refer to A as the
Coxeter arrangement for W and B as the base region for W .

10-3.1 The isomorphism

Theorem 10-3.1. Suppose W is a finite Coxeter group with Coxeter arrange-
ment A and base region B. Then the map w ,→ wB is an isomorphism from
the weak order on W to the poset of regions Pos(A, B).

Example 10-3.2. Theorem 10-3.1 allows us to continue Example 10-2.20 by
showing the weak order on each Coxeter group of rank 3. These are shown in
Figures 10-3.1 and 10-3.2. One can also construct these weak orders directly
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A1 ×A1 ×A1 B2 ×A1 A3

Figure 10-3.1: The weak order on some rank-3 Coxeter groups

using the combinatorics of reduced words, but that will be easier once we
prove Theorem 10-4.1. (See Exercise 10.22.)

We now prepare to prove Theorem 10-3.1. Earlier, we defined T to be
the set of reflections in the reflection group W . We now show that T is
{wsw−1 | w ∈W, s ∈ S}.

Proposition 10-3.3. An element of W is a reflection if and only if it is
conjugate to an element of S.

Proof. If t = wsw−1 for some s ∈ S and w ∈ W , then t is a reflection with
Ht = wHs, as verified in Exercise 10.1. Conversely, suppose t is a reflection
in W . Find two regions Q and R of A sharing a facet defined by Ht. Then
Q = wB for some w ∈W . The region w−1R is adjacent to B, and thus it is
sB for some s ∈ S. Therefore R = wsB. But also R = tQ = twB, so Theorem
10-2.5 implies that ws = tw, so that t = wsw−1 .

A reflection t ∈ T is an inversion 5 of an element w ∈W if ℓ(tw) < ℓ(w).
Write inv(w) for the set of inversions of w. Given a word a1 · · · ak, each index
i ∈ {1, . . . , l} defines a left reflection ti given by the palindrome a1 · · · ai · · · a1 .
(Since ti is conjugate to ai ∈ S, it is a reflection by Proposition 10-3.3.) Write
T (a1 · · · ak) for the set {ti | i = 1 . . . k} of left reflections of a1 · · · ak. The
significance of left reflections derives from the following observation: Writing
Ri = a1 · · · aiB for each i from 0 to k, the left reflection ti = a1 · · · ai · · · a1 is
the reflection taking Ri−1 to Ri. Equivalently, the reflecting hyperplane for ti
defines the common facet of Ri−1 and Ri. The observation, which becomes
clear upon glancing back at the proof of Proposition 10-3.3, leads to the proof
of the following proposition.

5These might be called left inversions. Just as there is a left weak order, there are also
right inversions.
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B3 H3

Figure 10-3.2: The weak order on some other rank-3 Coxeter groups

Proposition 10-3.4. Let a1 · · · ak be a word for w. Then a1 · · · ak is reduced if
and only if it has k distinct left reflections, in which case inv(w) = T (a1 · · · ak).

Proof. Suppose first that for some i and j with 1 ≤ i < j ≤ n, the left
reflections ti and tj coincide. Then

w = titjw = (a1 · · · ai · · · a1 )(a1 · · · aj · · · a1 )(a1 · · · ak).

By repeatedly deleting pairs of coinciding adjacent letters, we can transform
this expression for w into a word for w with k − 2 letters, namely the word
obtained from a1 · · · ak by deleting ai and aj . We conclude that a1 · · · ak is
not reduced. Thus if a1 · · · ak is reduced then it has k distinct left reflections.

On the other hand, suppose that the word a1 · · · ak has k distinct left
reflections t1 , . . . , tk. Write Ri = a1 · · · aiB for each i from 0 to k. Then there
are k distinct hyperplanes Hti , each separating Ri−1 from Ri. Moving from
B = R0 to R1 and so on to wB = Rk, we cross each of these hyperplanes



10-3. The weak order and the poset of regions 511

exactly once, and cross no other hyperplanes A. Thus {Ht | t ∈ T (a1 · · · ak)}
is the separating set of wB. If a1 · · · ak is not reduced, then there is a strictly
shorter word a′1 · · · a′m for w. Writing R′

i = a′1 · · · a′iB for each i from 0 to m,
we see that as we move from B = R′

0 to wB = R′
m, we cross only m < k

hyperplanes in A. This contradicts what we just established, that S(wB)
contains k distinct hyperplanes, so we conclude that a1 · · · ak is reduced.

For each ti = a1 · · · ai · · · a1 ∈ T (a1 · · · ak), we have

tiw = (a1 · · · ai · · · a1 )(a1 · · · ak).

Thus a word for tiw is obtained by deleting the letter ai from a1 · · · ak. Since
ℓ(w) = k, we conclude that ℓ(tiw) < ℓ(w), so that ti ∈ inv(w). On the other
hand, suppose t ∈ inv(w). Since wB and twB are on opposite sides ofHt, either
Ht ∈ S(wB) or Ht ∈ S(twB). If Ht ∈ S(twB), then write a reduced word
a′1 · · · a′m for tw. As we argued above, a′1 · · · a′m has m distinct reflections, so as
we also argued above, {Hu | u ∈ T (a′1 · · · a′m)} is the separating set of twB. In
particular, t equals some t′i = a′1 · · · a′i · · · a′1 ∈ T (a′1 · · · a′m). But then, arguing
as in the beginning of this paragraph, we conclude that ℓ(ttw) < ℓ(tw), or in
other words ℓ(tw) > ℓ(w), contradicting the supposition that t is an inversion
of w. We conclude that Ht ∈ S(wB). The latter equals {Ht | t ∈ T (a1 · · · ak)},
so t ∈ T (a1 · · · ak).

The proof of Proposition 10-3.4 also established the following statement.

Proposition 10-3.5. If w ∈W , then S(wB) = {Ht | t ∈ inv(w)}.

Proposition 10-3.5 enables us to prove Theorem 10-3.1 and a useful corollary.

Proof of Theorem 10-3.1. The map w ,→ wB is a bijection by Proposition
10-2.4. The cover relations in Pos(A, B) are Q ≺ R if and only if Q and R are
adjacent and |S(R)| > |S(Q)|. The cover relations in the weak order on W
are w ≺ ws for w ∈ W and s ∈ S such that ℓ(ws) > ℓ(w). We may as well
assume A is essential, so that it is simplicial by Theorem 10-2.1. Thus there
are n regions adjacent to a given region Q, and there are n elements ws for
every element w ∈W . Lemma 10-2.12 implies that the ordered pairs (w,ws)
of elements of W are in bijection with the ordered pairs of adjacent regions
of A. Proposition 10-3.5 implies in particular that the conditions ℓ(ws) > ℓ(w)
and |S(wsB)| > |S(wB)| are equivalent for any w ∈W and s ∈ S.

Corollary 10-3.6. Suppose W is a finite Coxeter group and let v and w be
elements of W . Then v ≤ w in the weak order if and only if inv(v) ⊆ inv(w).

Proof. By Theorem 10-3.1, v ≤ w if and only if S(vB) ⊆ S(wB). By Proposi-
tion 10-3.5, S(vB) = {Ht | t ∈ inv(v)} and S(wB) = {Ht | t ∈ inv(w)}.
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10-3.2 Properties of the weak order

Theorem 10-3.1 let us establish some key lattice-theoretic properties of the
weak order.

Theorem 10-3.7. Let W be a finite Coxeter group. The weak order on W is
a semidistributive, congruence uniform, polygonal lattice.

Proof. All of the assertions about the weak order on W are immediate from
Theorems 10-2.1 and 10-3.1, Proposition 9-3.3 and Theorems 9-3.8, and 9-6.10,
except for the assertion that the weak order is congruence uniform. To obtain
that assertion, by Corollary 9-7.22, we must verify that the shard digraph
of (A, B) is acyclic. The key point will be Proposition 10-2.2, which says in
particular that any reflection in W takes regions of A to regions of A.

For any shard arrow Σ1 → Σ2 , Definition 9-7.16 says that the hyperplane
HΣ1 cuts the hyperplane HΣ2 in the sense of Definition 9-7.2. Thus to show
that the shard digraph is acyclic, it suffices to show that the cutting relation is
acyclic. To do this, we recall from Definition 9-4.9 the definition of the depth
of hyperplanes in A and will use the fact that A is a Coxeter arrangement to
show that depth(H1 ) < depth(H) whenever H1 cuts H.

Suppose H1 cuts H and let A′ be the rank-two subarrangement containing
H1 and H, so that H1 is basic in A′ and H is not. Let H2 be the other
basic hyperplane in A′. Choose any region R with |S(R)| = depth(H) and
H ∈ S(R). Let B = R0 ≺ R1 ≺ · · · ≺ Rdepth(H) = R be any maximal chain in
[B,R]. Since H1 and H2 are basic in A′ and H is not, and since H ∈ S(R),
Lemma 9-1.24 implies that at least one of the hyperplanesH1 andH2 is in S(R).
Thus there exists j with 1 ≤ j < depth(H) such that Rj−1 and Rj share a facet
defined by H1 or H2 . (We know that j < depth(H) because Rdepth(H)−1 and
Rdepth(H) share a facet defined by H .) If they share a facet defined by H1 , then
Rj is a region with H1 ∈ S(Rj), so depth(H1 ) ≤ |S(Rj)| = j < depth(H).

If Rj−1 and Rj share a facet defined by H2 , then let t be the reflection
whose fixed hyperplane is H2 , define Q = tR, and define Qi = tRi for
i = 0, . . . , depth(H). By Proposition 10-2.2, each Qi is a region. Then
Qj = Rj−1 , so

B = R0 , . . . , Rj−1 , Qj+1 , . . . , Qdepth(H) = Q

is a sequence of adjacent regions of A. Now H2 ̸∈ S(Q). If also H1 ̸∈ S(Q),
then Q is contained in B′, the unique region of A′ containing B. But in this
case R = tQ is in the A′-region separated from B′ by H2 , and in particular
S(R)∩A′ = {H2}. This contradicts the fact that H ∈ S(R), and we conclude
that H1 ∈ S(Q). Since R0 , . . . , Rj−1 , Qj+1 , . . . , Qdepth(H) is a sequence of
adjacent regions, and since separating sets of adjacent regions differ by exactly
one hyperplane, we have |S(Q)| ≤ depth(H)−1, so depth(H1 ) ≤ depth(H)−1.

In either case, we have seen that depth(H1 ) < depth(H), and we conclude
that the shard digraph is acyclic.
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We can also describe canonical join representations in the weak order
explicitly. Since the weak order on W is semidistributive, every element has a
canonical join representation, and we can use the characterization of canonical
join representations developed in Section 9-7.2.

Definition 10-3.8. If v ≺ w in the weak order on W , then Lemma 10-2.12
says that the associated regions vB and wB are adjacent, sharing a facet
defined by a hyperplane H in the Coxeter arrangement A. This hyperplane is
Ht for some reflection t in W . The reflection t is called a cover reflection of w.
The reflection t maps wB to vB, so twB = vB and thus tw = v by Theorem
10-2.5. But also v = ws for some s ∈ S, so tw = ws and thus t = wsw−1 .
Conversely, if ℓ(ws) < ℓ(w) for some s ∈ S, then the element ws is covered
by w and furthermore ws = (wsw−1 )w. Writing cov(w) for the set of cover
reflections of w, we see that

cov(w) = {wsw−1 | s ∈ S, ℓ(ws) < ℓ(w)} = {t ∈ T | ℓ(tw) = ℓ(w)− 1}.

The following is a combination of Theorem 9-7.11 and Lemma 9-7.12,
rewritten in the language of Coxeter groups. It follows immediately from those
two results together with Theorem 10-3.1 and Proposition 10-3.5.

Theorem 10-3.9. Suppose W is a finite Coxeter group and w ∈W . For each
t ∈ cov(w), there is a unique minimal element jt in {v | v ≤ w, t ∈ inv(v)}.
The canonical join representation of w is w =

∨
{jt | t ∈ cov(w)}.

We emphasize also that Theorems 9-7.17, 9-7.18, and 9-7.19, which describe
congruences in terms of shards, apply to Coxeter groups by Theorems 10-2.1
and 10-2.10 and Proposition 9-3.3. We will not restate these results separately
for Coxeter groups.

The key properties of the weak order are inherited by lattice quotients.
Specifically, the following results holds as a corollary of Theorem 10-3.7. (For
the congruence uniformity, one can use the fact that congruence uniformity
of finite lattices is inherited by quotients or argue using Theorem 9-8.1 and
Corollary 9-8.20 and the acyclicity established in the proof of Theorem 10-3.7.)

Corollary 10-3.10. Let W be a finite Coxeter group. Any lattice quotient of
the weak order on W is semidistributive, congruence uniform, and polygonal.

10-3.3 Combinatorial consequences

The ideas in the proof of Proposition 10-3.4 are sufficient to prove the following
properties of finite Coxeter groups (Propositions 10-3.11 through 10-3.15).
These hold more generally for not-necessarily-finite Coxeter groups, although
our treatment here can only establish the finite case. We leave the few
remaining details to Exercises 10.9, 10.10, 10.11, 10.12 and 10.13. The first
two of these properties have been given names in the literature.
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Proposition 10-3.11 (The Deletion Property). Suppose W is a finite Coxeter
group and let a1 · · · ak be a non-reduced word for some w ∈ W . Then there
exist two distinct indices i and j in {1,. . . ,k} such that, when ai and aj are
both deleted from a1 · · · ak, the result is another word for w.

Proposition 10-3.12 (The Exchange Property). Suppose W is a finite Cox-
eter group with defining generators S and let a1 · · · ak be a reduced word for
some w ∈W . If ℓ(ws) < ℓ(w) for some s ∈ S, then a reduced word for ws can
be obtained by deleting one letter from a1 · · · ak.

Proposition 10-3.13. Let W be a finite Coxeter group and let w ∈W . Then
ℓ(w) = | inv(w)|.

Proposition 10-3.14. Let W be a finite Coxeter group with defining genera-
tors S, let w ∈W , and let s ∈ S. Then ℓ(ws) ̸= ℓ(w).

Since the weak order on a finite Coxeter group W is a finite lattice, it has
a unique maximal element, traditionally called w0 . In light of the following
proposition, w0 is usually called the longest element of W . Some additional
properties of w0 are gathered in Exercises 10.14–10.18.

Proposition 10-3.15. Suppose W is a finite Coxeter element. The maximal
element w0 of the weak order on W has length ℓ(w0 ) = |T |, the number of
reflections in W . Every other element of W has strictly shorter length.

10-3.4 Root systems and convexity

Since the weak order on a finite Coxeter group is isomorphic to a poset of
regions, the convexity results of Section 9-4 apply. These results are most
naturally explained in the context of root systems.

Given a finite reflection group W with Coxeter arrangement A, a root
system Φ associated to W is a collection of vectors6 consisting of exactly two
distinct (nonzero) normal vectors to each hyperplane in A, such that the action
of W permutes Φ. (That is, WΦ = Φ.) We already know that W permutes
A, so the additional requirement that W permutes Φ is purely a question of
choosing the correct scaling of the normal vectors. Since in particular, tΦ = Φ
for each reflection t in W , the two normal vectors to each hyperplane are of
the form ± β for some β.

It is easy to construct a root system Φ for W by taking the two unit normal
vectors to each hyperplane. More generally, start with Φ empty. Choose
some H ∈ A and any nonzero normal vector β to H, and take the orbit of β
under W . Since the action of W preserves the (Euclidean) length of vectors,
the orbit contains either two or zero normal vectors to each hyperplane in A.
If some hyperplane H ′ in A has no normal vectors in the orbit, choose a

6To conform to the tradition of naming roots by Greek letters, we break with our
convention of naming vectors by bold roman letters.
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Figure 10-3.3: Root systems of types A3 , B3 , and H3

nonzero normal vector β′ to H ′ and take the union of the orbits of β and β′.
Keep adjoining additional orbits until there are two normal vectors to every
hyperplane in A. (In practice, only one or two orbits are necessary when W is
irreducible, but that is less obvious. It can be seen by considering the cases in
Theorem 10-2.19.)

Given a choice of base region B, the positive roots Φ+ are the roots β ∈ Φ
such that ⟨b,β⟩ > 0 for any vector b in the interior of B. It is immediate
that each root is either positive or is −β for some positive root, so that
Φ = Φ+ ∪ (−Φ+). The map taking a positive root to its normal hyperplane is
a bijection from Φ+ to A. But A is also in bijection with the reflections in W ,
and we write βt for the positive root associated to a reflection t. Of special
importance are the simple roots, which are the positive roots associated to the
reflections S. (The associated hyperplanes contain the facets of B.) We write
αs for the simple root associated to s ∈ S.

Explicit constructions of root systems for all of the irreducible finite Coxeter
groups are found in [241, Section 2.10, 2.13]. Here, we give some low-rank
examples and describe root systems for Coxeter groups of types An, Bn,
and Dn.

Example 10-3.16. A root system for a Coxeter group of rank 1 (that is, of
type A1 ) consists of two opposite nonzero vectors.

Example 10-3.17. A root system for a Coxeter group of rank two (type
I2 (m) for m ≥ 2) consists of the vertices of a regular 2m-gon centered at the
origin. (Alternately, and more in keeping with the next few examples, the root
system can be taken to be the midpoints of edges of a regular 2m-gon.)

Example 10-3.18. Root systems for the irreducible rank-three Coxeter groups
are shown in Figure 10-3.3. A root system of type A3 can be obtained as the
set of midpoints of edges of a cube centered at the origin. Adding in also the
centers of the square faces, we obtain a root system of type B3 . For type H3 ,
we take the midpoints of edges of a dodecahedron centered at the origin.
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Example 10-3.19. The standard choice of root system for the Coxeter group
of type An−1 is {ei − ej | i ≠ j} ⊆ Rn, where the ei are the standard unit
basis vectors. This root system is contained in the subspace of Rn consisting
of vectors whose coordinates sum to zero, and thus the corresponding Coxeter
arrangement is not essential.

