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Abstract. We show that the poset of regions (with respect to a canonical base region)
of a supersolvable hyperplane arrangement is a congruence normal lattice. Specifically,
the poset of regions of a supersolvable arrangement of rank k is obtained via a sequence
of doublings from the poset of regions of a supersolvable arrangement of rank k − 1. An
explicit description of the doublings leads to a proof that the order dimension of the poset
of regions (again with respect to a canonical base region) of a supersolvable hyperplane
arrangement is equal to the rank of the arrangement. In particular, the order dimension of
the weak order on a finite Coxeter group of type A or B is equal to the number of generators.
The result for type A (the permutation lattice) was proven previously by Flath [11].

We show that the poset of regions of a simplicial arrangement is a semi-distributive
lattice, using the previously known result [2] that it is a lattice. A lattice is congruence
uniform (or “bounded” in the sense of McKenzie [18]) if and only if it is semi-distributive
and congruence normal [7]. Caspard, Le Conte de Poly-Barbut and Morvan [4] showed that
the weak order on a finite Coxeter group is congruence uniform. Inspired by the methods
of [4], we characterize congruence normality of a lattice in terms of edge-labelings. This
leads to a simple criterion to determine whether or not a given simplicial arrangement has
a congruence uniform lattice of regions. In the case when the criterion is satisfied, we
explicitly characterize the congruence lattice of the lattice of regions.

1. Main Results

We begin by listing the main results, with most definitions put off until Section 2.

Theorem 1. The poset of regions (with respect to a canonical base region) of a
supersolvable hyperplane arrangement is a congruence normal lattice.

A lattice is called congruence normal if it can be obtained from the one-element
lattice by a sequence of doublings of convex sets [6]. The doublings in Theorem 1
correspond to adjoining hyperplanes one by one to form the arrangement. Björner,
Edelman and Ziegler [2] showed that the poset of regions (with respect to a canonical
base region) of a supersolvable hyperplane arrangement is a lattice. The proof given
here of Theorem 1 provides a different proof of the lattice property, but uses several
key observations made in [2].
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The considerations used to prove Theorem 1 also lead to the following theorem:

Theorem 2. The order dimension of the poset of regions (with respect to a canon-
ical base region) of a supersolvable hyperplane arrangement is equal to the rank of
the arrangement.

In particular, the order dimension of the weak order (or Cayley lattice) on a
Coxeter group of type A or B is the number of generators. The result for the
permutation lattice (type A) was proven previously by Flath [11]. Theorem 2 does
not apply to other Coxeter groups, as the Coxeter arrangements of other types are
known not to be supersolvable [1].

The semi-distributive condition on a lattice is strictly weaker than the distribu-
tive condition, and is different from the notion of “meet-distributive” and “join-
distributive” lattices found in the study of convex geometries [10].

Theorem 3. The poset of regions (with respect to any base region) of a simplicial
hyperplane arrangement is a semi-distributive lattice.

Björner, Edelman and Ziegler [2] proved previously that the poset of regions of a
simplicial arrangement is a lattice, and we do not give a new proof of that fact. Le
Conte de Poly-Barbut [17] proved that the weak order on a finite Coxeter group is
a semi-distributive lattice. Duquenne and Cherfouh [8] had previously proven that
weak order on Coxeter groups of type A is a semi-distributive lattice. The proof
given here of Theorem 3 incorporates elements of Le Conte de Poly-Barbut’s proof
and elements of the proof of the lattice property in [2].

A lattice that is both congruence normal and semi-distributive is called congru-
ence uniform or bounded. This use of the term “bounded” conflicts with another
usage of the term: a poset with a unique minimal element and a unique maximal
element is often called bounded. Therefore, throughout this paper, we will use the
term “congruence uniform” rather than “bounded.” A lattice is congruence uni-
form if and only if it can be obtained from the one-element lattice by a sequence
of doublings of intervals [6]. Caspard, Le Conte de Poly-Barbut and Morvan [4]
proved that Cayley lattices (weak orders) of finite Coxeter groups are congruence
uniform. The result for type A had been proven previously by Caspard [3]. The
proof given in [4] introduces the idea of proving congruence uniformity by means
of an edge-labeling. Conditions are given on an edge-labeling of a lattice, so that
the existence of such a labeling is sufficient to prove that a semi-distributive lattice
has the “HH property” and in particular is congruence uniform.

In this paper, we take the edge-labeling idea of [4] in a different direction. We
define the notion of a CN-labeling and prove the following (where E(L) is the set
of edges, or cover relations of L):

Theorem 4. A lattice L is congruence normal if and only if there exists a CN-
labeling γ : E(L) → P for some poset P .

The proof of the “if” part of the statement is similar to the proof given in [4]
for HH lattices, and the proof of “only if” uses a characterization of congruence
normality essentially due to Day [7]. As part of the proof of Theorem 4 we show
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that one can always take P to be Irr(Con(L)), the poset of join-irreducibles of the
congruence lattice of L. The usefulness of Theorem 4 is that it makes possible a
non-inductive proof of the congruence normality of a class of posets. The induction
is hidden in the proof of Theorem 4. Theorem 4 is not used to prove Theorem 1,
because in that case there is a direct inductive proof which does not require a
separate proof that the poset of regions is a lattice, and which leads to Theorem 2.

We apply Theorem 4 to simplicial arrangements to characterize which pairs
(A, B) have a congruence uniform lattice of regions. One can decompose each
hyperplane in A into pieces called shards and define a directed graph Sh(A, B) such
that for a simplicial arrangement A, the lattice P(A, B) is congruence uniform if
and only if Sh(A, B) is acyclic (Theorem 25). In that case the transitive closure
of Sh(A, B) is isomorphic to the poset of join-irreducibles of the congruence lattice
of P(A, B). In [22], this fact is used to explicitly determine the poset of join-
irreducibles of the congruence lattice of the weak order for several types of finite
Coxeter groups.

We also define a smaller directed graph Q(A, B) which, for a simplicial arrange-
ment A is acyclic if and only if A has a quotient ordering (see Section 2). When A
is a Coxeter arrangement, Q(A, B) is acyclic and thus the weak order on a finite
Coxeter group has a quotient ordering and in particular is a congruence uniform
lattice [4].

Theorems 1, 2 and 3 can be proven in the greater generality of oriented matroids.
The reader will be able to fill in the details using [2, Section 6] as a reference.

