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Linear algebra

Linear algebra = the study of linear relations:

formal finite linear combinations
∑

civi that evaluate to 0.

• U ⊆ Rn is independent if there are no nontrivial linear
relations supported in U.

• U ⊆ Rn is spanning if for every a ∈ Rn, there exists a linear
relation a−

∑
civi with {vi} ⊆ U.

• A map η : Rn → Rm is linear if for every linear relation
∑

civi
in Rn, the expression

∑
ciη(vi ) is a linear relation in Rm.

1. Mutation-linear algebra 1

.



Partial linear structures

Distinguish a subset A (the “active” linear relations) of all linear
relations. Reformulate linear algebra in terms of A.

• U ⊆ Rn is independent if there are no nontrivial active linear
relations supported in U.

• U ⊆ Rn is spanning if for every a ∈ Rn, there exists an active
linear relation a−

∑
civi with {vi} ⊆ U.

• η : (Rn,A)→ (Rm,A′) is linear if for each active linear
relation

∑
civi in Rn, the expression

∑
ciη(vi ) is an active

linear relation. That is,
∑

civi ∈ A =⇒
∑

ciη(vi ) ∈ A′.

Comments:
• Some conditions =⇒ ∃ basis (usual Zorn’s lemma argument).

• Generality here for clarity only. I have exactly 1 kind of example.
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Matrix mutation

Let B = (bij) be n × n skew-symmetrizable integer matrix.

(An exchange matrix.) Let a ∈ Rn and let B̃ be [ Ba ] (i.e. B with
an extra row a). For k ∈ {1, . . . , n}, the mutation of B in direction
k is B ′ = µk(B) with entries given by

b′ij =


−bij if k ∈ {i , j};

bij + |bik |bkj if k /∈ {i , j} and bikbkj > 0;

bij otherwise.

Example:


0 0 1 −1
0 0 2 0
−1 −1 0 1

1 0 −3 0
0 −2 −1 1

 µ3←→


0 0 −1 0
0 0 −2 2
1 1 0 −1
−2 −3 3 0
−1 −3 1 1


For a sequence k = kq, kq−1, . . . , k1, similarly define µk(B).
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Mutation maps ηBk

We continue with B̃ = [ Ba ] and k = kq, kq−1, . . . , k1. Define ηBk (a)

to be the coefficient row of µk(B̃). Concretely, for k = k:

ηBk (a) = (a′1, . . . , a
′
n), where

a′j =


−ak if j = k ;
aj + akbkj if j 6= k , ak ≥ 0 and bkj ≥ 0;
aj − akbkj if j 6= k , ak ≤ 0 and bkj ≤ 0;
aj otherwise.

ηBk is linear in {a ∈ Rn : ak ≥ 0} and linear in {a ∈ Rn : ak ≤ 0}.

The maps ηBk are the mutation maps associated to B.
They are piecewise-linear homeomorphisms of Rn.
Their inverses are also mutation maps.
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Example: B = [ 0 1
−1 0 ]

 0 1
−1 0
a1 a2

 µ1−→
 0 −1

1 0
−a1 ?


? =

{
a2 if a1 ≤ 0
a2 + a1 if a1 ≥ 0

ηB1−→
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B-coherent linear relations

Let S be a finite set, let (vi : i ∈ S) be vectors in Rn and let
(ci : i ∈ S) be real numbers.

The formal expression
∑

i∈S civi is a B-coherent linear relation

1

if∑
i∈S

ciη
B
k (vi ) = 0.

holds for every finite sequence k = kq, . . . , k1.

In particular,
∑

i∈S civi is a linear relation in the usual sense.

1

I’m fibbing.
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Mutation-linear algebra

Write RB for the partial linear structure on Rn whose active linear
relations are the B-coherent linear relations. The study of RB is
mutation-linear algebra.

• U ⊆ RB is independent if there are no nontrivial B-coherent
linear relations supported in U.

• U ⊆ RB is spanning if for every a ∈ Rn, there exists a
B-coherent linear relation a−

∑
civi with {vi} ⊆ U.

