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Linear algebra

Linear algebra = the study of linear relations:

formal finite linear combinations > ¢jv; that evaluate to 0.

e U C R" is independent if there are no nontrivial linear
relations supported in U.

e U C R" is spanning if for every a € R", there exists a linear
relation a — > ¢jv; with {v;} C U.

e A map n:R"” — R™is linear if for every linear relation > cjv;
in R”, the expression ) ¢;jn(v;) is a linear relation in R™.
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Partial linear structures

Distinguish a subset A (the “active” linear relations) of all linear
relations. Reformulate linear algebra in terms of A.
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Partial linear structures

Distinguish a subset A (the “active” linear relations) of all linear
relations. Reformulate linear algebra in terms of A.

e U C R”" is independent if there are no nontrivial active linear
relations supported in U.

e U C R" is spanning if for every a € R", there exists an active
linear relation a — > c;v; with {v;} C U.

e 1: (R" A) — (R™ A) is linear if for each active linear
relation Y ¢jv; in R", the expression Y ¢in(v;) is an active
linear relation. Thatis, > v, € A = > cin(v;) € A’

Comments:
e Some conditions == 3 basis (usual Zorn's lemma argument).
e Generality here for clarity only. | have exactly 1 kind of example.
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Matrix mutation

Let B = (bjj) be n x n skew-symmetrizable integer matrix.

(An exchange matrix.) Let a € R” and let B be [B] (i.e. B with
an extra row a). For k € {1,..., n}, the mutation of B in direction
kis B = uk(B) with entries given by

—bjj if ke {ij};
/ . -
bij = § b + |bi|by; if k ¢ {i,j} and biby; > 0;
b,-j otherwise.
0 0 1 -1 0 0 -1 0
0 0 2 0 0 0 -2 2
Example: | =1 -1 0 1 | <2 1 1 0 -1
1 0 -3 0 2 -3 3 0
0 -2 -1 1 1 -3 1 1

For a sequence k = kg, kq—1, . . ., k1, similarly define u(B).
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Mutation maps 1

We continue with B = [B] and k = kg, kg_1, - - ., k1. Define 7 (a)
to be the coefficient row of uk(B). Concretely, for k = k:

nB(a) = (a,...,a}), where
—ak if j = k;
J ) atakby ifj#k a=>0and by >0;
7 ) aj—akby ifj# k, ax <0 and by <O0;
aj otherwise.

nB is linear in {a € R": ax > 0} and linear in {a € R" : a, < 0}.

The maps nf are the mutation maps associated to B.
They are piecewise-linear homeomorphisms of R”.
Their inverses are also mutation maps.
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Example: B =] 9 {]

o 11 I 0 -1
-1 0 — 1 0
ar a2 —a ?

2 _ an if a; < 0
o a+a ifap>0

B
n
U

L
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B-coherent linear relations

Let S be a finite set, let (v; : i € S) be vectors in R" and let
(ci: i € S) be real numbers.

The formal expression Eies GiV; is a B-coherent linear relation if

Z C,"I]kB(V,') =0.

ieS

holds for every finite sequence k = kg, ..., ki.

In particular, ) ;s cjv; is a linear relation in the usual sense.

1
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B-coherent linear relations

Let S be a finite set, let (v; : i € S) be vectors in R" and let
(ci: i € S) be real numbers.

The formal expression ). o civ; is a B-coherent linear relation? if

ieS
Z C,"I]kB(V,') =0.
i€eS

holds for every finite sequence k = kg, ..., ki.

In particular, ) ;s cjv; is a linear relation in the usual sense.

'm fibbing.
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Mutation-linear algebra

Write RE for the partial linear structure on R” whose active linear
relations are the B-coherent linear relations. The study of RE is
mutation-linear algebra.

e UCRB s independent if there are no nontrivial B-coherent
linear relations supported in U.

e U C RB is spanning if for every a € R, there exists a
B-coherent linear relation a — ) ¢jv; with {v;} C U.