The remainder of this paper is organized as follows: Section 2 contains definitions
and preliminary results. Section 3 is the proof of Theorem 1. In Section 4, the
notion of a subcritical pair is introduced, and the behavior of subcritical pairs with
respect to doubling is determined, leading to the proof of Theorem 2 in Section 5.
Section 6 contains the proof of Theorem 3. In Section 7 we revisit the notion of
congruence normality and prove Theorem 4. In Section 8, Theorem 4 is applied
to posets of regions of simplicial hyperplane arrangements to prove Theorems 25
and 26, and a short proof is given that Coxeter arrangements satisfy the hypotheses
of Theorem 26.

2. Preliminaries

In this section, definitions are given and preliminary results are proven or quoted.
An arrangement A is a finite nonempty collection of hyperplanes (codimension 1

linear subspaces) in R
d. The complement of the union of the hyperplanes is dis-

connected, and the closures of its connected components are called regions. In this
paper, all hyperplane arrangements are central, meaning that every hyperplane con-
tains the origin. The rank of an arrangement is the dimension of the linear span of
the normals to the hyperplanes. A central hyperplane arrangement is called simpli-
cial if every region is a simplicial cone. The lattice of intersections L(A) of a central
arrangement A consists of all arbitrary intersections of hyperplanes, partially or-
dered by reverse inclusion. A unique minimal element is adjoined to make L(A)
a lattice. A lattice is called supersolvable if it posesses a maximal chain C such
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that for any maximal chain C′, the sublattice generated by C ∪ C′ is distributive.
A central arrangement A is called supersolvable if L(A) is a supersolvable lattice.
The definition of canonical base region will be given Section 3. The supersolvable
arrangements include Coxeter arrangements of types A and B, as well as graphic
arrangements associated to chordal graphs. For more information on hyperplane
arrangements, see [2, 9, 19].

The fundamental object of study in this paper is the poset P(A, B) of regions of
A with respect to a fixed region B. Define S(R1, R2) to be the set of hyperplanes
separating R1 from R2. For any region R, the set S(R) := S(R,B) is called the
separating set of R. The poset of regions is a partial order on the regions with
R1 ≤ R2 if and only if S(R1) ⊆ S(R2). The fixed region B is called the base region.
Examples of posets of regions are given later, in the figures. For more details on
this poset, see [2, 9]. For now, note only the following: in P(A, B), the region
B is the unique minimal element, and complementation of separating sets is an
antiautomorphism which is denoted by R 7→ −R. In particular, there is a unique
maximal element −B.

The poset notation used here is standard. We mention only a few items: if x < y
in P and there is no z ∈ P with x < z < y, say y covers x and write x<· y. The set
of pairs (x, y) such that x<· y is denoted E(P ). The “E” is to suggest “edge,” as
these pairs are the edges in the Hasse diagram for P . A subset I ⊆ P is called an
order ideal if x ∈ I and y ≤ x imply y ∈ I, and an order filter if the dual condition
holds.

A poset E on the same ground set as P is called an extension of P if a ≤P b
implies a ≤E b. An extension is called linear if it is a total order. The order
dimension dim(P ) of a poset P is the smallest d so that P can be written as an
intersection, as relations, of d linear extensions of P . Say Q is a(n) (induced)
subposet of P if there is a one-to-one map i : Q → P such that x ≤Q y if and only
if i(x) ≤P i(y). The order dimension of P is also the smallest d so that P can be
embedded as an induced subposet of Rd. When Q is an induced subposet of P ,
dim(Q) ≤ dim(P ). In Section 4, we give a characterization of order dimension in
terms of subcritical pairs, a slight variation of the usual critical pairs.

Given a poset P and an order-convex subset C ⊆ P , the doubling P [C] of C in
P is a subset of the product P ×2, as explained below. The poset 2 is a chain with
two elements 1 < 2. Let X := {x ∈ P : x ≥ c for some c ∈ C}, and define

P [C] := [((P −X) ∪C)× {1}] ∪ (X × {2}).

Loosely speaking, the set C is “doubled” via a product with 2, and the other
elements of P are inserted into P × 2 in the most natural way. This definition is
due to Day [6] who showed that if L is a lattice, then L[C] is also a lattice. A
congruence normal lattice is a lattice obtained from the one-element lattice by a
finite sequence of doublings of convex sets.

A lattice L is called join semi-distributive if for any x, y, z ∈ L

x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y.
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A lattice is meet semi-distributive if the dual condition holds and semi-distributive
if it is both join semi-distributive and meet semi-distributive.

For an arbitrary hyperplane arrangement A and base region B there is the
following “change of base” isomorphism.

Proposition 5. For any region R, the interval [R,−B]P(A,B) in P(A, B) is iso-
morphic to the interval [R,−B]P(A,R) in P(A, R). �

The proof is elementary and appears as part of the proof of [2, Theorem 3.4].
Here it is sufficient to point out that the isomorphism from [R,−B]P(A,B) to
[R,−B]P(A,R) is to remove the set S(R) from the separating set of each region
in [R,−B]P(A,B).

Another useful result from [2] characterizes the join operation when P(A, B) is a
lattice. There is a closure operator defined on subsets of A in Section 5 of [2]. The
details are not necessary here, as we will only need the fact that the separating sets
of regions are closed sets and the fact that intersections of closed sets are closed.
The closure of a set S is written S. The following is Theorem 5.5(2) of [2]:

Theorem 6. If P(A, B) is a lattice and R1 and R2 are regions, then

S(R1 ∨R2) = S(R1) ∪ S(R2).

�

Let P be a finite poset with an equivalence relation Θ defined on the elements
of P . Given a ∈ P , let [a]Θ denote the equivalence class of a. The equivalence
relation is an order congruence if:

(i) Every equivalence class is an interval.
(ii) The projection π↓ : P → P , mapping each element a of P to the minimal

element in [a]Θ, is order-preserving.
(iii) The projection π↑ : P → P , mapping each element a of P to the maximal

element in [a]Θ, is order-preserving.

Define a partial order on the congruence classes by [a]Θ ≤ [b]Θ if and only if
there exists x ∈ [a]Θ and y ∈ [b]Θ such that x ≤P y. The set of equivalence
classes under this partial order is P/Θ, the quotient of P with respect to Θ. It is
convenient to identify P/Θ with the induced subposet Q := π↓(P ). Such a subposet
Q is called an order quotient of P . It is easily seen that π↑ maps Q isomorphically
onto π↑(P ). The inverse is π↓. For more information on order congruences and
quotients, see [5, 21].

A lattice congruence is an equivalence relation on a lattice which respects joins
and meets. Specifically, if a1 ≡ a2 and b1 ≡ b2 then a1∨b1 ≡ a2∨b2 and similarly for
meets. When P is a finite lattice, order congruences are exactly lattice congruences,
and quotients with respect to lattice congruences are called lattice quotients.