Example 10-3.20. A standard choice of root system for the Coxeter group of
type Bn is {± ei ± ej | 1 ≤ i < j ≤ n} ∪ {± ei | 1 ≤ i ≤ n} ⊆ Rn, generalizing
the B3 root system in Example 10-3.18. Another standard choice replaces the
roots ± ei by ± 2ei. The latter root system is said to be of type Cn, but both
root systems are associated to the same Coxeter group of type Bn.

Example 10-3.21. A standard choice of root system for the Coxeter group of
type Dn is {± ei ± ej | 1 ≤ i < j ≤ n} ⊆ Rn, generalizing the A3 root system
in Example 10-3.18. (A Coxeter group of type D3 is excluded from the list in
Figure 10-2.1 precisely because it would coincide with A3 .)

Inversion sets of elements can be characterized in terms of roots. We leave
the proof of the following proposition to Exercise 10.19.

Proposition 10-3.22. Suppose W is a finite Coxeter group and suppose Φ
is a root system for W . Each w ∈W has inv(w) = {t ∈ T | wβt ∈ −Φ+}.

The positive roots can serve as the vectors nH that appear in Definition
9-4.1. We restate Definitions 9-4.1 and 9-4.4 for root systems.

Definition 10-3.23. A set Ψ ⊆ Φ+ of positive roots is convex if Ψ equals the
intersection of Φ+ with the nonnegative real span of Ψ. The set Ψ is biconvex
if both Ψ and its complement Φ+ \Ψ are convex. The set Ψ is rank-two convex
if for every 2-dimensional linear subspace X of Rn, the set Ψ ∩X is convex in
Φ+ ∩X. The set Ψ is rank-two biconvex if both Ψ and Φ+ \Ψ are rank-two
convex.

The closure operator on positive roots takes a set Ψ ⊆ Φ+ to Ψ, defined
to be the intersection of all convex sets containing Ψ. The rank-two closure
operator takes Ψ ⊆ Φ+ to

2

Ψ
2

, defined to be the intersection of all rank-two
convex sets containing Ψ.

Exercise 9.29, Theorems 10-2.1 and 10-2.10, and Proposition 10-3.5 imply
that Theorems 9-4.5 and 9-4.8 can be restated as follows for finite Coxeter
groups.

Theorem 10-3.24. Suppose W is a finite Coxeter group and let Ψ be a subset
of the positive roots Φ+. Then the following are equivalent:

(i) Ψ is {βt | t ∈ inv(w)} for some element w of W .

(ii) Ψ is biconvex in Φ+.
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(iii) Ψ is rank-two biconvex in Φ+.

Theorem 10-3.25. Suppose W is a finite Coxeter group and let v and w be
elements of W . Then

(i) v ∨ w is the unique element of W with inversion set inv(v) ∪ inv(w).

(ii) v ∨ w is the unique element of W with inversion set
2

inv(v) ∪ inv(w)
2

.

10-4. The Word Problem for finite Coxeter groups

The Word Problem for a finite Coxeter group is to give an algorithm that
takes two words in the generators S and determines if the two words represent
the same element of the group. This is equivalent to the problem of giving
an algorithm that decides if a given word represents the identity element. We
present two solutions to the Word Problem for finite Coxeter groups. One is a
combinatorial algorithm and the other is geometric. However, the proof of the
combinatorial algorithm relies heavily on the geometric setup that we have
already developed. Both solutions can be extended to infinite Coxeter groups,
with the same proofs, once the geometric setup has been developed without
restricting to finite type.

The combinatorial solution is due to Tits [435]. The proof given here is
in the same spirit as the proof in [435], but restricted to the finite case. The
proof is also closely related to the proof of Theorems 9-3.15 and 10-2.9.

Suppose a1 · · · ak is a word in the defining generators S of a Coxeter
groupW . If ai = ai+1 for some i, then the word a1 · · · ai−1ai+2 · · · an represents
the same element of W , since in this case aiai+1 = 1. The operation of passing
from a1 · · · ak to a1 · · · ai−1ai+2 · · · an, when ai = ai+1 is called a nil move.
Similarly, if some subsequence ai · · · aj of a1 · · · an is an alternating sequence
stst · · · with exactly m(s, t) letters, then we can replace the sequence with the
alternating sequence tsts · · · with m(s, t) letters and obtain a word for the
same element. This is because the relation (st)m(s,t) = 1 is equivalent to the
relation that the two alternating sequences stst · · · and tsts · · · with m(s, t)
letters are equal in W . The operation of replacing one of these alternating
sequences with the other is called a braid move. The following is Tits’ solution
to the Word Problem for Coxeter groups, stated in the case of finite W .

Theorem 10-4.1. Suppose W is a finite Coxeter group with defining genera-
tors S. Then

(i) Any word in the generators S can be transformed to a reduced word for
the same element by a sequence of changes consisting of braid moves and
nil moves.

(ii) Any two reduced words for the same element are related by a sequence of
braid moves.
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Since S is finite by hypothesis, the set of words of a given length using
the letters S is also finite. Thus, given a word a1 · · · ak, there are only finitely
many other words that can be obtained by sequences of braid moves. Thus
it is possible to check whether some word obtained from a1 · · · ak by braid
moves admits a nil move. If so, then we perform the nil move and continue. If
not, then a1 · · · ak is reduced. Since nil moves always decrease the number of
letters in the word, the process eventually terminates with a reduced word.
To solve the Word Problem using Theorem 10-4.1, one uses braid moves and
nil moves to reduce the two given words. Since all reduced words for the same
element are related by a sequence of braid moves, one can then tell whether
the two given words represent the same element.

We continue to represent W as a reflection group with Coxeter arrangement
A and base region B as in Theorem 10-2.10. The key to proving Theorem
10-4.1 is to use Theorem 10-3.1 to realize reduced words as maximal chains in
lower intervals in Pos(A, B) and appeal to Lemma 9-6.12. Let a1 , . . . , ak be
a reduced word in the generators S representing an element w, and let R be
the region wB. As in the proof of Theorem 10-2.9, define Ri = (a1 · · · ai)B
for each i from 1 to k, so that B = R0 ≺ R1 ≺ · · · ≺ Rk = R is a maximal
chain in the interval [B,R]. The proof of the following easy lemma is left as
Exercise 10.21.

Lemma 10-4.2. Under the correspondence given above between reduced words
for w and maximal chains in [B,R], rank-two moves on maximal chains
correspond to braid moves on reduced words.

Proof of Theorem 10-4.1. Let a1 , . . . , ak and a′1 · · · a′k be reduced words in the
generators S representing the same element w and let B = R0 ≺ R1 ≺ · · · ≺
Rk = R and B = Q0 ≺ Q1 ≺ · · · ≺ Qk = R be the corresponding maximal
chains. Lemma 9-6.12 says that these two maximal chains are related by a
sequence of rank-two moves. Lemma 10-4.2 thus implies that a1 , . . . , ak and
a′1 · · · a′k are related by a sequence of braid moves.

Now suppose a1 · · · ak is a non-reduced word. Then there exists a largest
index j with 1 ≤ j < k such that a1 · · · aj is reduced. If w is the element
represented by a1 · · · aj , then ℓ(waj+1 ) = j − 1. (The length is less than
j + 1 because a1 · · · aj+1 is not reduced, but then the length is less than
j by Proposition 10-3.14. If the length is less than j − 1, then a1 · · · aj is
not a reduced word for w.) Let a′1 · · · a′j−1 be any reduced word for waj+1 ,
so that a′1 · · · a′j−1aj+1 is a reduced word for w. The second assertion of
the theorem says that a1 · · · aj can be transformed to a′1 · · · a′j−1aj+1 by a
sequence of braid moves. The same braid moves transform a1 · · · ak into
a′1 · · · a′j−1aj+1aj+1 · · · ak, which is transformed by a nil move to the word
a′1 · · · a′j−1aj+2 · · · ak. We repeat this procedure until the resulting word is
reduced, and we have established the first assertion.

We now give the second, more geometric solution to the Word Problem.
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The following theorem holds for all Coxeter groups, although we prove it only
in the finite case. The theorem uses notation introduced in Proposition 10-2.6.

Theorem 10-4.3. Let W be a finite Coxeter group with defining genera-
tors S = {s1 , . . . , sn}. Let v1 , . . . ,vn be a basis for an n-dimensional real vec-
tor space. Define a symmetric bilinear form f with f(vi,vi) = 1 for all i and

f(vi,vj) = − cos
(

π
m(si,sj)

)
for all i ̸= j. Define ri to be rvi,f , the reflection

orthogonal to vi with respect to f , and let r(si) stand for ri. Let v be a vector
in Rn with f(v,vi) > 0 for all i. Two words a1 · · · aj and a′1 · · · a′k in S stand
for the same element of W if and only if r(a1 ) · · · r(aj)v = r(a′1 ) · · · r(a′k)v.

Proof. Let W ′ be the group generated by the ri. In the proof of Theorem
10-2.10, we showed that W is isomorphic to W ′, that the isomorphism restricts
to a map si ,→ r(si), and that there is some Euclidean bilinear form with
respect to which W ′ is a finite reflection group. We take A to be the Coxeter
arrangement associated to W ′. The set B = {x ∈ V | f(x,vi) ≥ 0 ∀i} is a
region of A. Theorem 10-2.5 says that the map w ,→ wB is a bijection from
W to the regions of A. Since v is in the interior of B and the interiors of
regions are disjoint by construction, two words in S define the same element if
and only if the corresponding words in the ri map v to the same vector.

Theorem 10-4.3 provides an algorithm that is computationally more efficient
than using braid moves and nil moves. However, there are computational

issues arising from the fact that − cos
(

π
m(si,sj)

)
need not be an integer in

general. For most finite Coxeter groups (called crystallographic finite Coxeter
groups), the definition of each ri can be modified so that ri is given by an
integer matrix. The only noncrystallographic finite Coxeter groups are H3 ,
H4 , and I2 (m) with m ∈ {5, 7, 8, . . .}. (See Figure 10-2.1.) For I2 (m), the
word problem is easy, and there are reasonable ways to deal with H3 and H4

(including the “Non-Crystallographic Kludge” of [426, Section 7] or working
symbolically over the field extension Q[

√
5]).

10-5. Coxeter groups of type A

For a specific Coxeter group W , one can obtain a combinatorial model of
W by making a good choice of the vectors vi and v in Theorem 10-4.3. (In
particular, it is helpful to choose the vi such that the bilinear form defined in
the theorem is the usual Euclidean inner product.) In this section, we describe
such a model in detail for Coxeter groups of type An−1 , and also describe
many lattice-theoretic properties of the weak order in terms of the model. A
similar construction yields combinatorial models for the finite Coxeter groups
of types Bn and Dn as well. For details (without the lattice theory), see [69,
Chapter 8].
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Suppose W is of type An−1 and suppose we label the diagram for W
(see Figure 10-2.1) linearly s1 through sn−1 . Define vi to be ei+1 − ei for
i = 1, . . . , n− 1, where the ei are the standard unit basis vectors. (This is a
set of simple roots for the root system described in Example 10-3.19.) These
vectors are a basis for an (n− 1)-dimensional subspace of Rn. The symmetric
bilinear form defined in Theorem 10-4.3 is the restriction of the usual Euclidean
form on Rn to this subspace. Setting v to be the vector (1, 2, . . . , n) ∈ Rn,
we have satisfied the hypotheses of Theorem 10-4.3. The action of r(si) on a
vector is to interchange the entries in positions i and i+ 1. Thus the action of
W on v produces all vectors whose entries are a permutation of the entries
of v, and Theorem 10-4.3 implies that these permutations are in bijection
with the elements of W . The associated Coxeter arrangement consists of all
hyperplanes normal to vectors ej − ei for all 1 ≤ i < j ≤ n. For the rest of
the section, we fix this representation of W as the reflection group generated
by the reflections si orthogonal to ei+1 − ei for i = 1, . . . , n− 1.

Let Sn be the group of permutations of {1, . . . , n}. This is the group
of bijections from {1, . . . , n} to itself, with product given by composition.
We will write a permutation π in one-line notation as π1π2 · · ·πn, meaning
that π maps 1 to π1 , maps 2 to π2 , and so forth. The inversion set of π
is inv(π) = {(πi,πj) | i < j,πi > πj}. We follow the usual convention of
composing permutations from right to left, so that, for example the product
213 · 132 is 231 (not 312). To fit this convention into the geometric description
of the paragraph above, we identify each element w of W with the permutation
π such that w(π1 , . . . ,πn) = v. Thus (π1 , . . . ,πn) = w−1v and wv is the
vector with 1 in position π1 , with 2 in position π2 , etc.

Under this identification of W with Sn, the generator si corresponds to
the transposition (i i+ 1). Each transposition (i j) in Sn is identified with
the reflection tij orthogonal to ej − ei. This is a reflection in W , and these
are all of the reflections in W . The following proposition, which is verified in
Exercise 10.24, shows that inversion sets of permutations (as defined above)
correspond to inversion sets, in the sense of Coxeter groups.

Proposition 10-5.1. If π is a permutation in Sn, then the inversion set of π
(as an element of W ) is the set of all transpositions (πi πj) such that (πi,πj)
in the set inv(π) defined above.

Example 10-5.2. Figure 10-5.1 shows a Coxeter arrangement for a Coxeter
group W of type A3 with the regions labeled with the permutations in S4 .
Figure 10-5.2 shows the weak order on W written in terms of permutations.
(Compare Figures 10-2.2 and 10-3.1.)

It will be useful to have a few facts about multiplying permutations by
transpositions, proved as Exercise 10.25.

Proposition 10-5.3. Suppose π = π1 · · ·πn ∈ Sn and si = (i i+ 1) ∈ Sn.
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Figure 10-5.1: Regions labeled by permutations in S4

(i) siπ is obtained from π by swapping the values i and i+1 in the sequence
π1 · · ·πn.

(ii) (i j)π is obtained from π by swapping the values i and j in π1 · · ·πn.

(iii) πsi is obtained from π by swapping the entries in positions i and i+ 1
(the values πi and πi+1 ) in the sequence π1 · · ·πn.

(iv) π(i j) is obtained from π by swapping the entries in positions i and j
(the values πi and πj) in the sequence π1 · · ·πn.

For example, s2 (35124) = 25134 = 35124 · (1 4) and (35124)s2 = 31524 =
(1 5) · 35124.
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Figure 10-5.2: The weak order on permutations in S4

Theorem 10-3.1 implies that the weak order on W is isomorphic to
Pos(A, B), where A is the set of hyperplanes orthogonal to vectors of the form
ej − ei for 1 ≤ i < j ≤ n and B is the region {x ∈ Rn | ⟨x,vi⟩ ≥ 0 ∀ i}. The
following proposition is verified as Exercise 10.26.

Proposition 10-5.4. The cover relations in the weak order on W correspond
to the relations σ ≺ π such that, for some i, the permutations σ and π differ
only in positions i and i+ 1, with πi > πi+1 .

A pair (πi,πi+1 ) such that πi > πi+1 is called a descent of π. Propositions
10-5.3 and 10-5.4 imply that the cover reflections of π are the transpositions
(πi πi+1 ) such that (πi,πi+1 ) are the descents of π. The following is an
immediate consequence of Proposition 10-5.4.

Proposition 10-5.5. A permutation π is join-irreducible in the weak order
if and only if π has a unique descent.

Given 1 ≤ a < b ≤ n and a set R ⊆ {a + 1, . . . , b − 1}, let Rc be
{a+ 1, . . . , b− 1} \R. We write τ(b, a,R) for the permutation in Sn given by
1, . . . , a − 1, then the values in Rc in increasing order, then b, then a, then
the values in R in increasing order, then the values b+ 1, . . . , n. Any of the
sequences a+1, . . . , b−1 and/or 1, . . . , a−1 and/or b+1, . . . , n may be empty.
The construction of τ(b, a,R) depends on having specified n. For example, in
S9 , the permutation τ(8, 3, {5, 6}) is 124783569. Proposition 10-5.5 implies
that τ(b, a,R) is join-irreducible (with descent (b, a)) and that every join-irre-
ducible permutation is of this form. As a fairly easy consequence of Theorem
10-3.9, we have the following theorem. The details are left to Exercise 10.27.

Theorem 10-5.6. The canonical join representation of a permutation π ∈ Sn

is
π =

∨

πi>πi+1

τ(πi,πi+1 , Ri),
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where Ri is the set {πj | i+ 1 < j and πi+1 < πj < πi}.

Example 10-5.7. Let π = 395284176 ∈ S9 . Then Theorem 10-5.6 says that

π = 123495678 ∨ 135246789 ∨ 12358467 ∨ 234156789 ∨ 123457689

is the canonical join representation of π. This can also be checked directly
from Theorem 10-3.9. One first verifies that the cover reflections of π are (9 5),
(5 2), (8 4), (4 1), and (7 6). One then checks that the smallest element below
π having (9 5) as an inversion is 123495678, that the smallest element below π
having (5 2) as an inversion is 135246789, etc.

Proposition 9-7.8 says that the join-irreducible elements are in bijection
with the shards of A with respect to B. Exercises 10.30 and 10.31 are to
describe the cutting relation on hyperplanes and prove the following fact.

Proposition 10-5.8. The shard Σ(b, a,R) associated to the join-irreducible
permutation τ(b, a,R) is

{x ∈ Rn | xa = xb and xa ≤ xi for all i ∈ R and xa ≥ xi for all i ∈ Rc}.

We can also describe the shard digraph (Definition 9-7.16), and thus the
forcing relation on join-irreducible elements.

Proposition 10-5.9. The shard Σ(b, a,R) arrows the shard Σ(b′, a′, R′) if
and only if a′ = a < b < b′ and R = {i ∈ R′ | i < b}, or a′ < a < b = b′

and R = {i ∈ R′ | a < i}. A join-irreducible element τ(b, a,R) forces
a join-irreducible element τ(b′, a′, R′) if and only if a′ ≤ a < b ≤ b′ and
R = {i ∈ R′ | a < i < b}.