What I'm not going to talk about: Basis for RE = Universal
geometric coefficients for cluster algebras associated to B.
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Mutation-linear algebra

Write RE for the partial linear structure on R” whose active linear

relations are the B-coherent linear relations. The study of RE is
mutation-linear algebra.

e UCRB s independent if there are no nontrivial B-coherent
linear relations supported in U.
e U C RB is spanning if for every a € R, there exists a
B-coherent linear relation a — > c;v; with {v;} C U.
What | am going to talk about: Mutation-linear maps.

e Amapn:RE = RE" is mutation-linear if for every

B-coherent linear relation ) ¢jv;, the expression > ¢in(v;) is
a B’-coherent linear relation.
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Example: B =] 9 {]
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Example: B=[ 9 }]

B
e

LB

lgebra
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Example: B=[_9 }]

"

LB

Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.
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Example: B =] 9 {]

"

LB

Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.
This is a positive basis!

1. Mutation-linear algebra

B
n
UN




The mutation fan

The example suggests an “easy” way to get B-coherent linear
relations: Find vectors in the same domain of linearity of all
mutation maps and make a linear relation among them.

Define an equivalence relation =& on R” by setting

ai=Pay — sgn(nf(a1)) =sgn(n(az)) vk

sgn(a) is the vector of signs (—1,0,+1) of the entries of a.

B-classes: equivalence classes of =B.
B-cones: closures of B-classes.

Mutation fan for B:
The collection Fg of all B-cones and all faces of B-cones.

Theorem (R., 2011). Fp is a complete fan (possibly with
infinitely many cones).
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The mutation fan and mutation-linear algebra

A basis for RE is positive if, for every a = (a1, ...,a,) € R", the
unique B-coherent linear relation a — Zie, ¢ib; has all ¢; > 0.

Theorem (R., 2014). If a positive basis exists for RE, then a map
n: RE — RB' is mutation-linear if and only if for every B-cone C,
the restriction n|¢ is a linear map into some B’-cone.
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The mutation fan and mutation-linear algebra

A basis for RE is positive if, for every a = (a1, ...,a,) € R", the
unique B-coherent linear relation a — Zie, ¢ib; has all ¢; > 0.

Theorem (R., 2014). If a positive basis exists for RE, then a map
n: RE — RB' is mutation-linear if and only if for every B-cone C,
the restriction n|¢ is a linear map into some B’-cone.

Feel free to not worry about positive bases for RE. Just think of
this as “If B is well-behaved, then...”

We'll stay in the well-behaved case.
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Bijective mutation-linear maps

We'll restrict our focus to bijective mutation-linear maps.
(These are not necessarily mutation-linear isomorphisms.)

We'll restrict our focus further to the question:

When is the identity map RE — RB’ mutation-linear?

By the previous theorem:
id : RB — RB’ is mutation-linear if and only if Fpg refines Fgr.

This can fail. The surprise is that this actually happens often.

A necessary* condition: B dominates B’.

That is, b and bf; weakly agree in sign and |b;| > |by| for all i, j.

3. When is the identity map mutation-linear? 12
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Example: B = [72 j _g}
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Example: 5= [ -2

2
0
2
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0 2
Example: B:[fg 0

.,FB/
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Example: 5= [ -2
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f//
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Non-Example: B = [-? (1)

FB Fgr

3. When is the identity map mutation-linear? 14



e Mutation maps: a family of piecewise linear maps given by
matrix mutation.

e B-coherent linear relations: Linear relations preserved by all
mutation maps.

e Mutation-linear maps RE — RE’: Send B-coherent relations
to B’-coherent relations.

e Mutation fan Fg: Common domains of linearity of all
mutation maps. For well-behaved B, mutation-linear maps are
closely tied to mutation fans.

e We are focusing on when id : RE — RE' is mutation-linear.
This is if and only if Fg refines Fpgr.