Several times in this paper, it will be necessary to consider the deletion of a single
hyperplane from an arrangement. We now establish some notation which will be
used throughout the paper. Let A be a central arrangement, H a hyperplane, and
B a fixed region of A. Let A− be A − H and for any region R of A, let R− be
the region of A− containing R. Define inclusions i↑, i↓ : P(A−, B−) → P(A, B) as
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follows. Any region of A− contains one or two regions of A, and if there are two
regions, one covers the other in P(A, B). If a region R of A− contains a unique
region of A, let i↑ and i↓ both map R to that region. If R contains two regions of
A, let i↑ map R to the “higher” region in P(A, B), and i↓ map R to the lower.

Also, define projections π↑ and π↓ mapping P(A, B) into itself. Define π↑ to
map a region R of A to i↑(R−), and let π↓ map R to i↓(R

−). Proposition 7 below
explains when these maps define an order quotient. When we can do so without
causing confusion, we will write i↑R instead of i↑(R), to avoid an overabundance
of parentheses, and similarly for i↓, π

↑ and π↓.
The poset P(A, B) is an induced subposet of P(A−, B−)×2. Specifically, let C

be the set of regions of A− whose interiors intersect H . Let U (for “up”) be the
set of regions in P(A−, B−)− C which are separated from B by H and let D (for
“down”) be P(A−, B−)− C − U . Then

P(A, B) ∼= ((D ∪ C)× {1}) ∪ ((U ∪ C)× {2}).

Proposition 7. The following are equivalent:

(i) i↓P(A−, B−) is an order quotient of P(A, B), via the maps π↓ and π↑.
(ii) C is order-convex in P(A−, B−).
(iii) P(A, B) is the doubling P(A−, B−)[C] of C in P(A−, B−).
(iv) i↓ embeds P(A−, B−) as a subposet of P(A, B).
(v) i↑ embeds P(A−, B−) as a subposet of P(A, B).

Proof. Suppose that C is not order-convex. Thus there are regions R1, R2, R3 of
A− so that R1 ≥ R2 ≥ R3, with R1, R3 ∈ C but R2 6∈ C. Thus i↑R1 ·>i↓R1,
i↑R2 = i↓R2 and i↑R3 ·>i↓R3. If H ∈ S(i↑R2), then i↑R1 ≥ i↑R2, but

i↓R1 = π↓i
↑R1 6≥ π↓i

↑R2 = i↓R2. (1)

If H 6∈ S(i↑R2), then i↑R2 ≥ i↓R3 but

i↑R2 = π↑i↑R2 6≥ π↑i↓R3 = i↑R3. (2)

In either case there is a contradiction of the definition of order quotient. Thus (i)
implies (ii).

When C is order-convex, it is easily seen that P(A, B) and P(A−, B−)[C] are
exactly the same subposet of P(A−, B−)×2. Edelman [9] showed that in any max-
imal chain in P(A, B), each cover relation corresponds to crossing one hyperplane,
and, of course, every hyperplane is crossed. Therefore, the X in the definition of
doubling is exactly U ∪C and P −X is exactly D. Thus (ii) implies (iii).

The fact that doublings of lattices give rise to lattice quotients is well known.
The proof for posets is similar. Suppose that P(A, B) is P(A−, B−)[C]. Then
π↓ can be thought of as a map to P(A−, B−) by ignoring the second entry in
P(A, B) ⊆ P(A−, B−)× 2, and is therefore easily seen to be order-preserving. By
self-duality, π↑ is also order-preserving. Thus (iii) implies (i).

The fact that (iii) implies (iv) is elementary, and we omit the details. The
equivalence of (iv) and (v) is clear by self-duality. Finally, we show that (iv) and
(v) imply (ii). If (ii) fails then, as in the first paragraph of this proof, either
Expression (1) or Expression (2) holds, violating either (iv) or (v). �
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Proposition 7 and the definition of congruence normality inspire the following
recursive definition: Let A be an arrangement with base region B and order the
hyperplanes H1, H2, . . . , Hk. Let A−, B−, C, i↑, i↓, π↑ and π↓ be as defined
above with respect to deleting the hyperplane H = Hk. Then H1, H2, . . . , Hk is a
quotient ordering of A with respect to B if C is order-convex in P(A−, B−) and
H1, H2, . . . , Hk−1 is a quotient ordering of A− with respect to B−. If k = 1 then
H1 is a quotient ordering of A with respect to either choice of base region.

Not every hyperplane arrangement with a fixed base region has a quotient or-
dering, as shown by the example in Figure 1. The reader can verify that for the
arrangement and base region in Figure 1, for any choice of H , the set of regions of
A− whose interiors intersect H is not order-convex in P(A−, B−).

Remark 8. Explanation of the figures. Each figure represents a central hy-
perplane arrangement in R

3 as an arrangement of great circles on a 2-sphere. The
left drawing shows the “northern hemisphere” of the sphere, and the right drawing
is a 180-degree rotation of what would be seen if the northern hemisphere were
removed. The advantage of the 180-degree rotation is that the two drawings are
identical except for the labeling of the regions, and the antipodal map corresponds
to translating one drawing on top of the other. If a solid line is shown at the equa-
tor, then the equatorial plane is part of the arrangement. Otherwise, the equator
is shown as a dotted line. The base region B is marked, and the other regions are
labeled by their separating sets. To reduce clutter, the hyperplanes themselves are
not numbered, but the numbering of the hyperplanes will be apparent from the
labeling of the regions.

Figure 1. A hyperplane arrangement A which has no quotient
ordering with respect to B.
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Proposition 7 immediately implies the following:

Proposition 9. If A admits a quotient ordering with respect to a base region B,
then P(A, B) is a congruence normal lattice. �

There is a partial converse to Proposition 9. Define an arrangement A to be
3-generic if no three hyperplanes of A intersect in a codimension 2 subspace. This
definition is a special case of the notion of k-generic arrangements in [24]. The
following proposition can be proven using Theorem 4 and a similar argument to
that given in the proof of Theorem 25. We omit the details.

Proposition 10. If A is a 3-generic hyperplane arrangement and B is a base
region, then P(A, B) is a congruence normal lattice if and only if A admits a
quotient ordering with respect to B.

We would guess that the converse of Proposition 9 is false for general arrange-
ments, but we are not aware of a counterexample. Given the difference in the
hypotheses of Theorems 25 and 26, such a counterexample probably exists among
simplicial arrangements. In light of Proposition 10, the example in Figure 1 is not
congruence normal.

This section concludes with an explanation of the right weak order on permuta-
tions. Let Sn be the symmetric group on the set [n] := {1, 2, . . . , n}, and write an
element π ∈ Sn as π1π2 · · ·πn, meaning that i 7→ πi. The inversion set I(π) of π is

I(π) := {(πi, πj) : πi < πj , i > j}.

