Mutation-linear maps Nathan Reading NC State University FPSAC 2014, July 2, 2014 Mutation-linear algebra The mutation fan ### Linear algebra Linear algebra = the study of linear relations: formal finite linear combinations $\sum c_i \mathbf{v}_i$ that evaluate to $\mathbf{0}$. - $U \subseteq \mathbb{R}^n$ is independent if there are no nontrivial linear relations supported in U. - $U \subseteq \mathbb{R}^n$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists a linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. - A map $\eta: \mathbb{R}^n \to \mathbb{R}^m$ is linear if for every linear relation $\sum c_i \mathbf{v}_i$ in \mathbb{R}^n , the expression $\sum c_i \eta(\mathbf{v}_i)$ is a linear relation in \mathbb{R}^m . Distinguish a subset \mathcal{A} (the "active" linear relations) of all linear relations. Reformulate linear algebra in terms of \mathcal{A} . Distinguish a subset \mathcal{A} (the "active" linear relations) of all linear relations. Reformulate linear algebra in terms of \mathcal{A} . - $U \subseteq \mathbb{R}^n$ is independent if there are no nontrivial active linear relations supported in U. - $U \subseteq \mathbb{R}^n$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists an active linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. - $\eta: (\mathbb{R}^n, \mathcal{A}) \to (\mathbb{R}^m, \mathcal{A}')$ is linear if for each active linear relation $\sum c_i \mathbf{v}_i$ in \mathbb{R}^n , the expression $\sum c_i \eta(\mathbf{v}_i)$ is an active linear relation. That is, $\sum c_i \mathbf{v}_i \in \mathcal{A} \implies \sum c_i \eta(\mathbf{v}_i) \in \mathcal{A}'$. Distinguish a subset \mathcal{A} (the "active" linear relations) of all linear relations. Reformulate linear algebra in terms of \mathcal{A} . - $U \subseteq \mathbb{R}^n$ is independent if there are no nontrivial active linear relations supported in U. - $U \subseteq \mathbb{R}^n$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists an active linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. - $\eta: (\mathbb{R}^n, \mathcal{A}) \to (\mathbb{R}^m, \mathcal{A}')$ is linear if for each active linear relation $\sum c_i \mathbf{v}_i$ in \mathbb{R}^n , the expression $\sum c_i \eta(\mathbf{v}_i)$ is an active linear relation. That is, $\sum c_i \mathbf{v}_i \in \mathcal{A} \implies \sum c_i \eta(\mathbf{v}_i) \in \mathcal{A}'$. #### Comments: ullet Some conditions $\Longrightarrow \exists$ basis (usual Zorn's lemma argument). Distinguish a subset \mathcal{A} (the "active" linear relations) of all linear relations. Reformulate linear algebra in terms of \mathcal{A} . - $U \subseteq \mathbb{R}^n$ is independent if there are no nontrivial active linear relations supported in U. - $U \subseteq \mathbb{R}^n$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists an active linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. - $\eta: (\mathbb{R}^n, \mathcal{A}) \to (\mathbb{R}^m, \mathcal{A}')$ is linear if for each active linear relation $\sum c_i \mathbf{v}_i$ in \mathbb{R}^n , the expression $\sum c_i \eta(\mathbf{v}_i)$ is an active linear relation. That is, $\sum c_i \mathbf{v}_i \in \mathcal{A} \implies \sum c_i \eta(\mathbf{v}_i) \in \mathcal{A}'$. #### Comments: - ullet Some conditions $\Longrightarrow \exists$ basis (usual Zorn's lemma argument). - Generality here for clarity only. I have exactly 1 kind of example. ### Matrix mutation Let $B=(b_{ij})$ be $n\times n$ skew-symmetrizable integer matrix. (An exchange matrix.) Let $\mathbf{a}\in\mathbb{R}^n$ and let \widetilde{B} be $\begin{bmatrix} B\\\mathbf{a} \end{bmatrix}$ (i.e. B with an extra row \mathbf{a}). For $k\in\{1,\ldots,n\}$, the mutation of B in direction k is $B'=\mu_k(B)$ with entries given by $$b'_{ij} = \begin{cases} -b_{ij} & \text{if } k \in \{i, j\}; \\ b_{ij} + |b_{ik}|b_{kj} & \text{if } k \notin \{i, j\} \text{ and } b_{ik}b_{kj} > 0; \\ b_{ij} & \text{otherwise.