Necessary: B dominates B’.
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The rest of the talk

Some specific cases where id : RE — RE is mutation-linear
(i.e. Fp refines Fpr).

e Finite type (Fp is finite) acyclic:

e Fg is dual fan to generalized associahedron (the Cambrian fan,
or equivalently the g-vector fan).

e Fpg refines Fg' whenever B dominates B’.

e Refinement relations arises from a lattice-quotient relationship
between Cambrian lattices.

e There is a related lattice-quotient relationship between weak
orders.

e Refinement relation suggests an algebraic relation between
cluster algebras.

e “Affine associahedron fans.”

e "Resection” of triangulated surfaces.

3. When is the identity map mutation-linear? 16



Cambrian fans (finite type)

Each B defines a Cartan matrix A.

0 10 2-1 0
Eg. B= [—2 0 1} - A= [_2 2 —1}
0-10 0-1 2

Coxeter fan: Defined by the reflecting hyperplanes of the Coxeter
group W associated to A. Maximal cones <> elements of W.

Cambrian fan: A certain coarsening of the Coxeter fan. Depends
on the extra sign information that's in B (or equivalently, depends
on a Coxeter element, or equivalently an orientation of the Coxeter
diagram). Two ways to look at this:

e Coarsen according to a certain lattice congruence on W.

e Coarsen according to the combinatorics of “sortable elements.”

For Sy, the normal fan to the usual associahedron. (In general,
generalized associahedron.)
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Cambrian fans and mutation fans

For B acyclic of finite type, Fg is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, Fg refines Fp/
if and only if B dominates B'.

Domination relations among exchange matrices imply domination
relations among Cartan matrices. So the theorem is a statement
that refinement relations exist among Cambrian fans when we
decrease edge-labels (or erase edges) on Coxeter diagrams.
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Cambrian fans and mutation fans

For B acyclic of finite type, Fpg is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, Fg refines Fp/
if and only if B dominates B'.
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Example: B:[—g é?]
0-10
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Example: 5=|-2

1
0
1

0
]
0
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Ring homomorphisms of cluster algebras (finite type)

Cluster variables: Generate the cluster algebra (not freely!).
Rays of the mutation fan Fpg are in bijection with cluster variables.
Therefore, if Fg refines Fg/, there is an inclusion

{rays of Fp/} — {rays of Fg}
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Ring homomorphisms of cluster algebras (finite type)
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Ring homomorphisms of cluster algebras (finite type)

Cluster variables: Generate the cluster algebra (not freely!).
Rays of the mutation fan Fpg are in bijection with cluster variables.
Therefore, if Fg refines Fg/, there is an inclusion

{rays of Fg/} — {rays of Fp}

Therefore there is a natural injective map on cluster variables.
This extends (in all cases we have checked) to an embedding of
Ao(B’) as a subring of A(B). (You have to deal correctly with
coefficients—make the map preserve g-vectors).

Close algebraic relationships between different cluster algebras of
the same rank are surprising a priori.
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Lattice homomorphisms between Cambrian lattices

The Cambrian lattice Cambg is:
e A partial order on maximal cones in the Cambrian fan Fpg.
The fan and the order interact very closely.

e A lattice quotient—and a sublattice—of the weak order
on the finite Coxeter group associated to B.

One way to prove the refinement of fans is to show that there is a
surjective lattice homomorphism from Cambg to Cambg:.

Theorem (R., 2012). This happens for all acyclic, finite-type B, B/
with B dominating B’.
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Example: A3 Tamari is a lattice quotient of B3 Tamari
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Lattice homomorphisms between weak orders

One way to prove that there is a surjective lattice homomorphism
from Cambg to Cambg::

Prove that there is a surjective lattice homomorphism between the
corresponding weak orders.