One definition of the right weak order is that π ≤ τ if and only if I(π) ⊆ I(τ). This
partial order is the poset of regions of a Coxeter arrangement of type A, with the
inversion set I corresponding to the separating set S. For more details, see [15].

3. Supersolvable Arrangements

In this section, we quote a characterization of supersolvable hyperplane arrange-
ments which appeared in [2], prove a few simple propositions and then prove The-
orem 1. In the following theorem of Björner, Edelman and Ziegler [2], “⊎” refers
to disjoint union. The uniqueness in part (ii) is not stated in [2], but follows im-
mediately from the proof given there.

Theorem 11. [2, Theorem 4.3] Every hyperplane arrangement of rank 2 is super-
solvable. A hyperplane arrangement A of rank d ≥ 2 is supersolvable if and only if
it can be written as A = A0 ⊎ A1, where

(i) A0 is a supersolvable arrangement of rank d− 1.
(ii) For any H ′, H ′′ ∈ A1, there is a unique H ∈ A0 such that H ′ ∩H ′′ ⊆ H.

�

Given a fixed region R of A0, consider the regions of A contained in R. As an
immediate consequence of Theorem 3, the graph of adjacency on these regions is
a path. Following [2], define a canonical base region inductively: Any region of an
arrangement of rank 2 is a canonical base region. For a supersolvable arrangement



PROPERTIES OF THE POSET OF REGIONS 9

A = A0⊎A1, and a region R of A, let R0 be the region of A0 containing R. Then B
is a canonical base region if B0 is a canonical base region of A0 and if the regions of
A contained in B0 are linearly ordered in P(A, B). Figure 2 shows a supersolvable
arrangement of rank 3 with canonical base region B.

Figure 2. A supersolvable arrangement A with canonical base
region B. Theorem 11 applies with A0 = {H1, H2, H3}.
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Theorems 1 and 2 can be phrased in slightly more general terms. Call A a
modular extension of A0 if A = A0 ⊎ A1, such that condition (ii) of Theorem 11
is satisfied, and such that the rank of A0 is one less than the rank of A. In more
common hyperplane-arrangement terminology, this is the same as saying that A0

is the localization of A to a modular coatom of L(A). If B0 is the base region of
A0, say B is compatible with B0 if the regions of A contained in B0 are linearly
ordered in P(A, B). The following propositions all hold for the supersolvable case,
and more generally for modular extensions.

The linear ordering of A-regions contained in B0 gives a corresponding lin-
ear ordering of the hyperplanes of A1. Using this linear ordering, write A1 as
H1, H2, . . . Hn, with H1 bounding B. Given any region R, there is a linear ordering
on the hyperplanes of A1, obtained in the same manner. Define a map η from the
regions of A0 to the symmetric group Sn, by sending each region R of A0 to the
permutation of 1, 2, . . . , n corresponding to the linear order on H1, H2, . . . Hn in R.

Proposition 12. The map η is order-preserving from P(A0, B0) to the right weak
order on Sn.

Proof. Suppose that R1 ∈ P(A0, B0), and suppose that the elements i and j form
an inversion in η(R1). By definition, η(B0) is the permutation 12 · · ·n. Since i and
j form an inversion in η(R1), but not in η(B0), there is some H ∈ S0(R1) such that
Hi ∩Hj ⊆ H . Here S0 denotes the separating set with respect to P(A0, B0). By



10 NATHAN READING

the uniqueness in Theorem 11(ii), there is no other hyperplane in A0 containing
Hi ∩ Hj . In particular, for any R2 ≥ R1, H 6∈ S0(R1, R2), so i and j form an
inversion in η(R2) as well. Thus for any R1 ≤ R2, one has I(η(R1)) ⊆ I(η(R2)), or
in other words η(R1) ≤ η(R2) in the right weak order. �

For R a region of A0, define ρ(R) to be the set of entries of η(R) which do
not form an inversion with the entry n. Proposition 12 immediately implies the
following fact, where 2n−1 is the Boolean lattice of subsets of {1, 2, . . . , n− 1}.

Proposition 13. The map ρ : P(A0, B0) → 2n−1 is order-reversing. �

Now use the notation defined above for deleting the hyperplane H = Hn from A.
It is convenient to think of P(A−, B−) as a subposet of P(A0, B0)× 2n−1. This is
done by writing the separating set of a region R of A− as S(R) = S0(R0) ∪ S1(R),
where S1(R) is defined to be S(R) ∩ A1, and S0 denotes the separating set with
respect to P(A0, B0). The following proposition is the heart of Theorems 1 and 2.

Proposition 14. The poset P(A, B) is obtained from P(A−, B−) by doubling the
convex set {(R, ρ(R)) : R ∈ P(A0, B0)}. Furthermore, if T1 and T2 are both in the
doubled set and T1 ≤ T2, then S1(T1) = S1(T2).

Proof. It is apparent that, in the language of Proposition 7, the set C of regions of
A− whose interiors intersect Hn is {(R, ρ(R)) : R ∈ P(A0, B0)}. To prove that C is
convex, let T1, T2 ∈ C and let T1 ≤ T3 ≤ T2 in P(A−, B−). Then T1 is (R1, ρ(R1))
for some region R1 of A0 and similarly, T2 is (R2, ρ(R2)). Since T1 ≤ T2, then also
R1 ≤ R2 in P(A0, B0) and ρ(R1) ⊆ ρ(R2). But also, since ρ is order-reversing
and R1 ≤ R2, then ρ(R1) ⊇ ρ(R2), and therefore ρ(R1) = ρ(R2). This proves the
assertion that S1(T1) = S1(T2). But S1(T1) ⊆ S1(T3) ⊆ S1(T2), so it is possible to
write T3 = (R3, ρ(R1)) for some region R3 of A0, with R1 ≤ R3 ≤ R2 in P(A0, B0).
Applying the map ρ shows that ρ(R3) is contained in ρ(R1) and contains ρ(R2).
But ρ(R1) = ρ(R2), so ρ(R3) = ρ(R1) and therefore T3 = (R3, ρ(R3)), or in other
words T3 ∈ C. �

Proposition 14 provides the inductive step in a proof of the following theorem
which was already stated in Section 1.

Theorem 1. The poset of regions (with respect to a canonical base region) of a
supersolvable hyperplane arrangement is a congruence normal lattice.

Specifically, given a quotient ordering of A0, a quotient ordering of A is obtained
by appending, in order, the hyperplanes H1, H2, . . . , Hn to the end of the quotient
ordering of A0.