Proof. For each a′ < b′, let H = (eb′ − ea′)⊥ . Exercise 10.30 says that a
hyperplane cuts H if and only if it is of the form (eb′ − ec)⊥ or (ec− ea′)⊥ for
some c with a′ < c < b′. Choose such a c and write H1 = (eb′−ec)⊥ and H2 =
(ec−ea′)⊥ . The shards in H correspond to the subsets R ⊆ {a′+1, . . . , b′−1}.
Choose such a subset R and write Σ for Σ(b′, a′, R). The set I = Σ ∩H1 ∩H2

consists of vectors x with xa′ = xc = xb′ , with xa′ ≤ xi for all i ∈ R, and
with xa′ ≥ xi for all i ∈ Rc. In particular, I is (n− 2)-dimensional. Setting
Σ1 = Σ(c, a′, R ∩ {a′ + 1, . . . , c− 1}) and Σ2 = Σ(b′, c, R ∩ {c+ 1, . . . , b′ − 1}),
we see that I equals Σ(b′, a′, R) ∩ Σ1 and Σ(b′, a′, R) ∩ Σ2 . Thus Σ1 and Σ2

both arrow Σ, and these are the only shards that arrow Σ and intersect Σ in
H1 ∩H2 . Letting c and R vary, we obtain the first assertion of the proposition.
Taking the transitive closure of the shard arrows, the second assertion follows
by Proposition 10-5.8.

Example 10-5.10. Figure 10-5.3 shows the forcing order on join-irreducible
permutations in S4 .
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3412 4123 2341 2413

3124 1342 2314 1423

2134 1324 1243

Figure 10-5.3: The forcing order on join-irreducible permutations in S4

The forcing order on join-irreducible permutations also has a useful combi-
natorial description in terms of certain “arcs.” Canonical join representations
then correspond to certain “noncrossing arc diagrams.” See in particular [376,
Corollary 3.5] and [376, Theorem 4.4].

Proposition 10-5.9 lets us describe quite precisely the lattice quotients of the
weak order on permutations. Given 1 ≤ a < b ≤ n and R ⊆ {a+ 1, . . . , b− 1},
take Rc = {a + 1, . . . , b − 1} \ R as before. Let π be a permutation. Say π
has a (b, a,R)-pattern if (πi,πi+1) is a descent of π with πi ≥ b and πi+1 ≤ a
such that all of the elements of Rc appear in π before the descent (πi,πi+1)
while all of the elements of R appear in π after (πi,πi+1). Say that π avoids
(b, a,R) if it has no (b, a,R)-patterns.

Theorem 10-5.11. Given a set {τ(bi, ai, Ri) | i ∈ I} of join-irreducible
permutations in Sn, let α be the smallest congruence on the weak order on
Sn contracting each of the given join-irreducible permutations. The quotient
of the weak order on Sn modulo α is isomorphic to the restriction of the weak
order to permutations that avoid (bi, ai, Ri), for every i ∈ I.

Proof. If π has a (bi, ai, Ri)-pattern involving the descent (πi,πi+1), then
Proposition 10-5.9 says that the join-irreducible permutation τ(πi,πi+1, R′

i)
with R′

i = {πj | j > i + 1, πi+1 < πj < πi} is forced by τ(bi, ai, Ri). Thus
Theorem 10-5.6 and Proposition 9-5.29 imply that π ̸∈ πα

↓ Sn. If, for every
i ∈ I, the permutation π has no (bi, ai, Ri)-pattern, then Proposition 10-5.9
and Theorem 10-5.6 imply that the canonical joinands of π are not contracted
by α. Proposition 9-5.29 then says that π ∈ πα

↓ Sn. Thus π ∈ πα
↓ Sn is exactly

the set of permutations described by the avoidance condition of the theorem.
Proposition 9-5.5 completes the proof.

10-6. Cambrian lattices and sortable elements

In this section, we define a family of congruences on the weak orders on finite
Coxeter groups called the Cambrian congruences. The quotient of the weak
order modulo a Cambrian congruence is called a Cambrian lattice. We also give
a combinatorial description of the bottom elements of Cambrian congruence
classes (the sortable elements). As we will see in Section 10-6.3, Cambrian
lattices and sortable elements are very closely related to cluster algebras of
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finite type and to Coxeter-Catalan combinatorics, particularly generalized
associahedra and noncrossing partitions.

10-6.1 Cambrian congruences

Let W be a Coxeter group with defining generators S. Exercise 10.32 is the
statement that the join of r and s in the weak order is the element with two
distinct reduced words rsrs · · · and srsr · · · , each of length m(r, s). (Compare
Figure 10-1.1.) The interval below r ∨ s is a polygon. More specifically, the
polygon has 2m(r, s) vertices, so the interval has 2m(r, s)− 4 side edges. On
one side, the side edges are r ≺ rs ≺ rsr ≺ · · · with the last cover relation
in the list relating an element of length m(r, s) − 2 to an element of length
m(r, s)− 1. On the other side, the side edges are s ≺ sr ≺ srs, etc. Each of
these side edges is of the form j∗ ≺ j where j is join-irreducible and j∗ is the
unique element covered by j. Taken together, these polygons contain the same
information as the Coxeter diagram of W (defined earlier in connection with
Theorem 10-2.19). That is, if the polygon [1, r∨s] is a square, then m(r, s) = 2,
so no edge exists between r and s in the Coxeter diagram. Similarly, hexagons
correspond to unlabeled edges, octagons correspond to edges labeled 4, etc.

An orientation of a graph is a directed graph obtained by replacing each
edge r, s of the graph by an arrow, either r → s or s→ r. There is a Cambrian
lattice for each oriented Coxeter diagram, or in other words each orientation
of the Coxeter diagram. The symbol c will represent an oriented Coxeter
diagram. (Later, we will also think of c as a particular element of W called a
Coxeter element. See Definition 10-6.11.) Given an orientation c, the opposite
orientation (reversing all arrows) is denoted c−1 .

Given an oriented Coxeter diagram c for a finite Coxeter group W , the
c-Cambrian congruence θc is the smallest congruence contracting all of the side
edges of the form s ≺ sr ≺ srs ≺ · · · for each directed edge r → s. (Here, as
above, the last cover relation in the list relates an element of length m(r, s)− 2
to an element of length m(r, s)− 1.) The c-Cambrian lattice is the quotient
of the weak order modulo the c-Cambrian congruence θc. The c-Cambrian
fan is the fan consisting of the θc-cones and their faces. (See Definition 9-1.9.)
Corollary 10-3.10 implies the following theorem.

Theorem 10-6.1. For any finite Coxeter group W and any orientation c
of the diagram of W , the c-Cambrian lattice (the quotient of the weak order
on W modulo the c-Cambrian congruence θc) is semidistributive, congruence
uniform, and polygonal.

While Theorem 10-6.1 asserts several strong properties of Cambrian lattices,
it gives little insight into the nature of Cambrian lattices. The goal of the
remainder of this section is to provide more insight, first by giving several
examples, and then by quoting several theorems on the combinatorics and
geometry of Cambrian congruences, lattices, and fans. References for the
quoted results are found in the Notes at the end of the chapter.
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Example 10-6.2. If W is of type A2 in the notation of Figure 10-2.1 (that is,
if S = {s1 , s2} and m(s1 , s2 ) = 3), then there are exactly two orientations of
the diagram of W . Figure 10-6.1 shows the Cambrian congruences, Cambrian
lattices, and Cambrian fans for W of type A2 .

Figure 10-6.1: The two Cambrian congruences in type A2 and their corre-
sponding Cambrian lattices and Cambrian fans

Example 10-6.3. Suppose W is of type A3 in the notation of Figure 10-2.1.
The weak order on W appears in Figure 10-3.1, and is shown again in Figure
10-5.2, written in terms of permutations. The Coxeter arrangement for W is
shown in Figures 10-2.2 and 10-5.1. There are four Cambrian congruences
on the weak order on W , shown in Figure 10-6.2. (Compare Example 9-6.6.)
Figure 10-6.3 shows the corresponding Cambrian lattices, and Figure 10-6.4
shows the corresponding Cambrian fans. In the Cambrian fan pictures, the
Cambrian cones are shown by the thicker black lines, and the decomposition
of Cambrian cones into regions is shown by the thinner gray lines. Figures
10-5.1 and 10-5.2 will be helpful in verifying these examples. Exercises 10.33
and 10.34 ask the reader to find the Cambrian congruences, lattices and fans
of type B3 and of type H3 .

Two of the Cambrian lattices in Figure 10-6.3 are isomorphic. The same two
are also isomorphic to their duals. The other two Cambrian lattices are dual to
each other. (This duality is not immediately obvious in the pictures, because
the pictures are drawn to highlight the relationship to Figure 10-6.2 rather
than to highlight the duality.) These isomorphisms and anti-isomorphisms are
examples of a general result.

♦ Theorem 10-6.4. An isomorphism of oriented Coxeter diagrams induces
an isomorphism of Cambrian lattices. An isomorphism of Cambrian lattices
restricts to an isomorphism of oriented Coxeter diagrams. The same is true
for anti-isomorphisms of Cambrian lattices and of oriented Coxeter diagrams.

Since the identity map on the diagram is an anti-isomorphism from the
orientation c to the opposite orientation c−1 , Theorem 10-6.4 implies that
the c-Cambrian lattice is anti-isomorphic to the c-Cambrian lattice. The
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Figure 10-6.2: The four Cambrian congruences in type A3

anti-isomorphism is related to the anti-automorphism w ,→ ww0 of the weak
order discussed in Exercise 10.15. Specifically:

♦ Theorem 10-6.5. Given a Coxeter group W and an orientation c of
the diagram for W , the c-Cambrian congruence θc and the c−1 -Cambrian
congruence θc−1 are related by the map w ,→ ww0 .

That is, if v and w are in W , then v ≡w (mod θc) if and only if vw0 ≡ww0

(mod θc−1). Since w ,→ ww0 corresponds to the antipodal map on regions
(Exercise 10.15), Theorem 10-6.5 immediately implies the following result.

♦ Theorem 10-6.6. Given a Coxeter group W and an orientation c of the
diagram for W , the c-Cambrian fan and the c−1 -Cambrian fan are related by
the antipodal map.

To see Theorem 10-6.6 in Figure 10-6.4, it it helpful to remember that each
circle in the figures is the projection of a great circle. Given two projected
circles in the plane, their two points of intersection are the projections of two
antipodal points in the sphere.
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Figure 10-6.3: The four Cambrian lattices in type A3

An examination of Figure 10-6.3 reveals that the Hasse diagrams of the
four Cambrian lattices of type A3 all define the same underlying graph. The
patient reader who carries out Exercises 10.33 and 10.34 will see that the same
is true for type B3 and and for type H3 . In general, the underlying graph
of the Hasse diagram of a Cambrian lattice depends only on the unoriented
diagram (that is, on the Coxeter group). Looking at examples in rank 3,
one also gets the impression of a 3-dimensional solid traced out by the Hasse
diagrams of Cambrian lattices. Indeed, there is a polytope called a generalized
associahedron for each Coxeter group W such that the following result holds.

♦ Theorem 10-6.7. Suppose W is a finite Coxeter group and suppose c is
any orientation of the Coxeter diagram for W . The Hasse diagram of the
c-Cambrian lattice is isomorphic, as a graph, to the graph of vertices and edges
of the (simple) generalized associahedron.

The generalized associahedron is defined in terms of a root system associated
to W (in the sense of Section 10-3.4). For more details, see the Notes to this
section. Theorem 10-6.7 is a consequence of Theorem 9-8.9 and the following
stronger theorem.
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Figure 10-6.4: The four Cambrian fans in type A3

♦ Theorem 10-6.8. Suppose W is a finite Coxeter group. The c-Cambrian
fan for any orientation c of the Coxeter diagram for W is isomorphic to the
normal fan of the (simple) generalized associahedron.

In fact, there is a polytope, combinatorially isomorphic to the generalized
associahedron, whose normal fan is the c-Cambrian fan. See the Notes for
details and references.

10-6.2 Cambrian lattices of type A

We now characterize Cambrian lattices of type A in terms of permutations,
continuing the notation of Section 10-5. In particular, W is a Coxeter group of
type An−1 and the defining generators S are s1 , . . . , sn−1 with m(si−1 , si) = 3
for all i = 2, . . . , n − 1. An oriented Coxeter diagram for W has a directed
edge si−1 → si or si−1 ← si for each i = 2, . . . , n− 1. We encode this choice
as a barring of the elements 2, . . . , n− 1. If si−1 → si, then i is lower-barred
and we write i . If si−1 ← si, then i is upper-barred and we write i . Fixing
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some barring, we say that a permutation π avoids the pattern 312 if there
exists no subsequence kij of the one-line notation for π such that i < j < k
(in the usual numerical order on integers) and such that j is lower-barred.
Similarly, π avoids the pattern 231 if there exists no subsequence jki of the
one-line notation for π such that i < j < k and such that j is upper-barred.

Theorem 10-6.9. Given a Coxeter group W of type An and an orientation c
of the diagram of W , encoded as a barring, the c-Cambrian lattice is isomorphic
to the subposet of the weak order on W induced by permutations avoiding the
patterns 312 and 231.

It should be emphasized that the avoidance condition in Theorem 10-6.9
depends on the choice of orientation c because the barring depends on c.

Proof. The c-Cambrian congruence is the smallest congruence contracting
the join-irreducible element sisi−1 whenever si−1 → si and contracting the
join-irreducible element si−1si whenever si → si−1 . These join-irreducible
elements are τ(i+1, i− 1, Ri), where Ri = {i} if i is lower-barred and Ri = ∅
if i is upper-barred. Theorem 10-5.11 completes the proof.

The avoidance conditions in Theorem 10-6.9 are conditions on the inversion
set of a permutation. For example, a permutation π ∈ Sn avoids 312 if
there exist no integers 1 ≤ i < j < k ≤ n with j lower-barred such that
both (k, i) and (k, j) are inversions of π but (j, i) is not an inversion of π.
These conditions are a special case of general conditions called c-alignment
characterizing Cambrian lattices of all finite types in terms of the geometry of
roots and certain local “orientations” of the root system. See the Notes for
references.

On the other hand, a special case of the avoidance conditions in type A
yields the Tamari lattices. A permutation π avoids the pattern 312 if there
exists no subsequence cab of the one-line notation for π such that a < b < c.
Similarly, π avoids the pattern 231 if there exists no subsequence bca of the
one-line notation for π such that a < b < c. The Tamari lattice can be realized
as the subposet (and in fact sublattice) of the weak order on permutations
induced by the permutations that avoid 312, or alternately as the subposet
induced by 231-avoiding permutations. The following is an immediate corollary
of Theorem 10-6.9.

Corollary 10-6.10. Let c be the orientation of the type-An−1 Coxeter diagram
with unique source on one end of the diagram and unique sink on the other
end. The c-Cambrian lattice is isomorphic to the Tamari lattice (denoted A(n)
in Section 7-2.2).

Since there are two orientations, opposite to each other, that satisfy the
hypotheses of Corollary 10-6.10, Theorem 10-6.4 and Corollary 10-6.10 combine
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to prove the well known self-duality of the Tamari lattice (cf. Proposition
7-4.14).

By analogy to Corollary 10-6.10, one can define a Cambrian lattice using
the linear orientation of the Bn diagram. There are two anti-isomorphic linear
orientations of the Bn diagram, so there are two reasonable (dual) candidates
for the name “type-Bn Tamari lattice.” These were defined as Cambrian
lattices in [368, Section 7], where they were also realized in terms of centrally-
symmetric triangulations of polygons. Independently, and at about the same
time, they were defined by Thomas in [433] in terms of centrally-symmetric
triangulations and in terms of bracket vectors, analogous to the bracket vectors
that realize the usual Tamari lattice. (See Definition 7-4.9.) One of the Tamari
lattices of type B3 is shown in Figure 10-6.5. The other is dual.

Figure 10-6.5: A Tamari lattice of type B3

10-6.3 Sortable elements

By Proposition 9-5.5, the Cambrian lattice is the subposet of the weak order
induced by the bottom elements of Cambrian congruence classes. These
elements turn out to have a pleasant and useful combinatorial description
in terms of the combinatorics of reduced words. These elements are called
sortable elements -or Coxeter-sortable element. Most of what can be proved
in general about Cambrian congruences/lattices/fans is proved using sortable
elements.

In this section, we define sortable elements and quote some difficult theorems
that link them to Cambrian lattices. We also discuss some of the tools and
methods that contribute to the study of sortable elements. The first step is
to encode orientations of the diagram of W by certain elements of W called
Coxeter elements.
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Definition 10-6.11. Suppose W is a Coxeter group with defining genera-
tors S = {s1 , . . . , sn} and |S| = n. There are n! ways to write a product
c = s1 · · · sn. Every choice is a reduced word for an element of W called a
Coxeter element. There are typically fewer than n! Coxeter elements of W ,
because different total orders on S can give rise to the same Coxeter element.
Specifically, we can interpret every acyclic orientation of the diagram of W as a
partial order on S by taking reflexive-transitive closure. Every linear extension
s1 , . . . , sn of this partial order is a reduced word for a Coxeter element, and
conversely, every total order s1 , . . . , sn arises in this way. (To see why, note
that the total order s1 , . . . , sn is a linear extension of the acyclic orientation
of the diagram induced by the total order s1 , . . . , sn.) Exercise 10.36 is to
verify that two total orders on S define the same Coxeter element if and only
if they induce the same orientation on the diagram. In this case, the two
total orders are related by a sequence of commutations of adjacent commuting
entries (braid moves replacing sisj by sjsi with m(si, sj) = 2). Thus Coxeter
elements in W are in bijection with acyclic orientations of the Coxeter diagram
of W . In what follows, some constructions will depend on a Coxeter element c
while other constructions will depend on a chosen reduced word for c.

To interpret an acyclic directed graph as a partial order, there is a choice
to be made. As one might expect when various authors make the same choice
independently, conventions vary in the literature. We follow [369, Section 1] in
taking the convention that an arrow r → s appears in the diagram if and only
if r precedes s in every reduced word for the corresponding Coxeter element c.