} \end{cases}$$ Example: $$\begin{bmatrix} 0 & 0 & 1 & -1 \\ 0 & 0 & 2 & 0 \\ -1 & -1 & 0 & 1 \\ 1 & 0 & -3 & 0 \\ 0 & -2 & -1 & 1 \end{bmatrix} \xrightarrow{\mu_3} \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 2 \\ 1 & 1 & 0 & -1 \\ -2 & -3 & 3 & 0 \\ -1 & -3 & 1 & 1 \end{bmatrix}$$ For a sequence $\mathbf{k} = k_q, k_{q-1}, \dots, k_1$, similarly define $\mu_{\mathbf{k}}(B)$. ## Mutation maps $\eta_{\mathbf{k}}^{B}$ We continue with $\widetilde{B} = \begin{bmatrix} B \\ \mathbf{a} \end{bmatrix}$ and $\mathbf{k} = k_q, k_{q-1}, \dots, k_1$. Define $\eta_{\mathbf{k}}^B(\mathbf{a})$ to be the coefficient row of $\mu_{\mathbf{k}}(\widetilde{B})$. Concretely, for $\mathbf{k} = k$: $$\eta_k^B(\mathbf{a})=(a_1',\ldots,a_n')$$, where $$a'_j = \begin{cases} -a_k & \text{if } j = k; \\ a_j + a_k b_{kj} & \text{if } j \neq k, \ a_k \geq 0 \text{ and } b_{kj} \geq 0; \\ a_j - a_k b_{kj} & \text{if } j \neq k, \ a_k \leq 0 \text{ and } b_{kj} \leq 0; \\ a_j & \text{otherwise.} \end{cases}$$ η_k^B is linear in $\{\mathbf{a} \in \mathbb{R}^n : a_k \ge 0\}$ and linear in $\{\mathbf{a} \in \mathbb{R}^n : a_k \le 0\}$. The maps $\eta_{\mathbf{k}}^B$ are the mutation maps associated to B. They are piecewise-linear homeomorphisms of \mathbb{R}^n . Their inverses are also mutation maps. $$\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ a_1 & a_2 \end{bmatrix} \xrightarrow{\mu_1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ -a_1 & ? \end{bmatrix}$$ $$? = \begin{cases} a_2 & \text{if } a_1 \leq 0 \\ a_2 + a_1 & \text{if } a_1 \geq 0 \end{cases}$$ 1. Mutation-linear algebra ### B-coherent linear relations Let S be a finite set, let $(\mathbf{v}_i : i \in S)$ be vectors in \mathbb{R}^n and let $(c_i : i \in S)$ be real numbers. The formal expression $\sum_{i \in S} c_i \mathbf{v}_i$ is a *B*-coherent linear relation if $$\sum_{i\in S}c_i\eta_{\mathbf{k}}^B(\mathbf{v}_i)=\mathbf{0}.$$ holds for every finite sequence $\mathbf{k} = k_a, \dots, k_1$. In particular, $\sum_{i \in S} c_i \mathbf{v}_i$ is a linear relation in the usual sense. 1 ### B-coherent linear relations Let S be a finite set, let $(\mathbf{v}_i : i \in S)$ be vectors in \mathbb{R}^n and let $(c_i : i \in S)$ be real numbers. The formal expression $\sum_{i \in S} c_i \mathbf{v}_i$ is a *B*-coherent linear relation¹ if $$\sum_{i\in\mathcal{S}}c_i\eta_{\mathbf{k}}^B(\mathbf{v}_i)=\mathbf{0}.$$ holds for every finite sequence $\mathbf{k} = k_q, \dots, k_1$. In particular, $\sum_{i \in S} c_i \mathbf{v}_i$ is a linear relation in the usual sense. 1. Mutation-linear algebra ¹I'm fibbing. ## Mutation-linear algebra Write \mathbb{R}^B for the partial linear structure on \mathbb{R}^n whose active linear relations are the B-coherent linear relations. The study of \mathbb{R}^B is mutation-linear algebra. - $U \subseteq \mathbb{R}^B$ is independent if there are no nontrivial B-coherent linear relations supported in U. - $U \subseteq \mathbb{R}^B$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists a B-coherent linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. What I'm **not** going to talk about: Basis for \mathbb{R}^B = Universal geometric coefficients for cluster algebras associated to B. ## Mutation-linear algebra Write \mathbb{R}^B for the partial linear structure on \mathbb{R}^n whose active linear relations are the *B*-coherent linear relations. The study of \mathbb{R}^B is mutation-linear algebra. - $U \subseteq \mathbb{R}^B$ is independent if there are no nontrivial B-coherent linear relations supported in U. - $U \subseteq \mathbb{R}^B$ is spanning if for every $\mathbf{a} \in \mathbb{R}^n$, there exists a B-coherent linear relation $\mathbf{a} \sum c_i \mathbf{v}_i$ with $\{\mathbf{v}_i\} \subseteq U$. What I am going to talk about: Mutation-linear maps. • A map $\eta: \mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear if for every B-coherent linear relation $\sum c_i \mathbf{v}_i$, the expression $\sum c_i \eta(\mathbf{v}_i)$ is a B'-coherent linear relation. 1. Mutation-linear algebra 1. Mutation-linear algebra ### The mutation fan The example suggests an "easy" way to get *B*-coherent linear relations: Find vectors in the same domain of linearity of all mutation maps and make a linear relation among them. Define an equivalence relation \equiv^B on \mathbb{R}^n by setting $$\mathbf{a}_1 \equiv^B \mathbf{a}_2 \quad \iff \quad \text{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_1)) = \text{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_2)) \quad \forall \mathbf{k}.