Since the propositions in this section do not depend on the assumption that A0

is a supersolvable arrangement, they also prove that if A is a modular extension
of A0 and B is compatible with B0, then P(A, B) is obtained from P(A0, B0) by
a sequence of doublings. Because a lattice L is a quotient of the doubling L[C],
the proof of Theorem 1 also implies that if A is a supersolvable arrangement with
canonical base region B, then P(A0, B0) is a lattice quotient of P(A, B). The same
holds if A is a modular extension of A0 and B is compatible with B0. In particular,
the weak order on An is a lattice quotient of the weak order on An+1 and similarly
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for type B. This is easily proven by other methods for any parabolic subgroup of a
finite Coxeter group [22].

Although supersolvable arrangements give rise to congruence normal lattices,
there are non-supersolvable arrangements which also give rise to congruence normal
lattices. One example appears later as Figure 3 in Section 6. It is easily seen that
H1, H2, H3, H4 is a quotient ordering of the example in Figure 3. Also, supersolvable
lattices can fail to be semi-distributive (thus failing to be congruence uniform), as
can be seen in Figure 2, above. In Figure 2, referring to regions by their separating
sets, it is seen that 45 ∧ 14 = 45 ∧ 24 = 4, but 45 ∧ (14 ∨ 24) = 45 ∧ 12345 = 45.

4. Subcritical Pairs

This section contains preliminary definitions and results needed for the proof of
Theorem 2. We define subcritical pairs and show that they are well-behaved with
respect to order quotients, and in particular deal with the case where the quotient
arises from the removal of a hyperplane from an arrangement.

In a poset P , if neither x ≤ y nor x ≥ y, call x and y incomparable and write
x ‖ y. Given x ∈ P , define

D(x) := {y ∈ P : y < x}

U(x) := {y ∈ P : y > x}

D[x] := {y ∈ P : y ≤ x}

U [x] := {y ∈ P : y ≥ x}.

A critical pair in P is (a, b) with the following properties:

(i) a ‖ b,
(ii) D(a) ⊆ D(b), and
(iii) U(b) ⊆ U(a).

An extension E of a poset P is said to reverse a critical pair (a, b) if b < a in E.
The order dimension of a poset P is equal to the smallest d such that there exist
linear extensions L1, . . . , Ld such that for each critical pair (a, b) of P there is some
Li which reverses (a, b). See [20, 23] for details.

The critical digraph D(P ) of P is the directed graph whose vertices are the
critical pairs, with directed edge (a, b) → (c, d) whenever b ≥ c. Directed edges in
the critical digraph will be called critical arrows. The next proposition follows from
Lemma 6.3 of Chapter 1 of [23].

Proposition 15. Let S be any set of critical pairs of P . Then there is a linear
extension of P reversing every critical pair in S if and only if the subgraph of D(P )
induced by S is acyclic. �

The critical complex C(P ) of P is an abstract simplicial complex whose vertices
are the critical pairs of P , and whose faces are the sets of vertices which induce
acyclic subgraphs of D(P ). A set of faces {Fi} of a simplicial complex C with
vertex set V is a covering set if ∪iFi = V . Proposition 15 implies that (when P is
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not a total order) the order dimension of P is the size of a smallest covering set of
C(P ). Critical complexes also appear in [21].

As will be seen below, when order quotients are involved, it is more convenient
to work with subcritical pairs. A pair (a, b) is called subcritical if:

(i’) a 6≤ b,
(ii’) D(a) ⊆ D[b], and
(iii’) U(b) ⊆ U [a].

Critical pairs are also subcritical, and a subcritical pair (a, b) is critical if and only
if a 6> b. If (a, b) is a subcritical pair that is not critical, then a covers b and nothing
else, and b is covered by a and by nothing else. The set of subcritical pairs of P
is denoted Subcrit(P ). Readers familiar with the double-arrow relation “l” on a
lattice (see for example [3]) will notice that subcritical pairs are a generalization of
the double-arrow relation to general posets.

If (a, b) is a subcritical pair that is not critical, every extension of P reverses
(a, b). Thus the order dimension of P is also the smallest d so that there exist
linear extensions L1, . . . , Ld such that any subcritical pair (a, b) of P is reversed in
some Li. There are analogous definitions of the subcritical digraph Ds(P ) and the
subcritical complex Cs(P ), and the analog of Proposition 15 holds, so the order
dimension of P is the size of a smallest covering set of Cs(P ).

Proposition 16. Suppose Q is an order quotient of P , and (a, b) is subcritical in P .
Then (π↓a, π↓b) satisfies conditions (ii’) and (iii’) in the definition of subcritical pair
in Q. Also, (π↓a, π↓b) is subcritical in Q if and only if a ∈ Q, if and only if b ∈ π↑Q.

Proof. Suppose (a, b) is subcritical in P . If x ∈ Q has x < π↓a, then x ≤ b because
(a, b) is subcritical in P . Thus x = π↓x ≤ π↓b. Suppose x ∈ Q has π↓b < x, so that
b ≤ π↑(π↓b) ≤ π↑x. Notice that b < π↑x, because if b = π↑x then π↓b = x. Because
(a, b) is subcritical in P , a ≤ π↑x, and so π↓a ≤ π↓(π

↑x) = x. Thus (π↓a, π↓b)
satisfies conditions (ii’) and (iii’) in the definition of a subcritical pair in Q.

Suppose that a 6∈ Q and therefore π↓a < a. Then π↓a ≤ b because (a, b) is
subcritical, and therefore π↓a ≤ π↓b, so (π↓a, π↓b) is not subcritical in Q. On the
other hand, suppose a ∈ Q. Then a 6≤ π↓b, because a 6≤ b and π↓b ≤ b. If b 6= π↑b
then b < π↑b, and therefore a ≤ π↑b. So also a = π↓a ≤ π↓(π

↑b). But since
π↓(π

↑b) = π↓b ≤ b, this implies that a ≤ b, a contradiction of condition (i’) which
shows that b = π↑b ∈ π↑Q. If b ∈ π↑Q, the dual argument shows that a ∈ Q. Since
a 6≤ b and π↓b ≤ b, a 6≤ π↓b. So (a, π↓b) = (π↓a, π↓b) is subcritical in Q. �

Proposition 17. Suppose Q is an order quotient of P , and (a, b) is critical (re-
spectively subcritical) in Q. Then (a, π↑b) is critical (respectively subcritical) in P .