When W is a finite Coxeter group, we see from Theorem 10-2.19 that the
diagram of W is a forest (a union of trees). In this case, all orientations of the
diagram are acyclic, so Coxeter elements are in bijection with orientations of
the diagram. This justifies our reuse of the letter c to denote both a Coxeter
element and an orientation of the Coxeter diagram. As we proceed, we will
identify an orientation of the diagram with the corresponding Coxeter element.
Thus Cambrian congruences θc on the weak order on W are indexed by Coxeter
elements c of W .

Definition 10-6.12. Suppose W is a Coxeter group and suppose s1 · · · sn is
a reduced word for a Coxeter element c. Consider the half-infinite word

(s1 · · · sn)∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn|s1 · · · sn| · · ·

consisting of infinitely many copies of the word s1 · · · sn. The symbols “|” are
“dividers” which serve to mark the positions of the copies of s1 · · · sn. Now
suppose w ∈ W . Since every element of S appears infinitely many times
in (s1 · · · sn)∞, each reduced word for w appears infinitely many times as a
subword of (s1 · · · sn)∞. For each such appearance of a reduced word for w, one
can record the sequence of positions (from left to right) of the letters chosen
from (s1 · · · sn)∞ to form the subword. For example, if n = 2, m(s1 , s2 ) = 3,
and w has a reduced word s1s2s1 , then this reduced word can appear in
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Figure 10-6.6: s1s2-sorting words and the s1s2-Cambrian lattice in type B2

(s1 · · · sn)∞ = s1s2s1s2 · · · in many sequences of positions, including (1, 2, 3),
(1, 2, 5), (1, 4, 9), (5, 16, 19), etc. Out of all reduced words a1 · · · ak for w and
all appearances of a1 · · · ak as a subword of (s1 · · · sn)∞, there is one subword
which occupies the lexicographically smallest sequence of positions. This
subword is the s1 · · · sn-sorting word for w. Since the s1 · · · sn-sorting word
for w occupies a particular position in (s1 · · · sn)∞, it determines a sequence
of subsets of S: the set U1 of letters of a1 · · · ak appearing before the first
divider, the set U2 of letters of a1 · · · ak appearing between the first and second
dividers, etc. The element w is called s1 · · · sn-sortable if this sequence of sets
is weakly nested U1 ⊇ U2 ⊇ U3 ⊇ · · · . Exercise 10.38 verifies that this notion
depends only on c, not on the reduced word chosen for c. Thus we define
w to be c-sortable if and only if it is s1 · · · sn-sortable for some (equivalently
every) reduced word s1 · · · sn for c. Since the main point is usually the choice
of c rather than a reduced word for c, we will say “a c-sorting word for w” as
shorthand for “the s1 · · · sn-sorting word for w where s1 · · · sn is some reduced
word for c.”

Example 10-6.13. Let W be the Coxeter group (of type B2) with defining
generators S = {s1, s2} and m(s1, s2) = 4. Let c = s1s2. The s1s2-sorting
words for elements of W are

the empty word, s1, s1s2, s1s2|s1, s1s2|s1s2, s2, s2|s1, s2|s1s2.

The first six of these represent c-sortable elements, but s2|s1 and s2|s1s2 do not,
because {s2} ̸⊇ {s1} ) and {s2} ̸⊇ {s1, s2} . Figure 10-6.6 shows the weak order
on W with elements represented by their s1s2-sorting words, and also shows
the restriction of the weak order to c-sortable elements. The latter coincides
with the c-Cambrian lattice. Our next result shows that this coincidence is
not accidental.

♦Theorem 10-6.14. Suppose W is a finite Coxeter group and suppose c is
a Coxeter element of W . Then an element w ∈ W is the bottom element of its
θc-class if and only if it is c-sortable.
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Figure 10-6.7: s1s2s3-sorting words for elements of S4

We will prove the type-A case of Theorem 10-6.14 as Theorem 10-6.25. By
Proposition 9-5.5, we have the following corollary to Theorem 10-6.14.

Corollary 10-6.15. Suppose W is a finite Coxeter group and suppose c is
a Coxeter element of W . Then the c-Cambrian lattice is the subposet of the
weak order on W induced by the c-sortable elements of W .

In fact, more is true. Write πc
↓ as an abbreviation for πθc

↓ and recall from
Proposition 9-5.8 that the image of W under πc

↓ need not induce a sublattice
of the weak order. Cambrian congruences are special in this regard.

♦Theorem 10-6.16. Suppose W is a finite Coxeter group and suppose c
is a Coxeter element of W . The c-Cambrian lattice, realized as the subposet
induced by c-sortable elements, is a sublattice of W .

Thus the Cambrian lattice (the subposet consisting of c-sortable elements)
is a retract of the weak order. The retraction map is πc

↓. (Compare Proposition
7-6.9.) Exercise 10.40 is to prove the type-A case of Theorem 10-6.16 using
Theorem 10-6.25.

Example 10-6.17. Figure 10-6.7 shows the s1s2s3-sorting words for elements
of S4. The elements of S4 are arranged as in the weak order (Figure 10-5.2).
Figure 10-6.8 shows the restriction of the weak order to c-sortable elements
for c = s1s2s3. By Corollary 10-6.15, this is the c-Cambrian lattice. Compare
the top-left picture in Figure 10-6.3.

The Cambrian congruences are also special in terms of the shards they
remove, or equivalently the join-irreducible elements they contract.
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Figure 10-6.8: The c-Cambrian lattice for c = s1s2s3 in S4

♦Theorem 10-6.18. Let W be a finite Coxeter group and let c be a Coxeter
element of W . For each reflection t, there is exactly one c-sortable join-irreduci-
ble element having t as its cover reflection. The Cambrian congruence θc leaves
exactly one unremoved shard in each hyperplane of the Coxeter arrangement.

The two assertions of the theorem are equivalent by Corollary 10-6.15 and
Proposition 9-7.8.

A lattice is extremal (in the sense of Markowsky) if the following three
quantities are equal: the length of the longest chain in the lattice; the number
of join-irreducible elements of the lattice; and the number of meet-irreducible
elements of the lattice.

♦Theorem 10-6.19. Every Cambrian lattice is extremal.

Exercise 10.41 asks the reader to prove Theorem 10-6.19 from the other
diamond theorems. One more fact will be needed to complete the exercise.
Recall that the maximal element of the weak order on a finite Coxeter group
is called w0, the longest element of W . Exercise 10.42 is to prove the following
theorem from some other other diamond theorems.

♦Theorem 10-6.20. For any Coxeter element c in a finite Coxeter group,
the longest element w0 is c-sortable.

10-6.4 Induction on length and rank

The most basic and most powerful tool for dealing with sortable elements is
an inductive argument made possible by two simple lemmas that we prove
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below. Most of the results quoted here on sortable elements and Cambrian
lattices ultimately rely on this inductive argument. We will give an example
of the inductive argument in the proof of Theorem 10-6.25.

Definition 10-6.21. Given a Coxeter element c, a generator s ∈ S is initial
in c if there exists a reduced word s1 · · · sn for c with s1 = s. In this case
scs = s2 · · · sns1 is a Coxeter element of W . A generator s ∈ S is final in c if
there exists a reduced word s1 · · · sn for c with sn = s. In this case again, scs
is a Coxeter element of W .

Definition 10-6.22. Let W be a Coxeter group with defining generators S.
Given I ⊆ S, the subgroup of W generated by I is called a (standard) parabolic
subgroup and written WI . Exercise 10.44 is to verify that WI is a Coxeter
group with defining generators I. Most important is the case where I is S \{s}
for some s ∈ S. We write ⟨s⟩ for S \ {s} and thus W⟨s⟩ for WS\{s}. In the
special case where s is initial in c, the element sc is a Coxeter element for
W⟨s⟩.

Lemma 10-6.23. Let s be initial in c and suppose w $ s. Then w is c-sortable
if and only if it is an sc-sortable element of W⟨s⟩.

Proof. Suppose s1 · · · sn is a reduced word for c with s1 = s. The hypothesis
that w $ s says that no reduced word for w has s1 as its first letter. In
particular, the first letter of the s1 · · · sn-sorting word for w is not s1 . That
means that si ̸∈ U1 , in the notation of Definition 10-6.12. Therefore if w is
c-sortable, s1 does not appear in the s1 · · · sn-sorting word for w, so w is in
W⟨s⟩. We have sc = s2 · · · sn, and the s2 · · · sn-sorting word for w is exactly the
same sequence of letters as the s1 · · · sn-sorting word for w. The corresponding
sequences of subsets also agree, and we conclude that w is sc-sortable.

Conversely, suppose w is an sc-sortable element of W⟨s⟩. Since w is in
W⟨s⟩, there is some word for w as a product of generators in ⟨s⟩. Theorem
10-4.1 implies that every reduced word for w contains only generators in ⟨s⟩.
(Compare Exercise 10.23.) In particular, the s1 · · · sn-sorting word for w
contains only generators in ⟨s⟩. Considering (s2 · · · sn)∞ as a subword of
(s1 · · · sn)∞ in the natural way, we see that the s1 · · · sn-sorting word for w
(the lexicographically leftmost reduced word for w in (s1 · · · sn)∞) coincides
with the s1 · · · sn-sorting word for w (the lexicographically leftmost reduced
word for w in (s2 · · · sn)∞). Since w is sc-sortable, we conclude that w is
c-sortable.

Lemma 10-6.24. Let s be initial in c and suppose w ≥ s. Then w is c-sortable
if and only if sw is scs-sortable.

Proof. Again write c = s1 · · · sn with s1 = s. The Coxeter element s2 · · · sns1
is scs. Since w ≥ s, the operation of attaching the letter s to the beginning
of a word establishes a bijection between the set of reduced words for sw
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and the set of reduced words for w starting with s. We conclude that the
s2 · · · sns1 -sorting word for sw is obtained by deleting the first letter (s) from
the s1 · · · sn-sorting word for w. Knowing that the s1 · · · sn-sorting word for w
starts with s = s1 , the criterion for w to be c-sortable is exactly the criterion
for sw to be scs-sortable.

Lemmas 10-6.23 and 10-6.24 make possible inductive arguments on the
length of an element of W and on the rank of W . Induction on length comes
in the case where Lemma 10-6.24 applies and we pass from considering w
to considering sw. (The condition w ≥ s means that w has a reduced word
starting with s, which is equivalent to the condition that ℓ(sw) < ℓ(w).)
Induction on rank comes in the case where Lemma 10-6.23 applies and we
pass from considering W to considering W⟨s⟩. The induction is not circular:
When we appeal to the inductive hypothesis by shortening the length of an
element, we do so within W , so the rank is unchanged. The induction involves
passing to different Coxeter elements of W and passing to parabolic subgroups
of W . As a base case for the induction, we can take the case of the identity
element in a trivial Coxeter group W with S = ∅, although it may be simpler
in practice to take the base case to be the identity element in any W . We see
that the sets of c-sortable elements, for all c, are uniquely defined by taking
the identity element to be c-sortable for any c and by Lemmas 10-6.23 and
10-6.24.

10-6.5 Sortable elements of type A

As an example of how to apply Lemmas 10-6.23 and 10-6.24 to obtain properties
of sortable elements and Cambrian congruences/lattice/fans, we prove Theorem
10-6.14 for Coxeter groups of type A. For convenience, we argue in type An−1

so that we can consider permutations in Sn. To prove Theorem 10-6.9, we
showed that a permutation π ∈ Sn is the bottom element of its θc-class if and
only if it avoids both 312 and 231. Thus the type-A case of Theorem 10-6.14
is an immediate corollary of the following theorem.

Theorem 10-6.25. Suppose c is a Coxeter element of Sn, encoded as a
barring. A permutation in Sn is c-sortable if and only if it avoids the patterns
312 and 231.

Proof. The proof will use several aspects of the combinatorics of the symmetric
group proved in Section 10-5 and a few additional exercises. Exercise 10.45
shows that si ≤ π in the weak order if and only if the value i appears after the
value i+ 1 in the sequence π1 · · ·πn. Exercise 10.46 shows that π = π1 · · ·πn

is in W⟨si⟩ if and only if {π1 , . . . ,πi} = {1, . . . , i}.
We argue by induction on length and rank as described above. As a base

case, the identity permutation 12 · · ·n satisfies the avoidance conditions and is
c-sortable. Let π = π1 · · ·πn be a permutation in Sn.
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Suppose si is initial in c. Then the edge(s) in the diagram incident to si
are oriented away from si in the orientation c. The barring for c has i+ 1 (if
i < n) and i (if i > 1).

If si ≤ π then the value i appears after the value i+1 in π1 · · ·πn. Consider
the permutation siπ, obtained from π by swapping the values i and i+ 1 in
the sequence π1 · · ·πn. The orientation sicsi is the same as c except that the
orientation of edges incident to si is reversed. The barring for sicsi agrees
with the barring for c except that the barring for sicsi is i+ 1 (if i < n) and
i (if i > 1). We claim that π contains a pattern 312 or 231 in the barring
for c if and only if siπ contains a pattern 312 or 231 in the barring for sicsi.
Suppose def is a subsequence of π and let jkl be the subsequence of siπ
occupying the same positions. If {i, i + 1} ∩ {d, e, f} = ∅, then def and
jkl are the same subsequence and have the same barring in π as in siπ. If
{i, i+ 1} ∩ {d, e, f} = {i}, then jkl is obtained from def by replacing i with
i+ 1. The barring of i in π is the same as the barring of i+ 1 in siπ, so jkl is
a 312- or 231-pattern if and only if def is. If {i, i + 1} ∩ {d, e, f} = {i + 1}
then we argue similarly. If {i, i+ 1} ∩ {d, e, f} = {i, i+ 1}, then def cannot
form a 312- or 231-pattern since i+ 1 appears before i in π. In this case,
{i, i+1}∩{j, k, l} = {i, i+1} as well, and jkl cannot form a 312- or 231-pattern
since i appears before i+ 1 in siπ. We have proved the claim.

By induction on length, siπ is sicsi-sortable if and only if it satisfies to
avoidance conditions with the barring associated to sicsi. We have shown
that this avoidance condition on siπ is equivalent to the analogous avoidance
condition on π relative to c, so by Lemma 10-6.24, we conclude that π is
c-sortable if and only if it satisfies the avoidance condition.

On the other hand, if si " π then the value i appears before the value i+1
in π1 · · ·πn. The parabolic subgroup W⟨si⟩ is isomorphic to Si×Sn−i. We
can harmlessly realize Sn−i as the group of permutations of {i+1, . . . , n} and
adjust all definitions accordingly. The Coxeter element sic of W⟨si⟩ can be
written c1 c2 , where c1 is a Coxeter element of Si and c2 is a Coxeter element
of Sn−i. The barring defined by c1 and by c2 agrees with the barring defined
by c except that we may ignore the barring on i and on i+ 1. We claim that
π avoids the patterns 312 and 231 if and only if {π1 , . . . ,πi} = {1, . . . , i} and
the subsequences π1 · · ·πi and πi+1 · · ·πn both avoid 312 and 231.

If {π1 , . . . ,πi} = {1, . . . , i}, then any occurrence of 312 or 231 in π must
occur within the subsequence π1 · · ·πi or the subsequence πi+1 · · ·πn, so we
have proved the “if” direction. Conversely, suppose π avoids 312 and 231.
Then any subsequence of π avoids these patterns. Suppose some element
b ∈ {i+ 1, . . . , n} precedes some element a ∈ {1, . . . , i} in π. If a and b both
precede i+ 1, then ba(i+ 1) is a 312-pattern in π. If they both follow i, then

iba is a 231-pattern in π. Since i precedes i + 1 in π, the only remaining
possibility is that the four elements are distinct and form a subsequence
bi(i+ 1)a. In this case, bi(i+ 1) is a 312-pattern in π. We conclude by these
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contradictions that {π1 , . . . ,πi} = {1, . . . , i}, and we have proved the claim.
Suppose now that π is c-sortable. Then Lemma 10-6.23 says that π is in

W⟨si⟩ and is sic-sortable. Exercise 10.48 says that π1 · · ·πi is c1 -sortable and
πi+1 · · ·πn is c2 -sortable. By induction on rank, π1 · · ·πi and πi+1 · · ·πn both
avoid 312 and 231. The claim implies that π avoids 312 and 231. Conversely,
suppose π avoids 312 and 231. The claim says that π is in W⟨si⟩ and that
π1 · · ·πi and πi+1 · · ·πn both avoid 312 and 231. By induction on rank, π1 · · ·πi

is c1 -sortable and πi+1 · · ·πn is c2 -sortable, so Exercise 10.48 says that π is
sic-sortable. Finally, Lemma 10-6.23 says that π is c-sortable.

10-6.6 Sortable elements and the Cambrian fan

Another benefit of realizing Cambrian lattices in terms of sortable elements is
that each sortable element has a sorting word that contains a lot of readily
available and meaningful combinatorial information. For example, sorting
words contain information that allows a direct combinatorial construction of
the Cambrian fan. Specifically, we show in this section how to read off, from a
c-sorting word for a c-sortable element v, vectors that define the θc-cone for
the θc-class of v.

Let a1 · · · ak be a c-sorting word for v and let r ∈ S. Recall that a1 · · · ak
is the lexicographically leftmost subword of (s1 · · · sn)∞ which is a reduced
word for v, where s1 · · · sn is some reduced word for c. Among all instances
of r in (s1 · · · sn)∞, there is a leftmost instance that is not in the subword
a1 · · · ak. There is some i such that this leftmost instance of r in (s1 · · · sn)∞
occurs between the location of ai and the location of ai+1 . (If the leftmost
instance of r occurs before the position of a1 , then we set i = 0. If the leftmost
instance of r occurs after the position of ak, then we set i = k.) We say that v
skips r in position i. Define a set of vectors (in fact roots) by

Cc(v) = {a1 · · · aiαr | r ∈ S, v skips r in position i},

where αr is the simple root associated to r. The set Cc(v) can also be defined
recursively by induction on length and rank, thereby making possible inductive
proofs using Lemmas 10-6.23 and 10-6.24. See Exercise 10.49.