$$ sgn(a) is the vector of signs (-1,0,+1) of the entries of a. B-classes: equivalence classes of \equiv^B . **B**-cones: closures of B-classes. #### Mutation fan for B: The collection \mathcal{F}_B of all B-cones and all faces of B-cones. **Theorem** (R., 2011). \mathcal{F}_B is a complete fan (possibly with infinitely many cones). Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ ### The mutation fan and mutation-linear algebra A basis for \mathbb{R}^B is positive if, for every $\mathbf{a}=(a_1,\ldots,a_n)\in\mathbb{R}^n$, the unique B-coherent linear relation $\mathbf{a}-\sum_{i\in I}c_i\mathbf{b}_i$ has all $c_i\geq 0$. **Theorem** (R., 2014). If a positive basis exists for \mathbb{R}^B , then a map $\eta: \mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear if and only if for every *B*-cone *C*, the restriction $\eta|_C$ is a linear map into some *B'*-cone. ### The mutation fan and mutation-linear algebra A basis for \mathbb{R}^B is positive if, for every $\mathbf{a}=(a_1,\ldots,a_n)\in\mathbb{R}^n$, the unique B-coherent linear relation $\mathbf{a}-\sum_{i\in I}c_i\mathbf{b}_i$ has all $c_i\geq 0$. **Theorem** (R., 2014). If a positive basis exists for \mathbb{R}^B , then a map $\eta: \mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear if and only if for every *B*-cone *C*, the restriction $\eta|_C$ is a linear map into some *B'*-cone. Feel free to not worry about positive bases for \mathbb{R}^B . Just think of this as "If B is well-behaved, then..." We'll stay in the well-behaved case. ### Bijective mutation-linear maps We'll restrict our focus to bijective mutation-linear maps. (These are not necessarily mutation-linear isomorphisms.) We'll restrict our focus further to the question: When is the identity map $\mathbb{R}^B \to \mathbb{R}^{B'}$ mutation-linear? By the previous theorem: $\operatorname{id}:\mathbb{R}^B o\mathbb{R}^{B'}$ is mutation-linear if and only if \mathcal{F}_B refines $\mathcal{F}_{B'}$. This can fail. The surprise is that this actually happens often. A necessary* condition: B dominates B'. That is, b_{ij} and b'_{ij} weakly agree in sign and $|b_{ij}| \ge |b'_{ij}|$ for all i, j. # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_B Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\mathcal{F}_{\mathcal{B}'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ $\mathcal{F}_{\mathcal{B}'}$ # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ $\mathcal{F}_{B''}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ -1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B''}$ # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & 2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $B'' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ 3. When is the identity map mutation-linear? $\mathcal{F}_{B''}$ # Non-Example: $B = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ #### So far - Mutation maps: a family of piecewise linear maps given by matrix mutation. - B-coherent linear relations: Linear relations preserved by all mutation maps. - Mutation-linear maps $\mathbb{R}^B \to \mathbb{R}^{B'}$: Send *B*-coherent relations to *B'*-coherent relations. - Mutation fan F_B: Common domains of linearity of all mutation maps. For well-behaved B, mutation-linear maps are closely tied to mutation fans. - We are focusing on when id : $\mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear. This is if and only if \mathcal{F}_B refines $\mathcal{F}_{B'}$. Necessary: B dominates B'. #### The rest of the talk Some specific cases where id : $\mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear (i.e. \mathcal{F}_B refines $\mathcal{F}_{B'}$). - Finite type (\mathcal{F}_B is finite) acyclic: - \mathcal{F}_B is dual fan to generalized associahedron (the Cambrian fan, or equivalently the **g**-vector fan). - \mathcal{F}_B refines $\mathcal{F}_{B'}$ whenever B dominates B'. - Refinement relations arises from a lattice-quotient relationship between Cambrian lattices. - There is a related lattice-quotient relationship between weak orders. - Refinement relation suggests an algebraic relation between cluster algebras. - "Affine