What I’m not going to talk about: Basis for RB = Universal
geometric coefficients for cluster algebras associated to B.

What I am going to talk about: Mutation-linear maps.

• A map η : RB → RB′
is mutation-linear if for every

B-coherent linear relation
∑

civi , the expression
∑

ciη(vi ) is
a B ′-coherent linear relation.
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Example: B = [ 0 1
−1 0 ]

ηB1−→

↓ ηB2

Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.

This is a positive basis!

1. Mutation-linear algebra 8

.



Example: B = [ 0 1
−1 0 ]

ηB1−→

↓ ηB2

Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.

This is a positive basis!

1. Mutation-linear algebra 8

.



Example: B = [ 0 1
−1 0 ]

ηB1−→

↓ ηB2

Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.

This is a positive basis!

1. Mutation-linear algebra 8

.



Example: B = [ 0 1
−1 0 ]

ηB1−→

↓ ηB2
Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.

This is a positive basis!

1. Mutation-linear algebra 8

.



Example: B = [ 0 1
−1 0 ]

ηB1−→

↓ ηB2
Each map is linear on
each colored region.

A basis for B: A nonzero
vector in each of the
5 rays defining regions.
This is a positive basis!

1. Mutation-linear algebra 8

.



The mutation fan

The example suggests an “easy” way to get B-coherent linear
relations: Find vectors in the same domain of linearity of all
mutation maps and make a linear relation among them.

Define an equivalence relation ≡B on Rn by setting

a1 ≡B a2 ⇐⇒ sgn(ηBk (a1)) = sgn(ηBk (a2)) ∀k.

sgn(a) is the vector of signs (−1, 0,+1) of the entries of a.

B-classes: equivalence classes of ≡B .
B-cones: closures of B-classes.

Mutation fan for B:
The collection FB of all B-cones and all faces of B-cones.

Theorem (R., 2011). FB is a complete fan (possibly with
infinitely many cones).
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Example: B =
[

0 2 −2
−2 0 2

2 −2 0

]
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The mutation fan and mutation-linear algebra

A basis for RB is positive if, for every a = (a1, . . . , an) ∈ Rn, the
unique B-coherent linear relation a−

∑
i∈I cibi has all ci ≥ 0.

Theorem (R., 2014). If a positive basis exists for RB , then a map
η : RB → RB′

is mutation-linear if and only if for every B-cone C ,
the restriction η|C is a linear map into some B ′-cone.

Feel free to not worry about positive bases for RB . Just think of
this as “If B is well-behaved, then. . . ”

We’ll stay in the well-behaved case.
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Bijective mutation-linear maps

We’ll restrict our focus to bijective mutation-linear maps.
(These are not necessarily mutation-linear isomorphisms.)

We’ll restrict our focus further to the question:

When is the identity map RB → RB′
mutation-linear?

By the previous theorem:

id : RB → RB′
is mutation-linear if and only if FB refines FB′ .

This can fail. The surprise is that this actually happens often.

A necessary∗ condition: B dominates B ′.

That is, bij and b′ij weakly agree in sign and |bij | ≥ |b′ij | for all i , j .

3. When is the identity map mutation-linear? 12
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Example: B =
[

0 2 −2
−2 0 2
2 −2 0

]
B ′ =

[
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−1 0 2
1 −2 0

]
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−1 0 1
1 −1 0

]

FB
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Non-Example: B =
[

0 1 −1
−1 0 1
1 −1 0

]
B ′ =

[
0 1 0
−1 0 1
0 −1 0

]

FB FB′
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So far

• Mutation maps: a family of piecewise linear maps given by
matrix mutation.

• B-coherent linear relations: Linear relations preserved by all
mutation maps.

• Mutation-linear maps RB → RB′
: Send B-coherent relations

to B ′-coherent relations.

• Mutation fan FB : Common domains of linearity of all
mutation maps. For well-behaved B, mutation-linear maps are
closely tied to mutation fans.

• We are focusing on when id : RB → RB′
is mutation-linear.