The set Cc(v) is linearly independent for each c-sortable element v (Exer-
cise 10.50), so we can define a simplicial cone

Conec(v) =
⋂

β∈Cc(v)

{x ∈ Rn | ⟨x,β⟩ ≥ 0},

where ⟨ · , · ⟩ is the Euclidean inner product. Recall that θc is the c-Cambrian
congruence and that each θc-cone is the union of cones wB over some θc-
class. (Here A is an associated Coxeter arrangement and B a base region as
in Section 10-3.) In particular, by Theorem 10-6.14, each θc-cone contains
exactly one cone vB such that v is c-sortable.
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v Cs1
c (v) Cs2

c (v) Cc(v)

1 α1 α2 {α1 ,α2}
s1 s1α1 s1α2 {−α1 , 2α1 + α2}
s1s2 s1s2α1 s1s2α2 {α1 + α2 ,−2α1 − α2}
s1s2s1 s1s2s1α1 s1s2s1α2 {−α1 − α2 ,α2}
s1s2s1s2 s1s2s1s2α1 s1s2s1s2α2 {−α1 ,−α2}
s2 α1 s2α2 {α1 ,−α2}

Figure 10-6.9: The map Cc for W of type B2 and c = s1s2 .

α1

α2 2α1 + α2α1 + α2

Hα1

Hα1+α2

Hα2

Hα1+α2

1 s1

s2

s1s2

s1s2s1

s1s2s1s2

Figure 10-6.10: The root system, Coxeter arrangement, and c-Cambrian fan
for W of type B2 and c = s1s2 (Example 10-6.27)

♦ Theorem 10-6.26. Suppose W is a finite Coxeter group and c is a Coxeter
element. If v is c-sortable, then the θc-cone associated to v is Conec(v). That
is, for w ∈W , we have v ≡w (mod θc) if and only if wB ∈ Conec(v).

Example 10-6.27. Figure 10-6.9 shows the map Cc on c-sortable elements
for W and c as in Example 10-6.13. The root system, Coxeter arrangement
and c-Cambrian fan are shown in Figure 10-6.10. Each maximal cone Cc(v) of
the c-Cambrian fan is labeled with v in the figure Exercise 10.51 is to carry
out the same computations for W = S4 and c = s1s2s3 as in Example 10-6.17.

10-6.7 Coxeter-Catalan combinatorics

The sorting words for sortable elements also contain information that allows us
to connect sortable elements bijectively to other (a priori unrelated) objects.
In particular, sortable elements and Cambrian lattices enter into the realm of
Coxeter-Catalan combinatorics,the study of families of objects counted by the
Coxeter-Catalan numbers.

Definition 10-6.28. As verified in Exercise 10.52, all Coxeter elements in
a finite Coxeter group W are in the same conjugacy class. Thus the order h
of any Coxeter element c is a well-defined invariant of W , called the Coxeter
number of W . The eigenvalues of c, as a linear transformation, are of the
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form e
2πki

h for integers k between 1 and h− 1. The n values of k appearing
are called the exponents of W and written e1 , . . . , en. (These might not all be
distinct.)

Example 10-6.29. For W of type An, every Coxeter element is an (n+ 1)-
cycle in Sn+1 . Thus the Coxeter number is n+1. The exponents are 1, 2, . . . , n.
In type Bn, the Coxeter number is 2n and the exponents are 1, 3, . . . , 2n− 1.
In type Dn, the Coxeter number is 2n−2 and the exponents are 1, 3, . . . , 2n−3
and n− 1. See the Notes for references to more information about exponents.

Definition 10-6.30. Suppose W is a finite irreducible Coxeter group. The
Coxeter-Catalan number for W , also known as the W -Catalan number is

Cat(W ) =
n∏

i=1

ei + h+ 1

ei + 1
.

Example 10-6.31. The Coxeter-Catalan numbers for finite irreducible Cox-
eter groups are shown here. In particular, the type-A Catalan number is the
usual Catalan number.

An Bn Dn E6 E7 E8 F4 H3 H4 I2(m)
1

n+2

(
2n+2
n+1

) (
2n
n

)
3n−2

n

(
2n−2
n−1

)
833 4160 25080 105 32 280 m+ 2

The W -Catalan number counts, among other things, combinatorial clusters
(vertices of the generalized associahedron), c-noncrossing partitions, antichains
in the root poset (a certain partial order on the positive roots), and c-sortable
elements. Initially, these counts were established independently and the
coincidence between the counts in different contexts was unexplained. Coxeter-
Catalan combinatorics is a name for the (still unfinished) program to try to
explain all of the numerical congruences and furthermore to look for deeper
relationships between the underlying structures in different contexts.

We will not give precise definitions of any of these Coxeter-Catalan objects
here, but references are given in the Notes. Instead, our goal is to pique the
reader’s curiosity by showing how c-noncrossing partitions and combinatorial
clusters each arise in the context of sortable elements. We will quote two
theorems, each of which separately implies the following theorem.

♦ Theorem 10-6.32. Suppose W is a finite irreducible Coxeter group. For
any Coxeter element c, the number of c-sortable elements is Cat(W ).

The c-noncrossing partitions are certain elements of W which generalize
the classical noncrossing partitions first defined in [287]. The definition of
c-noncrossing partitions also produces a lattice structure on c-noncrossing
partitions called the c-noncrossing partition lattice. We define a map ncc
from c-sortable elements to elements of W by sending v to the product of the
cover reflections of v. (See Definition 10-3.8.) The order of multiplication
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v Product of cover reflections ncc(v)

1 1
s1 s1 s1
s1s2 s1s2s1 s1s2s1
s1s2 |s1 s1s2s1s2s1 s2s1s2
s1s2 |s1s2 s1 · s1s2s1s2s1s2s1 s1s2
s2 s2 s2

Figure 10-6.11: The map ncc

is determined as follows. Fix a c-sorting word a1 · · · ak for v. Each cover
reflection t is in particular an inversion of v, and thus by Proposition 10-3.4
equals ti = a1 · · · ai · · · a1 for a unique i between 1 and k. If the cover reflections
of v are ti1 , . . . , tij with i1 < · · · < ij , then ncc = ti1 · · · tij .

♦ Theorem 10-6.33. The map ncc is a bijection from c-sortable elements to
c-noncrossing partitions.

Theorem 10-6.33 is closely related to the following theorem. Recall from
Remark 9-8.15 that each quotient of the weak order defines a join-subsemilattice
of the shard intersection order on elements of W .

♦ Theorem 10-6.34. The c-sortable elements of W constitute a sublattice of
the shard intersection order on W . The map ncc is an isomorphism from this
sublattice to the c-noncrossing partition lattice.

Example 10-6.35. Figure 10-6.11 shows the map ncc on c-sortable elements
for W of type B2 and c = s1s2 as in Example 10-6.13. Exercise 10.53 is to
carry out the same computations for W = S4 and c = s1s2s3 as in Example
10-6.17. The exercise also relates the output of the calculations to the classical
noncrossing partitions.

Finally, recall that Theorem 10-6.7 implies a bijection between the elements
of the c-Cambrian lattice (the c-sortable elements) and the vertices of the
generalized associahedron. These vertices are in bijection with combinatorial
clusters. Each combinatorial cluster consists of n linearly independent roots,
and thus the nonnegative linear span of the cluster is a full-dimensional cone.
Together, these cones define a complete fan called the c-cluster fan. Given a
c-sortable element w, the corresponding combinatorial cluster is easily read off
from a c-sorting word for w as follows.

Suppose w is c-sortable and let a1 · · · ak be a c-sorting word for w. We
define a root clsc(w) for each s ∈ S. If s occurs as a letter in a1 · · · ak, then
take i to be the position of the last (rightmost) occurrence of s in a1 · · · ak and
define clsc(w) to be a1 · · · ai−1αs. Otherwise, define clsc(w) to be −αs. Here as
before, αs is the simple root associated to s. Define clc(w) = {clsc(w) | s ∈ S}.
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v cls1c (v) cls2c (v) clc(v)

1 −α1 −α2 {−α1 ,−α2}
s1 α1 −α2 {α1 ,−α2}
s1s2 α1 s1α2 = 2α1 + α2 {α1 , 2α1 + α2}
s1s2s1 s1s2α1 = α1 + α2 s1α2 = 2α1 + α2 {α1 + α2 , 2α1 + α2}
s1s2s1s2 s1s2α1 = α1 + α2 s1s2s1α2 = α2 {α1 + α2 ,α2}
s2 −α1 α2 {−α1 ,α2}

Figure 10-6.12: The map clc

α1

α2 2α1 + α2α1 + α2

Figure 10-6.13: The root system and c-cluster fan for Example 10-6.37

The following theorem adds detail to Theorem 10-6.7.

♦ Theorem 10-6.36. The map clc is a bijection from c-sortable elements to
combinatorial clusters (with respect to c). The bijection extends to a graph
isomorphism from the unoriented Hasse diagram of the c-Cambrian lattice to
the vertex-edge graph of the generalized associahedron. The bijection extends
further to an isomorphism from the c-Cambrian fan to the c-cluster fan.

Example 10-6.37. Figure 10-6.12 shows the map clc on c-sortable elements
for W and c as in Example 10-6.13. The simple root associated to si is αi, and
the root system is shown as the left picture in Figure 10-6.13. The c-cluster
fan appears as the right picture in Figure 10-6.13. Exercise 10.54 is to carry
out the same computations for W = S4 and c as in Example 10-6.17. The
exercise also illustrates the isomorphism of fans.

10-7. Some other lattice quotients of the weak order

The contents of this chapter suggest that lattice congruences on the weak order
“know” a lot of combinatorics and geometry related to Coxeter groups. We
conclude the chapter with some other interesting congruences and quotients of
the weak order. The goal is to spark interest, so we give few details and no
proofs. References to additional information are found in the Notes.
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Figure 10-7.1: A congruence on the weak order of type A3 whose quotient is
the weak order of type A2

Example 10-7.1 (Parabolic congruences). Suppose W is a finite Coxeter
group with defining generators S, and let I be a subset of S. Then the
parabolic subgroup WI (see Definition 10-6.22) is a Coxeter group in its own
right with defining generators I (Exercise 10.44). The weak order on WI is a
lower interval in the weak order on W (Exercise 10.55), and thus in particular
a sublattice. In fact, the weak order on WI is a retract of the weak order
on W . Specifically, given w ∈ W , there exists a unique element wI of WI

such that inv(wI) = inv(w) ∩WI . The map w ,→ wI is a surjective lattice
homomorphism from W to WI with (wI)I = wI . Therefore the weak order
on WI is the quotient of the weak order on I modulo some congruence α,
called a parabolic congruence. The congruence α has a very simple description:
it is

∨
s∈(S\I) con(1, s), the smallest congruence contracting each s ∈ S \ I.

Figure 10-7.1 shows the parabolic congruence on the weak order in type A3

whose quotient is the weak order in type A2 . This is the smallest congruence
contracting the edge shaded darker in the picture.

Example 10-7.2 (Diagram homomorphisms). If W and W ′ are finite
Coxeter systems with the same defining generators S and withm′(s, t) ≤ m(s, t)
for each pair s, t ∈ S, then we say that W dominates W ′. That is, the Coxeter
diagram of W ′ is obtained from the Coxeter diagram of W by decreasing
the labels on edges or by erasing edges. Surprisingly, in this case, the weak
order on W ′ is the quotient of the weak order on W modulo a congruence
that admits a simple description. We call a surjective lattice homomorphism
from W to W ′ a diagram homomorphism.

Recall from Section 10-6.1 that at the bottom of the weak order, for each
r, s ∈ S there is a polygon [1, r ∨ s] consisting of 2m(r, s) elements. For
example, for W of type B3 , these intervals are an octagon, a hexagon, and a
square, and for W ′ of type A3 they are two hexagons and a square. One can
turn the octagonal interval into a hexagonal interval by contracting two of its
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Figure 10-7.2: A congruence on the weak order of type B3 and its quotient,
the weak order of type A3

side edges, one on each side. There are four choices of how to do this. For
three of the four choices, the quotient of W modulo the smallest congruence
contracting the chosen edges is isomorphic to the weak order on W ′. (For the
other choice, to obtain W ′ we must choose one additional edge to contract
elsewhere in W .) The left picture of Figure 10-7.2 shows a quotient on the
weak order on W of type B3 . This is the smallest congruence contracting the
two edges shaded darker in the picture. The right picture of the figure shows
the quotient modulo the congruence from the left picture. Comparison with
Figure 10-3.1 shows that this quotient is isomorphic to the weak order on W ′

of type A3 .
The lattice homomorphisms between weak orders on different finite Coxeter

groups descend to lattice homomorphisms between different Cambrian lattices.

The examples above show that lattice theory pierces to the heart of the
structure of Coxeter groups. The next few examples show other combinatorial
structures arising surprisingly from lattice congruences on the weak order on
permutations. In each case, there is a partial order (a lattice quotient of the
weak order) on the objects described. This partial order is shown in a figure,
but we leave the combinatorial description of the partial order to the primary
sources cited in the Notes to this chapter.

Example 10-7.3 (Sashes). A sash is a tiling of a 1×n rectangle by white
1×1 squares, black 1×1 squares, and/or white 1×2 rectangles. Sashes are
counted by the Pell numbers. There is a quotient of the weak order on Sn+1

whose elements are labeled by sashes in a 1×n rectangle and whose cover
relations correspond to simple modifications of sashes. An example is shown
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Figure 10-7.3: A lattice of sashes

in Figure 10-7.3.

Example 10-7.4 (Diagonal rectangulations). Start with a square with
horizontal and vertical sides. A diagonal rectangulation is a decomposition of
the square into rectangles such that the interior of each rectangle intersects
the top-left-to-bottom-right diagonal of the square. (We consider diagonal
rectangulations up to combinatorial equivalence.) The diagonal rectangulations
are counted by the Baxter numbers. There is a lattice quotient of the weak
order on Sn whose elements are labeled by diagonal rectangulations with n
rectangles and whose cover relations are “pivots” that replace vertical segments
by horizontal segments. This lattice appears in Figure 10-7.4 for n = 4.

Example 10-7.5 (Generic rectangulations). A generic rectangulation is
a decomposition of the square into rectangles such that no four rectangles have
a common corner. Again, we consider these up to combinatorial equivalence.
Every diagonal rectangulation is a generic rectangulation, but not vice versa.
The generic rectangulations also occur as a lattice quotient of the weak order
on permutations in Sn. This partial order is shown in Figure 10-7.5 for n = 4.
The partial order shown coincides with the weak order on S4 , but for larger n,
the lattice of generic rectangulations is the quotient of the weak order modulo
a nontrivial congruence.

The previous two examples concern lattice congruences on the weak order
on permutations. The next two examples concern more general finite Coxeter
groups.

Example 10-7.6 (Coxeter-biCatalan combinatorics). Given a finite Cox-
eter group W and a Coxeter element c, the c-biCambrian congruence βc is
defined to be the meet, in Con(W ), of the c-Cambrian congruence θc and the
c−1 -Cambrian congruence θc−1 . That is, two elements of W are congruent
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Figure 10-7.4: A lattice of diagonal rectangulations

Figure 10-7.5: A lattice of generic rectangulations
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modulo βc if and only if they are congruent modulo θc and congruent mod-
ulo θc−1 . The number of c-biCambrian congruence classes depends on the
choice of c.

The idea of the biCambrian congruence is lattice-theoretically simple, but
one might not expect it to have any combinatorial significance. Surprisingly,
it does. A motivating case of the c-biCambrian congruence is the case where
W is of type An and c orients the diagram as a directed path. In that case,
the c-biCambrian congruence is the congruence considered in Example 10-7.4,
so c-biCambrian congruence classes are counted by the Baxter number. Since
not all Coxeter diagrams are paths, it is hard to generalize this example to
arbitrary Coxeter groups.

However, there is a different, more uniform way to choose a Coxeter
element for a given finite Coxeter group. Since, by Theorem 10-2.19, the
Coxeter diagram of a finite Coxeter group is a forest, it is in particular a
bipartite graph. Writing S = S+ ∪ S− for a bipartition of the diagram, we
construct a bipartite Coxeter element by orienting each edge of the diagram
from S− to S+. The bipartite biCambrian congruence offers a combinatorial
surprise: Congruence classes in the bipartite biCambrian congruence are in
bijection with antichains in the doubled root poset. (This is the union of the
root poset with a dual copy of the root poset, identified on the simple roots.)
In fact, the standard Coxeter-Catalan objects (e.g. noncrossing partitions,
clusters) each have “biCatalan” analogs, and thus there is an entire theory of
Coxeter-biCatalan combinatorics that parallels Coxeter-Catalan combinatorics.

In type A, the bipartite Cambrian congruence classes are in bijection with a
subset of the noncrossing arc diagrams called alternating arc diagrams. These
consist of points on a vertical line and noncrossing arcs connecting the points,
with each arc alternating between left and right as it passes the intervening
points. The bipartite biCambrian lattice of type A3 (the quotient of the weak
order of type A3 modulo the bipartite biCambrian congruence) is shown in
Figure 10-7.6 with congruence classes represented by alternating arc diagrams.

We conclude with an example linking lattice congruences of the weak order
to representation theory.

Example 10-7.7 (Algebraic congruences). A finite Coxeter group is sim-
ply laced if m(s, t) ∈ {2, 3} for distinct s, t ∈ S. Associated to each simply
laced finite Coxeter group W is a preprojective algebra Π. This is a quotient of
the algebra of paths in the Coxeter diagram with product given by concatena-
tion. The weak order on W is isomorphic to the inclusion order on the torsion
classes of Π. If Π/I is an quotient (in the usual algebraic sense) of Π, then the
inclusion order on torsion classes of Π/I is naturally isomorphic to a quotient
of the weak order on W . Not all lattice quotients of W arise in this way. The
quotients that arise are called algebraic quotients. One naturally wonders which
lattice quotients of W are algebraic. Some examples of algebraic quotients
include the Cambrian lattices. In type A, the bipartite biCambrian lattices are
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Figure 10-7.6: The bipartite biCambrian lattice of type A3

also algebraic quotients, but at the time of this writing it is unknown whether
the same holds outside of type A. The quotient in Example 10-7.4 associated
with diagonal rectangulations is not algebraic. In type A, algebraic quotients
are completely characterized: A quotient is algebraic if and only if the graph
underlying its Hasse diagram is regular. Furthermore, this happens if and only
if the corresponding congruence is the smallest congruence contracting some
set of double join-irreducible elements. (A double join-irreducible element is a
join-irreducible element j such that j∗ is either join-irreducible or equals 0.)