associahedron fans." - "Resection" of triangulated surfaces. ## Cambrian fans (finite type) Each B defines a Cartan matrix A. E.g. $$B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$ Coxeter fan: Defined by the reflecting hyperplanes of the Coxeter group W associated to A. Maximal cones \leftrightarrow elements of W. Cambrian fan: A certain coarsening of the Coxeter fan. Depends on the extra sign information that's in B (or equivalently, depends on a Coxeter element, or equivalently an orientation of the Coxeter diagram). Two ways to look at this: - ullet Coarsen according to a certain lattice congruence on W. - Coarsen according to the combinatorics of "sortable elements." For S_n , the normal fan to the usual associahedron. (In general, generalized associahedron.) ### Cambrian fans and mutation fans For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.) **Theorem** (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'. Domination relations among exchange matrices imply domination relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams. ### Cambrian fans and mutation fans For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.) **Theorem** (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'. Domination relations among exchange matrices imply domination relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams. **Example** (carried out incorrectly): ### Cambrian fans and mutation fans For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.) **Theorem** (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'. Domination relations among exchange matrices imply domination relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams. Example (carried out correctly): # Example: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ \mathcal{F}_{B} Example: $$B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ 3. When is the identity map mutation-linear? Example: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ # Example: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ 3. When is the identity map mutation-linear? Cluster variables: Generate the cluster algebra (not freely!). Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables. Therefore, if \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion $$\{\text{rays of } \mathcal{F}_{B'}\} \hookrightarrow \{\text{rays of } \mathcal{F}_B\}$$ Cluster variables: Generate the cluster algebra (not freely!). Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables. Therefore, if \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion $$\{\text{rays of } \mathcal{F}_{B'}\} \hookrightarrow \{\text{rays of } \mathcal{F}_B\}$$ Cluster variables: Generate the cluster algebra (not freely!). Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables. Therefore, if \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion $$\{\text{rays of } \mathcal{F}_{B'}\} \hookrightarrow \{\text{rays of } \mathcal{F}_B\}$$ Therefore there is a natural injective map on cluster variables. This extends (in all cases we have checked) to an embedding of $\mathcal{A}_0(B')$ as a subring of $\mathcal{A}_0(B)$. (You have to deal correctly with coefficients—make the map preserve **g**-vectors). Close algebraic relationships between different cluster algebras of the same rank are surprising a priori. ### Lattice homomorphisms between Cambrian lattices #### The Cambrian lattice Camb_B is: - A partial order on maximal cones in the Cambrian fan \mathcal{F}_B . The fan and the order interact very closely. - A lattice quotient—and a sublattice—of the weak order on the finite Coxeter group associated to B. One way to prove the refinement of fans is to show that there is a surjective lattice homomorphism from $Camb_B$ to $Camb_{B'}$. **Theorem** (R., 2012). This happens for all acyclic, finite-type B, B' with B dominating B'. ### Example: A_3 Tamari is a lattice quotient of B_3 Tamari ### Lattice homomorphisms between weak orders One way to prove that there is a surjective lattice homomorphism from $Camb_B$ to $Camb_{B'}$: Prove that there is a surjective lattice homomorphism between the corresponding weak orders. **Theorem** (R., 2012). If (W, S) and (W', S) are finite Coxeter systems such