Proof. Suppose (a, b) is subcritical in Q. Then a 6≤ b in P because Q is an induced
subposet. If x ∈ P has x < a then π↓x < a, so π↓x ≤ b because (a, b) is subcritical
in Q. Then x ≤ π↑x = π↑(π↓x) ≤ π↑b, and thus DP (a) ⊆ DP [π

↑b]. If x ∈ P has
x > π↑b then π↓(x) > π↓(π

↑b) = b, so π↓x ≥ a because (a, b) is subcritical in Q.
Thus x ≥ π↓x ≥ a, and (a, π↑b) is subcritical in P .
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Suppose that (a, b) is critical in Q or equivalently, that (a, b) is subcritical and
a 6> b. Then by the previous paragraph, (a, π↑b) is subcritical in P . Since π↑b ≥ b
and a 6≥ b, we have a 6≥ π↑b, and therefore (a, π↑b) is critical in P . �

The word “subcritical” cannot be replaced with “critical” in Proposition 16. For
example, let P be 2× 2, let Q = {1}× 2 and let (a, b) = ((1, 2), (2, 1)). Then (a, b)
is critical in P with a ∈ Q and (a, π↓b) is subcritical but not critical in Q.

Let max(P ) be the set of maximal elements of a poset P and let min(P ) be the
set of minimal elements. If H is a hyperplane whose removal from A satisfies the
equivalent conditions of Proposition 7, define

SCold(P(A, B)) := {(i↓X, i↑Y ) : (X,Y ) ∈ Subcrit(P(A−, B−)}

SCnew(P(A, B)) := {(i↑X, i↓Y ) : X ∈ min(C), Y ∈ max(C), X ≤ Y }.

The notations SCold and SCnew are meant to suggest that some of the subcritical
pairs of P(A, B) arise in a natural way from subcritical pairs of P(A−, B−), while
others are new.

Lemma 18. Let H be a hyperplane whose removal from A satisfies the equivalent
conditions of Proposition 7 for the base region B. Then

Subcrit(P(A, B)) = SCold ⊎ SCnew.

Proof. By Propositions 16 and 17, the set of subcritical pairs (X,Y ) in P(A, B)
with X ∈ i↓(P(A−, B−)) = π↓(P(A, B)) is exactly

{(X, π↑Y ) : (X,Y ) ∈ Subcrit(π↓P(A, B))}.

This set is SCold.
LetX ∈ min(C), Y ∈ max(C) andX ≤ Y in P(A−, B−). Then i↑X 6≤ i↓Y . Any

Z ∈ P(A, B) with Z < i↑X has H 6∈ S(Z) and thus Z ≤ i↓Y . Otherwise, some-
where weakly below Z− in P(A−, B−) there would be a region R with i↑R ·>i↓R.
But then R ∈ C, contradicting the minimality of X . Similarly, any Z ∈ P(A, B)
with i↓Y < Z has H ∈ Z, so i↑X < Z. Thus (i↑X, i↓Y ) ∈ Subcrit(P(A, B)). It is
now proven that SCnew ⊆ Subcrit(P(A, B)).

Finally, it is sufficient to show that Subcrit(P(A, B))−SCold ⊆ SCnew. Suppose
that (X,Y ) ∈ Subcrit(P(A, B)) and X 6∈ i↓(P(A−, B−)) = π↓P(A, B). By Propo-
sition 16, X 6∈ π↓P(A, B) implies that Y 6∈ π↑P(A, B). So π↓X < X and π↑Y > Y
and therefore both X− and Y − are elements of C. Suppose Z ∈ C has Y − < Z in
P(A−, B−). Then Y = i↓(Y

−) < i↓Z in P(A, B) and by subcriticality of (X,Y ),
X ≤ i↓Z. But this is impossible since H ∈ S(X) but H 6∈ S(i↓Z). Therefore,
Y − ∈ max(C). Since π↑Y > Y we have π↑Y ≥ X and therefore Y − ≤ X−, so
(X,Y ) = (i↑(X−), i↓(Y

−)) ∈ SCnew. �

It is easily checked that the subcritical arrows among SCold correspond exactly
to the subcritical arrows among Subcrit(P(A−, B−)). Therefore:

Proposition 19. The subcomplex of Cs(P(A, B)) induced by SCold is isomorphic
to Cs(P(A−, B−)). �
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5. Order Dimension of Supersolvable Arrangements

In this section, after a preliminary proposition, we state and prove Theorem 2.
Let A = A0 ⊎ A1 be a supersolvable arrangement with canonical base region B,
and continue the notation from Section 3. Think of P(A, B) as a subposet of
P(A0, B0)×2n, by writing the separating set of a region R of A as S(R) = S0(R0)∪
S1(R). Here, again, S1(R) is defined to be S(R)∩A1 and S0 denotes the separating
set which defines P(A0, B0).

Given a subset S of [n], write S as a word of length n in the alphabet {0, 1},
so that for example {2, 3, 7} ⊂ [7] is written as 0110001. Define a total order on
the subsets of [n] by taking the lexicographic order on these words, reading from
left to right, with 0 < 1. Think of the sets S1(R) as subsets of [n], by associating
Hi with i. Define a relation “�” on the regions of A such that R1 � R2 if and
only if S1(R1) ≤ S1(R2) in this lexicographic order. Notice that “�” is reflexive
and transitive, but not antisymmetric, and that any two regions of A are related
in “�.” Thus “�” is a total pre-order. When S1(R1) < S1(R2), write R1 ≺ R2.
In other words R1 ≺ R2 when R1 � R2 but R2 6� R1. Note that if R1 ≤ R2 in
P(A, B), then S1(R1) ⊆ S1(R2) and therefore R1 � R2.

By Theorem 1 and repeated applications of Lemma 18, the subcritical pairs of
P(A0, B0) can be thought of as a subset of Subcrit(P(A, B)). Call this subset SC0.

Proposition 20. Let A be a modular extension of A0 and let B be compatible with
B0. Let (J,M) ∈ Subcrit(P(A, B))− SC0. Then M ≺ J .

Proof. The proof is by induction on n. Consider deleting the hyperplane H = Hn

and use the notation established previously for removal of a hyperplane, including
the notation of Lemma 18. If n = 1, since A has rank strictly greater than the
rank of A0, then P(A, B) is obtained by doubling the entire poset P(A−, B−) =
P(A0, B0). Also SC0 = SCold, so (J,M) = (i↑(B−), i↓(−B−)) ∈ SCnew . In
particular, S1(J) = {1} and S1(M) = ∅, so M ≺ J .