10-8. Exercises

Finite reflection groups

10.1. Suppose t is a reflection acting on Rn with reflecting hyperplane Ht

and suppose w is an orthogonal transformation on Rn. Show that
wtw−1 is a reflection with reflecting hyperplane wHt.

10.2. Recall from the proof of Proposition 10-2.3 that a line of A is a
1-dimensional linear subspace of Rn that is the intersection of some
collection of hyperplanes in A. Suppose A is an essential hyperplane
arrangement and suppose H ∈ A. Show that there exists a line in
A that is not contained in H.
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10.3. Prove Proposition 10-2.6.

10.4. Prove Proposition 10-2.11.

10.5. Let W be a Coxeter group with defining generators S, and suppose r
and s are distinct elements of S. Prove that r and s commute if and
only if m(r, s) = 2. (One direction of this proof needs Proposition
10-2.17, which was proved here only for W finite. See the Notes for
a reference to a proof of Proposition 10-2.17 in general.)

10.6. Let W be a Coxeter group with defining generators S. Suppose S is
the disjoint union S1 ∪ S2 with m(s, t) = 2 for all s ∈ S1 and t ∈ S2 .
In other words, S1 and S2 are the vertices of two (not necessarily
connected) components of the Coxeter diagram of W . Let W1 be
the subgroup of W generated by S1 and let W2 be the subgroup of
W generated by S2 . Show that W1 and W2 are Coxeter groups and
that W is isomorphic to the direct product W1 ×W2 .

10.7. Let W be a Coxeter group with defining generators S. Suppose S is
the disjoint union S1 ∪ S2 , but don’t make any a priori assumptions
on the function m(· , · ). Define W1 , and W2 as in Exercise 10.6.
Suppose there is an isomorphism W ∼= W1 ×W2 such that s ,→ (s, 1)
for each s ∈ S1 and s ,→ (1, s) for each s ∈ S2 . Prove that m(s, t) = 2
for all s ∈ S1 and t ∈ S2 . (This exercise requires Proposition 10-2.17.
See the parenthetical comment to Exercise 10.5.)

10.8. Find the smallest (in terms of the number of hyperplanes) simplicial
arrangement that is not combinatorially isomorphic to some Coxeter
arrangement. (Use Theorem 10-2.21. Look in rank 3 and add a
hyperplane to some Coxeter arrangement listed in Figure 10-2.1. You
might use Theorem 10-2.19 and Exercise 10.6 to rule out smaller
arrangements. See also Example 10-2.20. )

The weak order and the poset of regions

10.9. Prove Proposition 10-3.11.

10.10. Prove Proposition 10-3.12. (Apply Proposition 10-3.11 to the non-
reduced word a1 · · · aks and argue that one of the letters deleted must
be s.)

10.11. Prove Proposition 10-3.13.

10.12. Prove Proposition 10-3.14.

10.13. Prove Proposition 10-3.15.

10.14. Suppose W is a finite Coxeter group. Recall that the maximal
element of the weak order is called w0 . Show that w0 is an involution.
(That is, w0w0 is the identity in W .)

10.15. Taking W and w0 as in Exercise 10.14, show that the map w ,→ ww0

is an antiautomorphism of the weak order. (Show that a reduced word
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for w0 corresponds to a path from B to −B. Act on the regions in this
path by w to conclude that ww0B = −wB and apply Exercise 9.4.)

10.16. Taking W and w0 as in Exercise 10.14, show that the map w ,→
w0w is also an antiautomorphism of the weak order on W . (Use
Exercise 10.1 and Proposition 10-3.5 to show that inv(w0w) is the
complement T \{w0 tw0 | t ∈ inv(w)}, where T is the set of reflections
in W .)

10.17. Taking W and w0 as in Exercise 10.14, show that the map w ,→
w0ww0 is an automorphism of the weak order on W . For which
rank-two Coxeter groups I2 (m) is this map the identity?

10.18. Taking W and w0 as in Exercise 10.14, show that the map s ,→
w0sw0 is a permutation of S and induces an automorphism of the
Coxeter diagram of W . That is, w0sw0 ∈ S for all s ∈ S and
m(w0sw0 , w0 tw0 ) = m(s, t) for all s, t ∈ S. (Use Exercise 10.17.)

10.19. Prove Proposition 10-3.22.

10.20. Interpret the equivalence of (i) and (iii) in Theorem 10-3.24 as
a statement about inversion sets of permutations. Use Theorem
10-3.25(ii) to describe the join of permutations in terms of their
inversion sets. (Use the combinatorial definition inv(π) = {(πi,πj) |
i < j,πi > πj} for inversions.)

The Word Problem for finite Coxeter groups

10.21. Prove Lemma 10-4.2. (It may be useful to look at the proof of
Theorem 10-2.9.)

10.22. Use Theorem 10-4.1 to construct the weak orders on all of the finite
Coxeter groups of rank 3. This is an infinite problem, so instead
of doing every Coxeter group of type I2 (m)×A1 , use B2 ×A1 as
a representative as in Examples 10-2.20 and 10-3.2. Do not rely
on the pictures in Figures 10-3.1 and 10-3.2, but rather use your
calculations to confirm the correctness of the pictures independent
of Theorem 10-3.1. (Construct the restriction of the weak order to
elements of length ≤ k, and let k increase until you have determined
the entire weak order. Constructing the weak order for type B3 in
this way is an exercise for a patient person, and doing type H3 this
way requires considerably more patience.)

10.23. Let W be a finite Coxeter group with defining generators S. Given
an element w ∈W and a reduced word a1 · · · ak for w, the support
of w is the set {a1 , . . . , ak} ⊆ S of generators appearing in the word.
Prove that the support of w is well-defined (i.e., does not depend on
the reduced word chosen).
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Coxeter groups of type A

10.24. Prove Proposition 10-5.1.

10.25. Prove Proposition 10-5.3.

10.26. Prove Proposition 10-5.4.

10.27. Use Theorem 10-3.9 to prove Theorem 10-5.6.

10.28. Find the canonical join representations of all elements of S4 in two
ways: Using Theorem 10-5.6 and using Figure 10-5.2.

10.29. Consider the Coxeter arrangement A described in Section 10-5 for a
Coxeter group of type An. What are the rank-two subarrangements
of A?

10.30. Show that the cutting relation on hyperplanes in the Coxeter ar-
rangement A for a Coxeter group of type An−1 is as follows: A
hyperplanes cuts (ek−ei)⊥ if and only if it is (ej−ei)⊥ or (ek−ej)⊥

for some j with 1 ≤ i < j < k ≤ n. (Use Exercise 10.29.)

10.31. Prove Proposition 10-5.8.

Cambrian lattices and sortable elements

10.32. Let W be a Coxeter group with defining generators S. Suppose
r and s are distinct elements of S. Show that the join of r and s
in the weak order is the element with two distinct reduced words
rsrs · · · and srsr · · · , each of length m(r, s).

10.33. Use Figures 10-2.3 and 10-3.2 to find the Cambrian congruences,
lattices and fans of type B3 , just as Example 10-6.3 does for type
A3 . (See Figures 10-6.2, 10-6.3, and 10-6.4.)

10.34. Use Figures 10-2.4 and 10-3.2 to find the Cambrian congruences,
lattices and fans of type H3 . See the comment on Exercise 10.33.

10.35. By Corollary 7-6.15, the Cambrian lattices of type An−1 are exactly
the quotients of the weak order on Sn by the minimal meet-irreduc-
ible congruences on the weak order. Show that this statement is
not true for general finite Coxeter groups by identifying the minimal
meet-irreducible congruences on the weak order on a Coxeter group
of type B2 .

10.36. Let W be a Coxeter group with defining generators S. Show that
two total orders on S define the same Coxeter element of W if and
only if they induce the same orientation on the diagram of W . (Use
Exercise 10.5 and Theorem 10-4.1.)

10.37. Suppose s1 · · · sn and s′1 · · · s′n are words, each containing each
element of S exactly once. Show that both are reduced. Show that
the two define the same Coxeter element if and only if they are
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related by a sequence of moves, each of which swaps two letters that
are adjacent in the word and commute in W .

10.38. Given an element w and two reduced words s1 · · · sn and s′1 · · · s′n
for the same Coxeter element c, show that w is s1 · · · sn-sortable if
and only if it is s′1 · · · s′n-sortable. Show also that if s1 · · · sn and
s′1 · · · s′n are reduced words for different Coxeter elements, then there
exists an element that is s1 · · · sn-sortable but not s′1 · · · s′n-sortable.
(Use Exercises 10.36 and 10.37.)

10.39. Show that, in any finite lattice, the length of any maximal chain
is less than or equal to the number of join-irreducible elements and
also less than or equal to the number of meet-irreducible elements.

10.40. Prove Theorem 10-6.16 for Coxeter groups of type An by showing
that the set of permutations avoiding the patterns 312 and 231 is a
sublattice of the weak order on Sn. (Use Proposition 9-5.8 and the
dual of Exercise 10.20.)

10.41. Prove Theorem 10-6.19. You may use diamond theorems. (Use
Theorem 10-6.20 to construct a chain of of length |T | consisting of
sortable elements. Then appeal to Theorem 10-6.18, Exercises 10.13
and 10.39 and Theorem 10-6.4.)

10.42. Prove Theorem 10-6.20. You may use diamond theorems, but not
Exercise 10.41. (Use Theorem 10-6.4 and Corollary 10-6.15.)

10.43. Suppose W is a finite Coxeter group and c is a Coxeter element
with reduced word s1 · · · sn. For each i from 0 to n, let xi be the
join sn−i+1 ∨ sn−i+2 ∨ · · · ∨ sn. Show that

1 = x0 ≺ x1 ≺ x2 ≺ · · · ≺ xn = w0

is a maximal chain in the c-Cambrian lattice.

10.44. Suppose W is a Coxeter group and I is a subset of the defining
generators S. Show that the parabolic subgroup WI is a Coxeter
group with defining generators I and with the quantities m(r, s)
inherited from the defining presentation of W . (Use Theorem 10-4.1
to verify that every relation in WI among the generators I is a
consequence of the defining relations.)

10.45. Show that si ≤ π in the weak order on Sn if and only if the value i
appears after the value i+ 1 in the sequence π1 · · ·πn.

10.46. For W of type An−1 , show that π = π1 · · ·πn is in W⟨si⟩ if and only
if {π1 , . . . ,πi} = {1, . . . , i}.

10.47. Verify Theorem 10-6.25 for W = S4 and c = s2s1s3 .

10.48. Suppose W is the direct product of two of its parabolic subgroups.
That is, S is the disjoint union S1 ∪ S2 and W ∼= WS1 ×WS2 . (See
Exercises 10.6 and 10.7.) Suppose c is a Coxeter element of W
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Figure 10-8.1: Sketching aid for Exercise 10.51

corresponding to (c1 , c2 ) ∈ WS1 ×WS2 . Take w ∈ W and let
(w1 , w2 ) be the corresponding element of WS1 ×WS2 . Show that w
is c-sortable if and only if w1 is c1 -sortable and w2 is c2 -sortable.

10.49. For v a c-sortable element and s initial in c, show that

Cc(v) =

{
Csc(v) ∪ {αs} if v $ s
sCscs(sv) if v ≥ s

10.50. Show that Cc(v) is linearly independent for each c-sortable ele-
ment v.

10.51. Compute Cc(v) for each c-sortable element v with W = S4 and
c = s1s2s3 as in Example 10-6.17. Also for each c-sortable element v,
sketch the cone Conec(v) and label that cone with v. Verify Theorem
10-6.26 in this case. To assist the sketching, Figure 10-8.1 shows the
Coxeter arrangement in light gray. The base region is

B = Conec(1) =
3⋂

i=1

{x ∈ Rn | ⟨x,αi⟩ ≥ 0}

where αi is the simple root ei+1 − ei. The base region B projects
to the triangle inside all circles in Figure 10-8.1. Besides the simple
roots, the other roots are e3 − e1 , e4 − e2 , and e4 − e1 . Please see
the comment to Exercise 10.33.

10.52. Show that any two Coxeter elements of a finite Coxeter group W
are conjugate in W . (Show that the two can be related by a sequence
of moves relating c to scs where s is initial in c. Interpret such
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Figure 10-8.2: Illustrations for Exercise 10.53

moves in terms of orientations of the diagram of W and use the fact
that each connected component of the diagram is a tree.)

10.53. Compute ncc(v) for each c-sortable element v with W = S4 and
c = s1s2s3 as in Example 10-6.17. (Compare Example 10-6.35 and
Figure 10-6.11.) For each v, rewrite ncc(v) as a permutation in
disjoint cycle notation. Place the numbers 1, 2, 3, 4 in cyclic order
clockwise on a circle as in the left picture of Figure 10-8.2. For
each cycle in each ncc(v), draw the cycle as a polygon on the circle.
Thus, for example, the middle picture of Figure 10-8.2 shows how
one would draw the permutation with cycle notation (1 3 4)(2). Each
disjoint cycle notation can be interpreted as a partition of the set
{1, 2, 3, 4}, so that for example (1 3 4)(2) is the partition with two
blocks {1, 3, 4} and {2}. A partition is called noncrossing if when it
is drawn on the cycle 1, 2, 3, 4, the blocks are non-intersecting. Every
partition of {1, 2, 3, 4} is noncrossing except the partition with blocks
{1, 3} and {2, 4}, illustrated in the right picture of Figure 10-8.2.
Verify in this example that as v runs through all c-sortable elements,
the cycle notations of the elements ncc(v) produce each noncrossing
partition of {1, 2, 3, 4} exactly once. (It is possible for two different
elements of W to give the same drawing on the circle. For example,
(1 3 4)(2) and (1 4 3)(2). The elements ncc(v) are exactly the elements
of W whose cycle notation defines a noncrossing partition and whose
cycles read clockwise on the circle.)

Exercise 10.53 generalizes to Sn for all n and to all Coxeter ele-
ments c. To properly generalize, one must write c in cycle notation.
It will be an n-cycle, and this cycle is written clockwise around a
circle. Other cases of Theorem 10-6.33 also yield nice combinatorial
models. For example, for W of type Bn, the c-noncrossing partitions
can be interpreted as the centrally-symmetric noncrossing partitions
of a cycle.

10.54. Compute clc(v) for each c-sortable v with W = S4 and c = s1s2s3
as in Example 10-6.17. (Compare Example 10-6.37 and Figure 10-
6.12.) Sketch the fan whose maximal cones are spanned by the sets
clc(v), and verify in this case that the result is isomorphic to the
c-Cambrian fan. To assist the sketching, Figure 10-8.3 shows the
projections of the rays of the cluster fan (labeled by the corresponding
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−α1 −α3

−α2

α2

α1α3

Figure 10-8.3: Sketching aid for Exercise 10.54

roots). The unlabeled roots are α1 + α2 , α2 + α3 , and α1 + α2 + α3 .
(These roots can be identified by coplanarity. For example, α1 , α2 ,
and α1 + α2 are coplanar, so their projections are on a common
circle.) All arcs that might be drawn are shown in the figure in light
gray. Complete the sketch by darkening those arcs that correspond
to 2-dimensional faces of the c-cluster fan. Please see the comment
to Exercise 10.33.

10.55. Suppose W is a Coxeter group and I is a subset of the defining
generators S. Show that the subposet of the weak order on W
induced by the elements of WI is a down-set and is isomorphic to
the weak order on WI . Show that if WI is finite, then this subposet
is a lower interval in W . (Use Exercise 10.23.)

10-9. Notes

Coxeter groups and the weak order

Standard references on Coxeter groups include [84, 241]. For an approach
emphasizing combinatorics, see [69]. For a treatment that expands on the
combinatorial group theory aspects (and then moves deeply into geometric
group theory), see [109]. Other books whose emphases are farther from the
goals of this book include [33, 45, 224, 424].

Recursive unsolvability of the Word Problem for finitely presented groups
is credited to Novikov [340] and Boone [75, 76, 77, 78, 79], while that result
for the Finiteness problem is credited to Adyan [31, 32] and Rabin [363]. See
Miller’s survey [319] for a discussion of these results.

Finite reflection groups

Theorems 10-2.1 and 10-2.5 are well known. See Bourbaki [84, Proposi-
tion V.3.7] and [84, Theorem V.3.2]. The proof of Theorem 10-2.1 given
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here is mentioned in the paragraph before [70, Theorem 2.4]. Proposition
10-2.3 is due to Shannon [411], who in fact proved a sharp lower bound on
the number of simplicial regions in an arrangement. The proof we give is
essentially Shannon’s, altered to avoid dealing with non-central arrangements.
Propositions 10-2.7 and 10-2.8 are also standard. Theorems 10-2.9, 10-2.10,
10-2.18 and 10-2.19 go back to various papers of Coxeter in the mid 1930’s,
including [104, 105]. Proposition 10-2.17 appears, for example, as [69, Propo-
sition 1.1.1] without the restriction to finite Coxeter groups. Theorem 10-2.21
has not, to our knowledge, appeared elsewhere.