Theorem (R., 2012). If (W,S) and (W', S) are finite Coxeter
systems such that W dominates W’, then the weak order on W’ is
a lattice quotient of the weak order on W.

Domination here means that the diagram of W’ is obtained from
the diagram of W by reducing edge-labels and/or erasing edges.
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Example: A3 as a lattice quotient of B

(This is not S3 as a lattice quotient of Bs. It's S4.)
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Affine associahedron fan

This is the “dual fan of affine associahedron” (except we don't
have an affine associahedron).

Joint with David Speyer: a Cambrian (g-vector) model of affine
associahedron fan.

Joint with Salvatore Stella: an almost-positive roots (d-vector)
model of affine associahedron fan.

Observed and expected to be proved soon: For B acyclic of
affine Cartan type, Fg refines Fg: if and only if B dominates B’.
(Necessarily in this case, B is of finite type.)
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Example: 5=|-2

10
02}
10
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Triangulated surfaces

Start with an orientable surface with boundary and some number
of marked points. (Interior marked points called punctures.)

Arcs are non-self-intersecting curves connecting marked points (up
to isotopy).

A triangulation T is a maximal set of non-intersecting arcs. This
cuts the surface into triangles. Number the arcs 1,..., n.

Signed adjacency matrix B(T) = [bj] of a triangulation:
A triangle with arc i preceding arc j clockwise around a triangle
contributes +1 to b;;. Counterclockwise contributes —1.

(Fomin, Shapiro, Thurston)
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Signed adjacency matrix example

Torus: Annulus
AN
73
1 9 1
N AN
~ ~
N\ 3
7
0 2-2 0 1-1
[72 0 2] [—1 0 2}
2-2 0 1-2 0
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Resecting a triangulated surface on an edge

« % «

B: the signed adjacency matrix of a triangulated surface.
B’: the signed adjacency matrix for a surface obtained by resection,

Proposition.* B dominates B’.

Theorem. (R., 2013) Assuming the Null Tangle Property,
id : R — RB' is mutation-linear.

Null Tangle Property: Probably true in many cases but not in
general. Known for “polynomial growth” cases, for 1-puctured
torus and 4-punctured sphere (the latter is joint with Barnard,
Meehan, Polster).
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Example

This is a resection on arc 1.

Torus: Annulus
N\
73
1 9 1

N AN

~N N
\ 3
7

[ —
I\.)ll)O
I|\)OI\J
ONN
[ E—
[ —
—ho
bor
OMll—l
[E—

3. When is the identity map mutation-linear? 30



Example

This is a resection on arc 1.

Torus: Annulus

NN
V=
AN N
77

0 2-2 0 1-1
[—2 0 2] [—1 0 2}
2-2 0 1-2 0

This is the mutation-fan refinement example from earlier.
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Curves and shear coordinates

Allowable curves: Closed curves or curves that on each end, either
spiral in to a marked point, or hit the boundary, with some techical
conditions. (Cf. unbounded measured laminations.)

Given a triangulation with arcs numbered 1,..., n, each allowable
curve X has shear coordinates, a vector in R". For the it" entry, we
consider intersections of A with the it" arc. Nonzero contributions:

+1 -1
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The Null Tangle Property

A tangle: finite weighted collection = of distinct allowable curves.
Shear coordinates of =: weighted sum of the shear coordinates.
Null tangle: shear coordinates zero with respect to every
triangulation®.

The Null Tangle Property: A null tangle has all weights zero.

Theorem (R., 2012). The shear coordinates of allowable curves
are a (positive, integral) basis for B(T) if and only if the Null
Tangle Property holds.

Theorem (R., 2012). The Null Tangle Property holds for a disk
with < 2 punctures, for an annulus with < 1 puncture, for a sphere
with three boundary components and no punctures, and for the
once-punctured torus.

Theorem (Barnard, Meehan, Polster, R., 2014). Also for a
4-punctured sphere.
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Thanks for listening.
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