that W dominates W', then the weak order on W' is a lattice quotient of the weak order on W. Domination here means that the diagram of W' is obtained from the diagram of W by reducing edge-labels and/or erasing edges. ## Example: A_3 as a lattice quotient of B_3 (This is not S_3 as a lattice quotient of B_3 . It's S_4 .) ### Affine associahedron fan This is the "dual fan of affine associahedron" (except we don't have an affine associahedron). Joint with David Speyer: a Cambrian (**g**-vector) model of affine associahedron fan. Joint with Salvatore Stella: an almost-positive roots (**d**-vector) model of affine associahedron fan. **Observed and expected to be proved soon:** For B acyclic of affine Cartan type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'. (Necessarily in this case, B' is of finite type.) # Example: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 2 \\ 0 & -1 & 0 \end{bmatrix}$ \mathcal{F}_{B} Example: $$B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 2 \\ 0 & -1 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ 3. When is the identity map mutation-linear? Example: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 2 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ Example: $$B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 2 \\ 0 & -1 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ ### Triangulated surfaces Start with an orientable surface with boundary and some number of marked points. (Interior marked points called punctures.) Arcs are non-self-intersecting curves connecting marked points (up to isotopy). A triangulation T is a maximal set of non-intersecting arcs. This cuts the surface into triangles. Number the arcs $1, \ldots, n$. Signed adjacency matrix $B(T) = [b_{ij}]$ of a triangulation: A triangle with arc i preceding arc j clockwise around a triangle contributes +1 to b_{ij} . Counterclockwise contributes -1. (Fomin, Shapiro, Thurston) ### Signed adjacency matrix example ### Resecting a triangulated surface on an edge B: the signed adjacency matrix of a triangulated surface. B': the signed adjacency matrix for a surface obtained by resection, **Proposition.*** B dominates B'. **Theorem.** (R., 2013) Assuming the Null Tangle Property, id: $\mathbb{R}^B \to \mathbb{R}^{B'}$ is mutation-linear. Null Tangle Property: Probably true in many cases but not in general. Known for "polynomial growth" cases, for 1-puctured torus and 4-punctured sphere (the latter is joint with Barnard, Meehan, Polster). ### Example This is a resection on arc 1. ### Example This is a resection on arc 1. This is the mutation-fan refinement example from earlier. ## Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ \mathcal{F}_{B} Example: $$B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\mathcal{F}_{\mathcal{B}'}$ 3. When is the identity map mutation-linear? # Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ ### Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & -2 & 0 \end{bmatrix}$ $\mathcal{F}_{B'}$ #### Curves and shear coordinates Allowable curves: Closed curves or curves that on each end, either spiral in to a marked point, or hit the boundary, with some techical conditions. (Cf. unbounded measured laminations.) Given a triangulation with arcs numbered $1, \ldots, n$, each allowable curve λ has shear coordinates, a vector in \mathbb{R}^n . For the i^{th} entry, we consider intersections of λ with the i^{th} arc. Nonzero contributions: ### The Null Tangle Property A tangle: finite weighted collection Ξ of distinct allowable curves. Shear coordinates of Ξ : weighted sum of the shear coordinates. Null tangle: shear coordinates zero with respect to every triangulation*. The Null Tangle Property: A null tangle has all weights zero. **Theorem** (R., 2012). The shear coordinates of allowable curves are a (positive, integral) basis for B(T) if and only if the Null Tangle Property holds. **Theorem** (R., 2012). The Null Tangle Property holds for a disk with ≤ 2 punctures, for an annulus with ≤ 1 puncture, for a sphere with three boundary components and no punctures, and for the once-punctured torus. **Theorem** (Barnard, Meehan, Polster, R., 2014). Also for a 4-punctured sphere.