The weak order and the poset of regions

Theorem 10-3.1 goes back to Edelman [139, Corollary 4.3]. The fact that the
weak order is a lattice in general was pointed out without proof by Björner
in [68]. The semidistributivity in Theorem 10-3.7 is due to Le Conte de
Poly-Barbut [297, Lemme 9]. Congruence uniformity (boundedness) is due
to Caspard, Le Conte de Poly-Barbut, and Morvan [91, Theorem 6]. See
also [90]. The proof given here is similar to the proof in [364], and both owe
much to the proof in [91], although the debt may be less apparent due to
the generality of hyperplane arrangements and the geometric constructions
related to shards. A slightly different proof of the acyclicity of the shard
digraph for weak order is also in [364, Proposition 28]. The proof in [364] is a
geometric argument using reflective symmetry, while the proof here substitutes
a discrete metric (the depth) for a continuous metric on the sphere. The
polygonality in Theorem 10-3.7 is due to Caspard, Le Conte de Poly-Barbut,
and Morvan [91, Proposition 6]. Theorem 10-3.9 is due to Reading and Speyer
[381, Theorem 8.1]. For Propositions 10-3.11 and 10-3.12, see Bourbaki [84,
Exercise IV.1.1] and [84, Section IV.1.4] or [69, Section 1.4]. The biconvexity
characterization of inversion sets in Theorem 10-3.24 is stated by Björner [68,
Proposition 3]. The rank-two biconvexity characterization of inversion sets in
Theorem 10-3.24 is due to Kostant [284, Proposition 5.10] for crystallographic
root systems and was extended to noncrystallographic root systems in [73,
Proposition 4.2] (See also [84, Exercise VI.1.16].) Various generalizations of
Theorems 10-3.24 and 10-3.25 to infinite Coxeter groups have been made,
including in [136, 227, 352].

The Word Problem for finite Coxeter groups

Theorem 10-4.1 is due to Tits [435]. Theorem 10-4.3 is well known, appearing
for example in Humphreys as [241, Exercise 1.12.1]. For an in-depth discussion
of computational issues in Coxeter groups, see Stembridge [425] and references
therein.
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Coxeter groups of type A

Early work on the weak order on permutations (also known as the permuta-
tion lattice or permutoèdre) is described in detailed notes at the end of [97]
and [98]. Details on modeling Coxeter groups of type A by permutations
are found throughout [69]. Theorem 10-5.6 follows from Theorem 10-3.9 and
[367, Proposition 6.4] and appears as [376, Theorem 2.4]. Proposition 10-5.8
appeared, with different notation, in Bancroft [48], while Proposition 10-5.9
is a rephrasing of [366, Theorem 8.1]. Theorem 10-5.11 is essentially [376,
Theorem 4.6].

Cambrian lattices and sortable elements

Cambrian congruences and Cambrian lattices have their earliest origins in the
work of Björner and Wachs on the Tamari lattice [72, Section 9]. Their focus
was not lattice-theoretic, but they assembled all the ingredients for a proof
that the Tamari lattice is a lattice quotient of the weak order on permutations.
(It is important to be aware of a clash of notation. It is standard in the
Coxeter groups literature to speak of “quotients” of Coxeter groups in a
combinatorial/group-theoretic sense. See [71]. These quotients are not lattice
quotients of the weak order.)

Cambrian lattices were first defined in [368], and many of the results
quoted about them here were conjectured there. Some of the conjectures
were proved there for W of type A or B. Since the definition in [368] is the
same as the definition here, Theorem 10-6.1 followed immediately from the
definition, as here. Theorem 10-6.4 is [368, Theorem 3.5]. Theorem 10-6.5 is
[370, Proposition 1.3]. Theorem 10-6.8 was proved by Reading and Speyer as
[379, Theorem 1.1] and Theorem 10-6.7 follows. Theorem 10-6.9 follows from
the explicit construction in [368, Section 6] of all Cambrian lattices of type
A in terms of triangulations. This is a special case of the theorem obtained
by directly concatenating [369, Theorem 4.1] with [370, Theorem 1.4], which
characterizes the bottom elements of Cambrian lattices in terms of a certain
“alignment” condition on their inversion sets. As mentioned earlier, the type-B
Tamari lattice was constructed independently in [368] and by Thomas in [433].

Cambrian lattices admit an EL-labeling. This follows from results of Ingalls
and Thomas by combining [243, Theorem 4.17] with [432, Proposition 3].
(The latter result is quoted from Liu [301].) EL-labelings were also given by
Kallipoliti and Mühle in [264, Theorem 1.1] and by Pilaud and Stump in [350].

Sortable elements were defined in [369] and have been studied further
by various researchers in [35, 36, 38, 229, 243, 264, 277, 361, 370, 380, 381].
Theorem 10-6.14 and Corollary 10-6.15 are [370, Theorem 1.1] and [370,
Theorem 1.4]. Theorem 10-6.16 is [370, Theorem 1.2]. Theorem 10-6.18 is
implicit as a special case of [369, Theorem 6.1]. See also [381, Theorem 8.9(iv)].
Something stronger than Theorem 10-6.19 was conjectured and partially
proved by Thomas in [432] and then proved by Ingalls and Thomas in [243,
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Theorem 4.17]. The Tamari lattice case of Theorem 10-6.19 goes back to [304].
Theorem 10-6.20 is [369, Corollary 4.4]. Lemmas 10-6.23 and 10-6.24 are [369,
Lemmas 2.4–2.5]. Theorem 10-6.25 can be obtained, via Theorem 10-6.14,
from [368, Proposition 5.7] and [368, Theorem 6.2]. Alternately, it is a special
case of [369, Theorem 4.1], proved separately as [369, Theorem 4.3]. A much
more general statement, proved using the same strategy of induction on length
and rank, is [381, Theorem 4.3]. Theorem 10-6.26 is the finite-type case of
[381, Theorem 6.3].

Theorems 10-6.33 and 10-6.34 are [369, Theorem 6.1] and [372, Theorem 8.5].
The first statement of Theorem 10-6.36 is [369, Theorem 8.1], while the second
statement follows from Theorem 10-6.8 and Corollary 10-6.15.

For more background on Coxeter-Catalan combinatorics, see [157] (espe-
cially [157, Lecture 5]) and the introductory chapters of [37]. Exercise 10.52
goes back at least to [60, Theorem 1.2], which is phrased in terms of oriented
diagrams (quivers). For an exposition and computation of the Coxeter number
and exponents for each finite Coxeter group, see for example [84, Chapter V.6]
or [241, Sections 3.19–3.20]. These references also describe the beautiful and
surprising connection between exponents and polynomial invariants of W .

The classical noncrossing partitions were first defined by Kreweras [287].
For the definition of c-noncrossing partitions, see [37] or (in different termi-
nology) [62, 85]. Exercise 10.53 refers to centrally-symmetric noncrossing
partitions. For details, see [384]. For type-D models, see [41], and for a general
discussion of planar models for c-noncrossing partitions, see [371].

For a definition of combinatorial clusters, see [159, 306, 369]. The general-
ized associahedra were defined by Fomin and Zelevinsky in [159] and shown
in [158] to be the combinatorial structure underlying cluster algebras of finite
type. The original definition defines only a simplicial sphere (dual to the simple
generalized associahedron), but Chapoton, Fomin, and Zelevinsky proved
polytopality in [99]. Another family of polytopal realizations of the generalized
associahedra, using c-sortable elements for any c, is given by Hohlweg, Lange,
and Thomas in [228, 229]. That realization has a normal fan that actually
coincides with the c-Cambrian fan for each c. The Cambrian fan also coincides
exactly with a fan arising in the theory of cluster algebras, called the g-vector
fan. (This was conjectured and proved in a special case by Reading and Speyer
in [379, Section 10]. It was later proved by Yang and Zelevinsky in [459] and
then by Reading and Speyer in [382].) There is a compatible but different
approach to generalized associahedra in terms of the brick polytopes of Pilaud
and Santos [349]. See Pilaud and Stump [351] and references therein.

The definition of sortable elements does not require W to be finite. The
article [381] explores the combinatorics of sortable elements in infinite Coxeter
groups; it also tidies up some of the proofs of several key lemmas of [369]
by providing proofs that do not involve a type-by-type analysis using the
classification of finite Coxeter groups.
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The bijection between Coxeter elements and acyclic orientations of the
Coxeter diagram was pointed out by Shi in [412]. Exercise 10.39 is [304,
Lemma 1].

Some other lattice quotients of the weak order

Parabolic congruences were studied (in the generality of simplicial arrange-
ments) in [366, Section 6]. The fact that w ,→ wI is a lattice homomorphism
was pointed out in by Jedlička [247] and in [366]. Diagram homomorphisms
are the subject of [377] and appear in the context of matrix mutation in [378].
Sashes and rectangulations also index the bases of certain combinatorial Hopf
algebras, as part of a general lattice-theoretic construction [367]. Sashes were
studied by Law in her thesis [291, 292], while rectangulations are the subject
of [293] and [375]. Diagonal rectangulations are in bijection with the Baxter
permutations of Chung, Graham, Hoggatt, and Kleiman [100]. Rectangulations
and related constructions have also been studied in other contexts, for example
in [1, 2, 39, 101, 132, 152, 187, 234, 460]. Coxeter-biCatalan combinatorics
is considered in [52]. The connection between preprojective modules and the
weak order was made by Mizuno [320]. Algebraic lattice congruences are the
topic of [245].

10-10. Open problems

Problem 10.1. Characterize the lattices that appear as weak orders on finite
Coxeter groups. This is a special case of Problem 9.2 in Section 9-11. See that
problem for details. The equational theory of the weak order on the symmetric
group is proved to be recursively solvable in [398].

Problem 10.2. Find the order dimension of the weak order on a finite Coxeter
group. This is a special case of Problem 9.3 in Section 9-11. The problem is
solved for some finite Coxeter groups in [154, 365].

Problem 10.3. Find a formula for the number of lattice congruences of the
weak order on the symmetric group Sn. We expect this problem to be hard,
as it involves counting order ideals in a poset (described in Proposition 10-5.9),
and such problems are often hard. (Compare Dedekind’s Problem of counting
the elements of the free distributive lattice, or equivalently counting antichains
in a finite Boolean algebra. See for example [278].) A more realistic problem
is to give an asymptotic estimate. Exact values, up to n = 7, are found in
[366, Section 9], and from these values, one is led to guess that the number
of congruences on Sn+1 is roughly the square of the number of congruences
on Sn.

Problem 10.4. Find a formula or asymptotic estimate for the number of
congruences of the weak order on a finite Coxeter group of type Bn. Exact
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values, up to n = 4, are found in [366, Section 9]. For these small values, the
number of congruences on Bn+1 is very roughly the cube of the number of
congruences on Sn.
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Corrections to STA1

• Page 284 (footnote), line −6: change “ẋi ≼ẏ0 ∨ ẏ1 and ẋ0 ∧ ẋ1 ≼ẏi”
to “ẋi ≼ẏ0 ∨ ẏ1 or ẋ0 ∧ ẋ1 ≼ẏi”.

• Page 284 (footnote), line −3: change “∥ẋi ≼ẏ0 ∨ ẏ1∥∧∥ẋ0 ∧ẋ1 ≼ẏi∥”
to “∥ẋi ≼ẏ0 ∨ ẏ1∥ ∨ ∥ẋ0 ∧ ẋ1 ≼ẏi∥”.

• Page 290, line 20 (line 11 of Exercise 7.16): change “fi : (A,α) →
(B1 ,β1 )” to “fi : (A,α)→ (Bi,βi)”.

• Page 291, line 19 (line 3 of Exercise 7.20): change “(∨, 0)-semilattice”
to “(∨, 0)-homomorphism”.



Index

A′ (rank-two subarrangement), 407
A(n) (associahedron), 217
A(S), 111
Absolute retract, 23
ACloX, 105
AD, 8
Adequate term, 35
Adjacency graph of a hyperplane ar-

rangement, 404
Adjacent

cones, 470
regions, 404

AD∨, 8
AD∧, 8
Anti-exchange property (AEP), 153
Aggregated basis

minimum, 200
Aggregation, 192
A∨ (join closure), 64
Algebra

equationally compact, 24
finitely based, 20
infinitary, 133
inherently nonfinitely based, 20
preprojective, 548

Algebraic
closure operator, 103
quotients, 548
subset, 104, 106

Alignment
atomistic, 332

connected, 332
on a graph, 332

α-cone, 467
Alternating arc diagrams, 548
Amal(V), 22
A∧ (meet closure), 64
Anti-horizontal reading, 358
Anti-matroid, 154
Apex, 372
Ar(K), 23
Arrangement

Coxeter, 492
Arrowed table of a lattice, 241
Ascent of a permutation, 236
A(E), 295
A(n), 232
Associahedron, 217

generalized for a Coxeter group,
528

AU (n), 248
ATh(V), 139
Atom in a lattice, 480
Atomistic

alignment, 332
lattice, 89

Attainability, 500
Avec(n) (n-vectors), 234
Avoiding (a pattern), 524, 530

B, 79
Balanced complex, 422
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(b, a,R)-pattern of a permutation, 524
Barring

lower, 529
upper, 529

Basic hyperplane, 407
Basis

canonical, 186
canonical direct, 190
direct, 190
finitary, 183
iteration-free, 190
left optimum, 200
non-redundant, 200
of a closure system, 129
optimum, 200
ordered direct, 191
regular aggregated, 192
right optimum, 200
round, 196
unit implicational, 192
weak-implication, 190

Baxter permutation, 560
β(a), 72
βc (c-biCambrian congruence), 546
βk(a), 72
βt (positive root), 515
Biconvex

rank-two set of hyperplanes, 428
set of hyperplanes, 426
set of positive roots, 516

Binary bracketings, 227
Binary part of a basis, 189, 192
Bipartite

relation, 309
Bipartition, 312
Bip(n), 312
Block graph, 319
B(m,n), 258
Bottom edge, 450
Boundary hyperplane, 402
Bounded

congruence, 436, 478
epimorphism, 46
homomorphism, 68

lattice, 71, 77
Branching poset, 334
Brick polytope, 559
Brouwerian complete semilattice, 136

c-alignment, 530
Cambrian congruence (of P(n)), 269
Canonical

form in finitely presented lattices,
35

form in free lattices, 34
join representation, 36, 447
joinands, 447
joinands in a free lattice, 60
standard system, 126

Carousel property, 208
Cat(W ) (W -Catalan number), 541
Cayley graph, 226
CB(En), 165
c-Cambrian

fan, 525
lattice, 525

Cc(v), 539
Central hyperplane arrangement, 303,

400
Choice operator, 176

path independent, 176
Chordless

cycle, 319
path, 318

CJiL, 61
cl(a) (a ⊆ poset), 328
cl(a) (where a ⊆ In), 231
cl(a) (where a ⊆ δE), 290
cl(a) (where a ⊆ δG), 316
clc(w), 542
Cld(X,φ) closure lattice, 104
Clepsydra, 309
Clique, 317
Clop(P,ϕ), 299
Clop∗(E, convE), 303
Clopen relation, 224, 290
Clop(In), 224
Clop⊕P , 328
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ClopS, 324
Closed

polyhedral cone, 401
relation, 224, 290
set of join-irreducible elements, 41

Closure
of a subset of In, 231
of a subset of δE , 290
under arrows, 462

Closure operator
algebraic, 149
canonically associated with dis-

tributive direct sums in a poset,
328

continuous, 108, 149
for positive roots, 516
locally finite, 184
on a complete lattice, 148
on a set, 297
rank-two for positive roots, 516

Closure space canonically associated
to a join-semilattice, 324

Closure system
ideal, 174
join-semidistributive, 198
minimal, 123
of poset type, 210, 305
of semilattice type, 305
reduced, 124
standard, 124
zero-closure, 124

clsc(w) (root), 542
Cluster

algebra of finite type, 559
combinatorial, 542

CL(m⃗), 349
CN, 87
CN-labeling of a finite lattice, 444
Cn, 317
Co(En, X), 165
Cof (En), 165
Cog(G), 332
Cogm(G), 332
Co, 165

Combinatorial cluster, 542
Combinatorially isomorphic, 425

weakly, 476
Com(G), 332
Commutation, 265
Compact element, 18
Comparable intervals, 87
Compatible total ordering, 174
Complement of a hyperplane arrange-

ment, 400
Complete

fan, 404
meet-semilattice, 413

Completely
join-irreducible, 18
join-prime, 68
join-semidistributive

element, 67
lattice, 68

Component quadratic, 213
Concept, 240

lattice, 240
Conec(v), 539
Cone

α-, 467
closed polyhedral, 401
simplicial, 402

Cone (in Rn), 401
Coneα(JΣ), 471
cone(X), 476
Congruence

c-Cambrian, 525
c-biCambrian, 546
bounded, 436, 478
complete, 478
derivation, 50
fully invariant, 138
normal lattice, 87
of a structure, 137
parabolic, 544
variety, 25

con(j), 440
ConJi L, 442
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Conjugate of a join-irreducible in P(n),
242

ConK A, 139
conK S, 140
ConL, 440
Connected

alignment, 332
poset, 415

con(Σ), 461
conSL(I), 144
conα(Σ), 472
Continuous quasi-order, 136
Contracting congruence, 439, 441
Contraction of a closure system, 123
Convex

body, 165
generalized shelling, 168
geodesically, 332
geometry, 154

D-, 210
affine, 165

monophonically, 332
rank-two set of hyperplanes, 428
set of hyperplanes, 426
set of positive roots, 516
subset, 28

Convex hull, 164
conv(X), 303
convE(X), 303
Cover

lower, 229
upper, 230
with respect to a closure operator,

189
Covering sublattice, 6
Coxeter

arrangement, 492
diagram, 503

oriented, 525
element, 532

bipartite, 548
group, 271, 489

crystallographic, 519
irreducible, 503

simply laced, 548
number, 540

Coxeter group
crystallographic, 519
of type Bn, 269
of type Dn, 272

Coxeter matrix, 271
Coxeter-biCatalan combinatorics, 548
Coxeter-Catalan

combinatorics, 540
number, 540, 541

Coxeter-sortable element, 531
Critical set for a closure operator, 185
Crosscut simplicial, 483
Crown, 293
Crown-free poset, 293
Crystallographic Coxeter group, 519
Cut

proper in a graph, 321
Cut in a graph, 321
Cutting for hyperplanes, 456
Cycle

chordless, 319
in a graph, 318
induced, 319

D, 61
D∗(L), 80
Day’s doubling construction, 28
D-basis, 188
D(S), 111
D-convex geometry, 210
D(C, t), 131
D-cycle, 84
Defining

a closure operator, 129
generators in a Coxeter group, 490
relations in a Coxeter group, 490