This is if and only if FB refines FB′ .
Necessary: B dominates B ′.
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The rest of the talk

Some specific cases where id : RB → RB′
is mutation-linear

(i.e. FB refines FB′).

• Finite type (FB is finite) acyclic:

• FB is dual fan to generalized associahedron (the Cambrian fan,
or equivalently the g-vector fan).

• FB refines FB′ whenever B dominates B ′.
• Refinement relations arises from a lattice-quotient relationship

between Cambrian lattices.
• There is a related lattice-quotient relationship between weak

orders.

• Refinement relation suggests an algebraic relation between
cluster algebras.

• “Affine associahedron fans.”

• “Resection” of triangulated surfaces.
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Cambrian fans (finite type)

Each B defines a Cartan matrix A.

E.g. B =
[

0 1 0
−2 0 1
0 −1 0

]
→ A =

[ 2 −1 0
−2 2 −1
0 −1 2

]
Coxeter fan: Defined by the reflecting hyperplanes of the Coxeter
group W associated to A. Maximal cones ↔ elements of W .

Cambrian fan: A certain coarsening of the Coxeter fan. Depends
on the extra sign information that’s in B (or equivalently, depends
on a Coxeter element, or equivalently an orientation of the Coxeter
diagram). Two ways to look at this:
• Coarsen according to a certain lattice congruence on W .
• Coarsen according to the combinatorics of “sortable elements.”

For Sn, the normal fan to the usual associahedron. (In general,
generalized associahedron.)
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Cambrian fans and mutation fans

For B acyclic of finite type, FB is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, FB refines FB′

if and only if B dominates B ′.

Domination relations among exchange matrices imply domination
relations among Cartan matrices. So the theorem is a statement
that refinement relations exist among Cambrian fans when we
decrease edge-labels (or erase edges) on Coxeter diagrams.

Example (carried out incorrectly):
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Ring homomorphisms of cluster algebras (finite type)

Cluster variables: Generate the cluster algebra (not freely!).

Rays of the mutation fan FB are in bijection with cluster variables.

Therefore, if FB refines FB′ , there is an inclusion

{rays of FB′} ↪−→ {rays of FB}

Therefore there is a natural injective map on cluster variables.
This extends (in all cases we have checked) to an embedding of
A0(B ′) as a subring of A0(B). (You have to deal correctly with
coefficients—make the map preserve g-vectors).

Close algebraic relationships between different cluster algebras of
the same rank are surprising a priori.
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Cluster variables: Generate the cluster algebra (not freely!).

Rays of the mutation fan FB are in bijection with cluster variables.

Therefore, if FB refines FB′ , there is an inclusion

{rays of FB′} ↪−→ {rays of FB}

Therefore there is a natural injective map on cluster variables.
This extends (in all cases we have checked) to an embedding of
A0(B ′) as a subring of A0(B). (You have to deal correctly with
coefficients—make the map preserve g-vectors).

Close algebraic relationships between different cluster algebras of
the same rank are surprising a priori.
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Lattice homomorphisms between Cambrian lattices

The Cambrian lattice CambB is:
• A partial order on maximal cones in the Cambrian fan FB .

The fan and the order interact very closely.

• A lattice quotient—and a sublattice—of the weak order
on the finite Coxeter group associated to B.

One way to prove the refinement of fans is to show that there is a
surjective lattice homomorphism from CambB to CambB′ .

Theorem (R., 2012). This happens for all acyclic, finite-type B,B ′

with B dominating B ′.
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Example: A3 Tamari is a lattice quotient of B3 Tamari
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Lattice homomorphisms between weak orders

One way to prove that there is a surjective lattice homomorphism
from CambB to CambB′ :

Prove that there is a surjective lattice homomorphism between the
corresponding weak orders.

Theorem (R., 2012). If (W , S) and (W ′, S) are finite Coxeter
systems such that W dominates W ′, then the weak order on W ′ is
a lattice quotient of the weak order on W .