Suppose n > 1, and (J,M) ∈ SCold. Then (J,M) = (i↓(J
−), i↑(M−)), and

(J−,M−) ∈ Subcrit(P(A−, B−)). Since (J,M) does not arise from a subcritical
pair of P(A0, B0), neither does (J

−,M−), so by induction M− ≺ J−. Passing from
S1(J

−) to S1(J) involves only the new nth entry in the corresponding words, and
similarly for M− and M . Thus M ≺ J as well. Suppose on the other hand that
(J,M) ∈ SCnew and n > 1. Then (J,M) = (i↑(J−), i↓(M

−)), and J−,M− ∈ C,
with J− ≤ M−. By Proposition 14, S1(J

−) = S1(M
−). Thus the words for S1(J)

and S1(M) are identical until the last entry, where S1(J) has a “1” and S1(M) has
a “0.” In particular, M ≺ J . �

Theorem 2. The order dimension of the poset of regions (with respect to a canon-
ical base region) of a supersolvable hyperplane arrangement is equal to the rank of
the arrangement.
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Proof. First, notice that adding in the hyperplane H1 to A0, doubles the entire
poset P(A0, B0). It is well known that when a finite poset P has a unique min-
imal element and a unique maximal element, dim(P × 2) = dim(P ) + 1. By re-
peated applications of Proposition 7, P(A0, B0) × 2 is a subposet of P(A, B), so
dim(P(A, B)) ≥ dim(P(A0, B0)) + 1.

Let d be the dimension of P(A0, B0). Thus Cs(P(A0, B0)) can be covered by d
faces. By repeated applications of Proposition 19, the subcomplex of Cs(P(A, B))
induced by SC0 is isomorphic to Cs(P(A0, B0)), and therefore can be covered
by d faces. It will now be shown that the remaining vertices in fact form a
face of Cs(P(A, B)). Suppose (J1,M1) → (J2,M2) is a subcritical arrow with
(J1,M1), (J2,M2) ∈ Subcrit(P(A, B))− SC0. In other words, J2 ≤ M1, and there-
fore J2 � M1. By Proposition 20, M1 ≺ J1, and therefore J2 ≺ J1. Thus every
subcritical arrow in Subcrit(P(A, B))−SC0 is dual to a strict order relation in the
pre-order “�,” and therefore Subcrit(P(A, B))− SC0 induces an acyclic subgraph
of the subcritical digraph of P(A, B). This face, together with the d faces which
cover SC0 give a covering of Cs(P(A, B)) by d + 1 faces. By induction, d is the
rank of A0, and therefore the dimension of P(A, B) is the rank of A. �

6. Simplicial Arrangements and Semi-distributivity

In this section, we prove Theorem 3, give some examples which give context to
the theorem and discuss the possible significance of semi-distributivity for order
dimension.

Theorem 3. The poset of regions (with respect to any base region) of a simplicial
hyperplane arrangement is a semi-distributive lattice.

Proof of Theorem 3. Let A be a simplicial hyperplane arrangement and let B be
any base region. The fact that P(A, B) is a lattice is [2, Theorem 3.4]. We will
prove that P(A, B) is meet semi-distributive. Join semi-distributivity follows by
the self-duality of P(A, B).

Suppose that X , Y and Z are regions of A, with X ∧Y = X ∧Z. By the change
of base isomorphism (Proposition 5), we may as well assume that X∧Y = B. Thus
it is necessary to show that X ∧ (Y ∨ Z) = B. Let B be the set of hyperplanes
defining the facets of B, and for any region R, let α(R) := S(R) ∩ B. For each
H ∈ B, the singleton {H} defines a region, and therefore the statement X ∧R = B
is equivalent to the statement α(X)∩α(R) = ∅. Thus by hypothesis, α(X)∩α(Y ) =
α(X) ∩ α(Z) = ∅ and it is sufficient to show that α(X) ∩ α(Y ∨ Z) = ∅.

By Theorem 6, S(Y ∨Z) = S(Y ) ∪ S(Z). For any H ∈ B, the set A−{H} is the
separating set of some region TH , and thus is a closed set. The intersection S of
all such S(TH) for H ∈ B− (α(Y )∪α(Z)) is a closed set (although not necessarily
the separating set of any region). But S contains S(Y ) ∪ S(Z) and so S contains

S(Y ) ∪ S(Z). Then

α(X) ∩ α(Y ∨ Z) ⊆ α(X) ∩ (S ∩ B) = α(X) ∩ (α(Y ) ∪ α(Z)) = ∅.

�
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The two figures below put Theorem 3 in context. Figure 3 is an example of
an arrangement whose poset of regions is a lattice, but is not semi-distributive.
Figure 4 shows a non-simplicial arrangement whose poset of regions is a semi-
distributive lattice.

The semi-distributive property does have some connection to order dimension.
More precisely, the semi-distributive property is closely related to subcritical pairs.
Define an element x in a poset P to be join-irreducible if it is not the join of the
set D(x) of elements strictly below it. This definition makes sense even for a non-
lattice: the join of D(x) may not exist, in which case x is join-irreducible. It is an
easy proposition that for any subcritical pair (a, b) in a poset P , a is join-irreducible
and b is meet-irreducible. It is also easy to see that for every join-irreducible a,
there is at least one b so that (a, b) is subcritical. There may not be a b so that
(a, b) is critical. Although it is phrased differently, [12, Theorem 2.56] states that
the meet semi-distributive property of a lattice is equivalent to the property that
for any join-irreducible a there is a unique b so that (a, b) is subcritical. The dual
result also holds.

Figure 3. An arrangement A and base region B such that
P(A, B) is a non-semi-distributive lattice.
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7. Congruence Normality

Caspard, Le Conte de Poly-Barbut and Morvan [4] showed that the Cayley lat-
tice (weak order) on a finite Coxeter group is congruence uniform. To do so, they
defined an edge-labeling condition on a semi-distributive lattice which, when satis-
fied, implies a stronger property than congruence uniformity. This clever approach
to congruence uniformity leads to the following question: is there an edge-labeling
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Figure 4. A non-simplicial arrangement A with base region B
such that P(A, B) is a semi-distributive lattice.
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condition on a lattice which implies congruence normality, independent of semi-
distributivity? (Recall that a lattice is congruence uniform if and only if it is
semi-distributive and congruence normal.) In this section we answer the question
by defining CN-labelings, which will be used in Section 8 to discuss the congruence
normality of posets of regions of simplicial arrangements.

We begin this section with Day’s [7] definition of congruence normality, along
with a slightly modified statement of his definition. Then we prove some pre-
liminary propositions and prove Theorem 4. The proof of one direction of Theo-
rem 4—namely that the existence of a CN-labeling implies congruence normality—is
inspired by the proof given in [4].

The set of congruences Con(L) of a lattice L, partially ordered by containment
of relations, is known to be a distributive lattice. For any edge x<· y in a lattice L,
define Cg(x, y) to be the smallest congruence relation on L such that x ≡ y. For
any edge e, Cg(e) is an element of Irr(Con(L)), the poset of join-irreducibles of the
congruence lattice of L. This follows, for example from a characterization of the
join in Con(L) which can be found in [13].