∂a, 300
δE , 289
δG, 316
δ+G, 316
∆Σ, 194
Dependence relation basis, 190
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Depth, 28
of a hyperplane, 429
of an element of Free(P ), 42

Derivative, 50
Descending Chain Condition, 411
Descent of a permutation, 236, 522
Dαx, 439
D, 317
Diamond graph, 317
Dimension of a cone, 401
Disjoint double partition in a poset,

330
Distance

geodesic, 264
symmetric difference, 265

Distributive
direct sum in a poset, 327
quasi-order, 135
sum in a poset, 327

D∗
k(L), 80

Dk(L), 74
D(L), 74
Dominating (finite Coxeter systems),

544
Double join-irreducible element, 549
Double partition

disjoint in a poset, 330
in a poset, 330

Doubled root poset, 548
Doubling construction, 28
(DPT), 86
D(E), 295
D(n), 232
DU (n), 248
Dtr, 85
Duality between a measure and a ho-

momorphism, 260
Duality for poset maps, 230
Dually atomic

lattice, 144
Dynkin diagram of Sym(n), 269

Ea,b, 238
E-basis, 202

Edge
bottom, 450
in a finite lattice, 441
side, 450
top, 450

En, 164
End F , 140
Endomorphism between structures, 137
Exchange property (EP), 154
ε-closed subset, 133
Equa-interior operator, 143

natural, 142
Equa-partition, 144
Equaclosure operator, 143
Equivalent closure systems, 123
Essential closed set, 184
Ex(A) (extreme points), 155
Expanding, 297
Exponent in a Coxeter group, 541
Extended permutohedron, 310, 316,

324, 333
Extensive, 297
Extreme point, 155

Face
of a cone, 402
of a convex polytope, 166
of a hyperplane arrangement, 408
semilattice, 425

Facet
lower, 406
of a cone, 402
upper, 406

Facet-defining hyperplane, 402
Fan

c-Cambrian, 525
complete, 404
in Rn, 404
normal, 470

F(e), 309
Fn, 238
ϕ̌ (interior operator), 298
Ficon A, 138
filP (w1 , . . . , wk), 33
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Finitary
closure operator, 103
poset, 411

Finite
embeddability property, 17
presentation, 29

Finitely
based algebra, 20
strong (between elements in a lat-

tice), 83
Forcing

join-irreducible elements, 441
edges in a lattice, 441
edges in a polygon, 450

Forcing order
on join-irreducible elements, 442

Forest
graph, 319
poset, 367

Form
Euclidean, 496
positive definite, 496

Forward chaining algorithm, 199
FP [C], 33
Frame of a planar modular lattice, 4
FreeK(ω), 139
Free(P, ≤ ,

∨
,
∧
), 32

Free(X,R), 29

g-convex, 332
G-geometry, 305
Galois adjunction, 230
Gazpacho identities, 256
G(A) (adjacency graph), 424
Generalized

convex shelling, 168
pseudo-permutohedron, 357
reflection, 495

group, 495
Generating (set of implications), 189
Generator

final in a Coxeter group, 536
initial in a Coxeter group, 536

Geodesically convex, 332

GI(A), 424
gm-unambiguous (graph), 332
Graph

gm-unambiguous, 332
block, 319
forest, 319
Kuratowski, 317
orientation, 525
tree, 319

Greedoid, 154
Group

Coxeter, 271, 489
generalized reflection, 495
reflection, 492
symmetric, 216

(Gzpm⃗), 257

Height of an element in a lattice, 449
h(x) (height of x), 452
HH-property, 484
Hn, 401
H+

n , 401
H−

n , 401
Homomorphism

between structures, 137
complete, 478
diagram, 544

Horizontal reading, 358
Horn

clause, 127
definite, 127
formula, 31, 127

HΣ, 456
Ht (reflecting hyperplane), 492
Husimi tree, 320
Hyperplane

arrangement, 303, 400
essential, 400
simplicial, 403

basic, 407
boundary, 402
facet-defining, 402
lower, 406
upper, 406
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Ideal in a partially defined lattice, 32
Idempotent, 297
Idl0 (P, ≤ ,

∨
,
∧
), Idl0 (P ), 32

Id(P, ≤ ), 174
idlP (w1 , . . . , wk), 33
In, 221
Incidence graph of a disjoint double

partition, 330
Increasing, 297
Inc(x,y), 330
Independent subset, 119
Induced

cycle, 319
path, 318

Inflation of lattices, 8
Inflationary, 297
Inherently nonfinitely based

algebra, 20
int(a) (a ⊆ poset), 329
int(a) (where a ⊆ In), 231
int(a) (where a ⊆ δE), 290
Interior

of a subset of In, 231
of a subset of δE , 290
operator, 298

Interpolation property, 291
Interval, 6

prime, 6
Inversion

in a Coxeter group, 509
of a permutation, 221
set of a permutation, 221, 520
set of a poset, 289

inv(σ), 221
inv(w) (w in Coxeter group), 516
inv(w) (where w ∈ L(m⃗)), 341
ι(w) (where w ∈ L(m⃗)), 343
Isometry (with respect to a form), 496
Isomorphic closure systems, 123
Isotone, 297
ITh(T ), 147

J′(w), 41
Jónsson property, 74

Jónsson-Kiefer Property, 150
J, 77
JiL, 230
Join cover, 41

minimal, 246
nonrefinable, 41
nontrivial, 41
very minimal, 246

Join representation, 61
canonical, 61
irredundant, 61
minimal, 61
minimal finite, 61
nontrivial, 61

Join-dependency relation, 243
Join-fitting, 251
Join-fundamental (pair of chains), 444
Join-prime, 42
Join-semidistributive

closure system, 198
element, 67
law, 60

J (R), 466
JΣ, 458
J(w), 42
J (x), 466

κ(w), 44
κd(w), 49
k†, 49
kerh, 137
Kernel

of a homomorphism, 137
of a map, 228
operator, 298

Kf , 88
Kn, 317
Kuratowski graph, 317
K(w), 47

L′ (derivative of L), 50
L[C] (doubling a subset), 8, 28
L[c] (doubling an element), 8
Λ (lattice of all varieties of lattices), 1
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Λ(R) (lower shards), 460
ΛV, 9
Largest extension of a finite join-semi-

distributive lattice, 160
Lattice∨

-generated by a subset, 117
c-Cambrian, 525
n-distributive, 18
join-semidistributive, 38
meet-semidistributive, 38
algebraic, 109
almost distributive, 8, 98
atomistic, 89
biatomic, 171
binomial, 340
bounded, 71, 77
Cambrian, 250, 269, 524
coatomistic, 148
completely join-semidistributive,

68
congruence normal, 87
congruence uniform, 442
dually atomic, 144
dually spatial, 131
extremal, 535
fermentable, 117
finitely presented, 29
locally distributive finite, 155
lower bounded, 71, 77
lower continuous, 68, 107
minimal simple, 16
near distributive, 8
Newman, 218
orthocomplemented, 223
orthomodular, 263
partially defined, 31
partition, 440
perfect, 115
planar, 3
polygonal, 448
proper lower bounded, 77
relation, 29
Scott continuous, 150
semidistributive, 6, 38

spatial, 18, 302
supersolvable, 212
transferable, 8
ultra-universal, 16
upper bounded, 71, 77
upper continuous, 107
weakly atomic, 50
weakly distributive, 10
with a geometric description, 131

Lattices of lattice paths, 340
LB, 79
LB(k), 95
Length

of a permutation, 226
of an element in a Coxeter group,

491
len(w) (w permutation), 226
Lilavati, 215
Line of a hyperplane arrangement, 493
Linear extension of a partial ordering,

367
Local

maximum in a path, 452
transitivity for multipermutations,

349
Longest element in a Coxeter group,

514
Loop

good (sequence of regions), 423
sequence of regions, 423

Lower
bounded

epimorphism, 46
homomorphism, 68
lattice, 71, 77

cover, 229
facet, 406, 460
finite

poset, 411
hyperplane, 406
pseudo-interval, 87
region of a shard, 457
shard, 460
shard of a α-cone, 472
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Lq(K), 118
L(R), 406
L ⋆C K (inflation), 8
L(m⃗), 339
Lv(V), 138
L(w), 44

M, 61
m-convex, 332
M(S), 111
M(a), 73
M -chain, 212
Meet cover, 41
Meet-fundamental (pair of chains), 444
Mf , 134
Minimal

cover with respect to a closure
operator, 189

join cover refinement property, 73
MiL, 230
Mk, 134
(M∧), 136
Model of a propositional formula, 128
Modular zigzag, 6
Monophonically convex, 332
Move

braid, 517
nil, 517

Meet-semidistributive law, 60
Multipermutation, 339
Municipal subset, 88

[n], 216
n-Carathéodory property, 208
ncc, 541
n-distributive lattice, 18
Newman lattice, 218
Non-binary part of a basis, 192
Non-redundant (expression for a cone),

402
Nonrefinable join representation, 36
Normal fan, 470
n-vector, 217, 232, 234

Occ(Σ, m⃗), 340

OD-graph, 246
One-line notation for permutations,

520
Open

relation, 224, 290
Optimized (ΣOE), 204
Order-convex, 229
Order-dimension of a poset, 294
Ordered

direct sequence, 207
iteration, 191

OrdP , 117
Orthocomplementation, 229
Orthocomplemented

lattice, 223
Orthogonal

with respect to a form, 496
Ortholattice, 229
Orthomodular

lattice, 263
Orthoposet, 229

Partial completion of a partial lattice,
53

Partially defined lattice, 31
Partition

in a poset, 327
lattice, 440
noncrossing, 555

Partn (partition lattice), 16
Path

chordless, 318
in a graph, 318
induced, 318

Permutation word, 216
Permutohedron, 231, 316, 324

extended, 310, 316, 324, 333
on n letters, 222
on a join-semilattice, 324
on a graph, 316
on a poset, 290

Perspectivity of intervals, 6, 459
Pf , 135
Pgm(G), 333
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Pg(G), 333
Pk, 135
PLB, 77
(P∧), 136
P∧, 42
P− (P poset with zero), 327
Pm(G), 333
Pn, 317
Polarized measure, 259

U -−, 259
Polygon

in a lattice, 448
move, 448

Polytope, 165
brick, 559
Stasheff, 217

Poset
branching, 334
connected, 415
crown-free, 293
doubled root, 548
finitary, 411
forest, 367
interval-finite, 475
lower finite, 411
of regions, 405
orthocomplemented, 229
ranked, 226
square-free, 290
well-founded, 335

Pos(H, B), 303, 405
Positive root, 515
P+ (P poset), 327
PP(n), 351
Preferential arrangement, 350
Prefix

in a Coxeter group, 491
order on a group with presenta-

tion, 491
Presentation, 29

finite, 29
Preservation of a form by a group, 496
pri,j(w) (where w ∈ L(m⃗)), 344
Projection of a multipermutation, 344

Projectivity of intervals, 459
Proper cut in a graph, 321
Pr(m⃗), 345
Pr′(m⃗), 380
PS(G), 333
P(E), 290
P∗(E), 292
Pseudo-interval

lower, 28
upper, 28

Pseudo-one, 144
Pseudo-permutation, 350
Pseudo-ultrafilter in a graph, 321
Pseudo-variety, 69
P(G), 316
P(n), 231
Pudlák-Tůma Property (PT), 85

QTh(V), 139
Quasi-identity, 138
Quasivariety

of lattices, 61
of structures, 138

Quotient order, 482
Quotient structure, 138

Rank
of a closure operator, 186
of a Coxeter group, 490
of a hyperplane arrangement, 400
of a term, 27
of an element of Free(P ), 42

Rank-two
biconvex

set of hyperplanes, 428
set of positive roots, 516

closure, 428
convex

set of hyperplanes, 428
set of positive roots, 516

move, 455
subarrangement, 407

Rays of an arrangement, 422
Rectangulation
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diagonal, 546
generic, 546

Reduced word in a Coxeter group, 491
Refinement

of a canonical basis, 212
of a subset, 61

Refines, 34
lower, 34
upper, 34

Reflecting hyperplane, 492
Reflection

cover, 513
generalized, 495
group, 492

with respect to a form, 497
in a Coxeter group, 272
left, 509
of a lattice in a class, 96

Reg(P,ϕ), 299
Reg(e), 309
Reg⊕P , 328
Region for a hyperplane arrangement,

303, 400
Regop(P,ϕ), 299
RegS, 324
Regular aggregated basis, 192
Relation

bipartite, 309
clopen, 224, 290, 309
closed, 224, 290, 308
in a Coxeter group, 490
join-dependency, 243
lattice, 29
open, 224, 290, 309

Relational quasilattice, 30
Relative

convex, 165
interior of a cone, 401

Relatively
biconvex subset, 303
convex subset, 303

Removal of a shard by a congruence,
461, 472

Residually small variety, 23

Respecting an implication, 128
Retraction, 23
Rgm(G), 333
Rg(G), 333
Rm(G), 333
Root

positive, 515
simple, 515
system

for a Coxeter group, 514
poset, 368

Rooted circuit, 170
RS(G), 333
(RSDm), 307
R(G), 316

Sash, 545
Saturation operator, 183
SD, 61
(SD∨), 6
(SD∗

∨), 60
SD∨(A), 64
(SDn

∨), 7
(SD∧), 6
(SDn

∧), 7
SDn, 8
Semidistributive

lattice, 6
variety, 6

Separating
hyperplane, 405
set of a region, 405

SB(Q), 407
S(R), 405
S(X,Y ), 303
Set-cover problem, 205
Sg∧(F), 106
Shard

digraph, 462
in a hyperplane, 456
intersection, 465
intersection order, 466
lower, 460
lower of a α-cone, 472
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poset, 462
Shortening for paths in a graph, 319
Side edge, 450
Σ(b, a,R), 523
Σ-component, 211
Σδ, 170
ΣFOE , 211
Σ-inference, 192
Σnb, 192
Signature of a structure, 137
Signed permutations, 272
Simple root, 515
Simplicial

cone, 402
crosscut, 483
hyperplane arrangement, 403

Si(V), 1
Size of a basis, 193, 198
sL(Σ), 193
S(n, k), 313
S(n,p), 313
Sortable element, 531, 533
Sorting word, 533
Spatial lattice, 302
Sp L, 107
Splitting identity, 262
Sp(PowX), 105
S ⊑ψ, 140
Square-free poset, 290
sR(Σ), 193
s(Σ), 193
Standard

element in a lattice, 178
homomorphism, 44
meet sequence terms, 6
parabolic subgroup, 536

Stasheff polytope, 217
Strong

between elements in a lattice, 83
extension

of a closure space, 161
of a lattice, 90

permutohedron on a poset, 292
Strongly

biconvex
set of hyperplanes, 426
subset, 303

clopen subset, 292
covered variety, 2

Subarrangement
rank-two, 407

SubP , 91
Subset

B-convex, 178
algebraic, 104
biconnected, 320
clopen in a closure space, 298
essential closed, 184
join generated, 64
lower, 229
meet generated, 64
order-convex, 229
Quasi-closed, 182
regular closed in a closure space,

299
regular open in a closure space,

299
relatively biconvex, 303
relatively convex, 303
strongly biconvex, 303
strongly clopen, 292
tight, 302
upper, 229

Substructure, 138
Subterm, 31
Subuniverse, 138
Super lattice, 93
Support in a Coxeter group, 551
△ (symmetric difference), 265
Sym(n), 216

Table
limit, 74
of a finite lattice, 240
of a pseudo-permutation, 352

Tamari lattice, 227
relative, 296

τ(b, a,R), 522
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Term
adequate, 35
lattice, 27

Term(P ), 39
θc (c-Cambrian congruence), 525
θE , 452
Tight

arrangement, 416
region, 416

tn(x, y, z) (standard meet sequence),
6

Top edge, 450
Torsion classes, 548
Transposition cypher, 215
Tree

graph, 319
Husimi, 320

Type of a structure, 137

UB, 79
UC-system, 198
Unique criticals, 198
Unit

expansion, 192
implication, 127

Up-directed family, 104
Upper

α-cone of a shard, 471
bounded

homomorphism, 68
lattice, 71, 77

cover, 230
facet, 406
hyperplane, 406
pseudo-interval, 87
region of a shard, 457

Upper bounded
epimorphism, 46

U(R), 406

V-condition, 259
Variety

congruence, 25
conjugate, 17

near distributive, 8
of structures, 138
residually small, 23
semidistributive, 6

(Veg1 ), 257
(Veg2 ), 257

(W), 34
w∗ (lower cover), 44
Way below relation (≪), 150
W -Catalan number, 541
w†, 46
WD∨, 10
WD∧, 10
Weak

Bruhat ordering
on a Coxeter group, 271
on permutations, 217

extension of a closure space, 161
Jónsson property, 80

Weakly
combinatorially isomorphic, 476
finitely definable, 10

Well-founded poset, 335
Whitman’s condition, 34
WI , 536
wI , 544
Window notation (in Bn), 273
Word Problem, 30

for a Coxeter group, 517
(W,A)-cover, 53
(W,A)-failure, 53
(W)-cover, 53
(W)-failure, 53
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Labbé, Jean-Philippe 557
Labelle, Gilbert 216
Lakser, Harry 22, 34, 38, 218



614 INDEX

Lange, Carsten E. M. C. 558, 559
Larman, David G. 179
Latapy, Matthieu 287, 350, 357, 358,
362, 382

Law, Shirley Elizabeth 560
Lawless, Nathan 14
Lawson, Jimmy D. 107, 230, 259, 295
Le Conte de Poly-Barbut, Claude 217,
243, 265, 268, 484, 557

Le, Minh Ha 357
Leclerc, Bruno 294
Lee, Jeh Gwon 8, 9, 22, 98
Leroux, Pierre 216
Libkin, Leonid 187
Liu, L. S.-C. 558
Lovász, László 154
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