Domination here means that the diagram of W ′ is obtained from
the diagram of W by reducing edge-labels and/or erasing edges.
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Example: A3 as a lattice quotient of B3

(This is not S3 as a lattice quotient of B3. It’s S4.)
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Affine associahedron fan

This is the “dual fan of affine associahedron” (except we don’t
have an affine associahedron).

Joint with David Speyer: a Cambrian (g-vector) model of affine
associahedron fan.

Joint with Salvatore Stella: an almost-positive roots (d-vector)
model of affine associahedron fan.

Observed and expected to be proved soon: For B acyclic of
affine Cartan type, FB refines FB′ if and only if B dominates B ′.
(Necessarily in this case, B ′ is of finite type.)
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Example: B =
[

0 1 0
−2 0 2
0 −1 0

]

B ′ =
[

0 1 0
−2 0 1
0 −1 0

]

FB
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Triangulated surfaces

Start with an orientable surface with boundary and some number
of marked points. (Interior marked points called punctures.)

Arcs are non-self-intersecting curves connecting marked points (up
to isotopy).

A triangulation T is a maximal set of non-intersecting arcs. This
cuts the surface into triangles. Number the arcs 1, . . . , n.

Signed adjacency matrix B(T ) = [bij ] of a triangulation:
A triangle with arc i preceding arc j clockwise around a triangle
contributes +1 to bij . Counterclockwise contributes −1.

(Fomin, Shapiro, Thurston)
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Signed adjacency matrix example

Torus:

21 1

3

3

[ 0 2 −2
−2 0 2
2 −2 0

]

Annulus

1

2

3

[ 0 1 −1
−1 0 2
1 −2 0

]
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Resecting a triangulated surface on an edge

α → α

B: the signed adjacency matrix of a triangulated surface.
B ′: the signed adjacency matrix for a surface obtained by resection,

Proposition.∗ B dominates B ′.

Theorem. (R., 2013) Assuming the Null Tangle Property,
id : RB → RB′

is mutation-linear.

Null Tangle Property: Probably true in many cases but not in
general. Known for “polynomial growth” cases, for 1-puctured
torus and 4-punctured sphere (the latter is joint with Barnard,
Meehan, Polster).
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Example

This is a resection on arc 1.

Torus:

21 1

3

3

[ 0 2 −2
−2 0 2
2 −2 0

]

Annulus

1

2

3

[ 0 1 −1
−1 0 2
1 −2 0

]

This is the mutation-fan refinement example from earlier.
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Example

This is a resection on arc 1.

Torus:

21 1

3

3

[ 0 2 −2
−2 0 2
2 −2 0

]

Annulus

1

2

3

[ 0 1 −1
−1 0 2
1 −2 0

]
This is the mutation-fan refinement example from earlier.
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Example: B =
[

0 2 −2
−2 0 2
2 −2 0

]
B ′ =

[
0 1 −1
−1 0 2
1 −2 0

]
FB
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Curves and shear coordinates

Allowable curves: Closed curves or curves that on each end, either
spiral in to a marked point, or hit the boundary, with some techical
conditions. (Cf. unbounded measured laminations.)

Given a triangulation with arcs numbered 1, . . . , n, each allowable
curve λ has shear coordinates, a vector in Rn. For the i th entry, we
consider intersections of λ with the i th arc. Nonzero contributions:

+1 −1
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The Null Tangle Property

A tangle: finite weighted collection Ξ of distinct allowable curves.
Shear coordinates of Ξ: weighted sum of the shear coordinates.
Null tangle: shear coordinates zero with respect to every
triangulation∗.
The Null Tangle Property: A null tangle has all weights zero.

Theorem (R., 2012). The shear coordinates of allowable curves
are a (positive, integral) basis for B(T ) if and only if the Null
Tangle Property holds.

Theorem (R., 2012). The Null Tangle Property holds for a disk
with ≤ 2 punctures, for an annulus with ≤ 1 puncture, for a sphere
with three boundary components and no punctures, and for the
once-punctured torus.

Theorem (Barnard, Meehan, Polster, R., 2014). Also for a
4-punctured sphere.
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Thanks for listening.
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