A join-irreducible j in a lattice L covers a unique element j∗, and a meet-
irreducible is covered by a unique element m∗. Day defined a lattice to be con-
gruence normal if Cg(j∗, j) = Cg(m,m∗) implies j 6≤ m, for any join-irreducible j
and meet-irreducible m. Day then proved that this property is equivalent to the
property that the lattice can be obtained from the one-element lattice by a finite
sequence of doublings of convex sets [7]. We will need the following equivalent
definition of congruence normality. The “if” assertion is immediate by Day’s defi-
nition, and the “only if” assertion is easily checked by induction on the number of
doublings, and we omit the details.
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Proposition 21. A lattice L is congruence normal if and only if for any edges
(x1, y1) and (x2, y2),

Cg(x1, y1) = Cg(x2, y2) implies y1 6≤ x2.

�

An interval [x, y] is (join) fundamental if y = a1 ∨ a2 for some a1 ·>x and a2 ·>x,
with a1 6= a2. In a fundamental interval [x, y], a pair of maximal chains C1 and C2

from x to y is called a fundamental pair if a1 ∈ C1 and a2 ∈ C2. Because y = a1∨a2,
the chains C1 and C2 are disjoint, except for the elements x and y. Denote the
element just below y in C1 by b1 and similarly denote the element below y in C2

as b2. Whenever a fundamental pair C1 and C2 are specified, these definitions of
x, y, a1, a2, b1 and b2 will be assumed.

A CN-labeling of a finite lattice L is a map γ : E(L) → P , where E(L) is the
set of edges of L and P is some poset, such that for any fundamental pair (C1, C2),
the following requirements are satisfied:

(i) γ(x, a1) = γ(b2, y)
(ii) For any edge e in E(C1) − {(x, a1), (b1, y)}, γ(e) < γ(x, a1) and γ(e) <

γ(b1, y).
(iii) The labels on C1 are all distinct.

Since (C2, C1) is also a fundamental pair, conditions (i) to (iii) also hold with
the subscripts exchanged. One can require only weak inequalities in (ii), and the
strictness is implied by condition (iii).

Given a lattice L with a CN-labeling γ : E(L) → P and a lattice congruence Θ,
we can define a new labeling on the quotient lattice L/Θ. If E1 and E2 are two
congruence classes with E1<·E2, then there are elements x ∈ E1 and a ∈ E2 with
x<·a. Define γΘ(E1, E2) := γ(x, a).

Proposition 22. The map γΘ : E(L/Θ) → P is well-defined and is a CN-labeling
of L/Θ.

Proof. Let x ∈ E1 and a2 ∈ E2 with x<·a2 in L. If x is not the maximal element
of E1, then let a1 ∈ E1 cover x, and let y := a1 ∨ a2 in L. The interval [x, y]L
is a fundamental interval, so let C1 and C2 be a fundamental pair in the interval,
with a1 ∈ C1 and a2 ∈ C2, and let b1 and b2 be as usual. Since E1<·E2, we have
y ∈ E2, so in particular a2 ≡ y in Θ. Therefore also b1 ∧ a2 ≡ b1 ∧ y in Θ, or
in other words x ≡ b1. Since γ is a CN-labeling, γ(x, a2) = γ(b1, y), and b1 > x.
Proceeding inductively, we find that γ(x, a2) = γ(m,n) where m is the maximal
element of E1 and n ∈ E2 with n ·>m. Thus we can finish the proof that γΘ is
well-defined by showing that there is a unique element of E2 covering m. If there
were two, say n1 and n2, then n1 ∧ n2 is an element of E2 which is above m, and
therefore n1 ∧ n2 = n1 = n2.

To show that γΘ is a CN-labeling, consider any fundamental interval [X,Y ] in
L/Θ, where X and Y are congruence classes, and A1 and A2 are congruence classes
both covering X , with Y = A1 ∨ A2. Choose fundamental chains C′

1 and C′
2 in

[X,Y ] and let B1 be the congruence class in C′
1 covered by Y and similarly B2. Let
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x be the maximal element of X and choose a1 ∈ A1 and a2 ∈ A2 both covering
x. Let y := a1 ∨ a2 and choose maximal chains C1 and C2 in [x, y], containing
respectively a1 and a2 such that each element of C1 is in some equivalence class in
C′

1 and similarly for C2. Then C1 and C2 are fundamental chains in the fundamental
interval [x, y]. Let b1 and b2 be as usual. Then b1 ∈ B1 because if b1 ∈ Y then
b1 ≡ y in Θ, which would imply that a2 ∧ b1 ≡ a2 ∧ y, or in other words x ≡ a2,
contradicting the fact that x and a2 are in different congruence classes. Similarly,
b2 ∈ B2. Now because γ is a CN-labeling,

γΘ(X,A1) = γ(x, a1) = γ(b2, y) = γΘ(B2, Y ),

and conditions (ii) and (iii) also hold for γΘ because the set of labels on C′
1 is a

subset of the set of labels on C1. �

An edge contraction on a lattice L is an equivalence relation Θ such that each
equivalence class has cardinality one or two. In other words, each equivalence class
is an edge or a single element. Let C be the set of two-element equivalence classes
of Θ.

Proposition 23. Let Θ be an edge contraction on L with following properties:

(a) If b ≡ t for some b<· t and b′ ·>b for some b′ 6= t, then there is some t′ with
b′ ≡ t′ and t′ ·>t.

(b) If b ≡ t for some b<· t and t′<· t for some t′ 6= b, then there is some b′ with
b′ ≡ t′ and b′<· b.

Then Θ is a congruence, and furthermore L ∼= (L/Θ)[C].

Proof. Suppose b ≡ t in Θ for some b<· t, and let x ∈ L. We need to show that
b ∨ x ≡ t ∨ x, and dually. If (b ∨ x) ≥ t then b ∨ x = t ∨ x, and if x ≤ b then
b ∨ x = b ≡ t = t ∨ x. Otherwise choose some maximal chain of elements from b to
b∨x. If b∨x ·>b, then the element t′ required in condition (a) is t∨x, and if not we
can finish using (a) and an easy induction on the length of the shortest maximal
chain from b to b ∨ x. The proof that b ∧ x ≡ t ∧ x is dual, using condition (b).
Thus Θ is a congruence.

Define a map η : L → (L/Θ)[C]. If {x} is an equivalence class in Θ then map x
to ({x}, 2) if x > t for some b<· t with b ≡ t. Otherwise, map x to ({x}, 1). If b<· t
with b ≡ t then map b to ({b, t}, 1) and map t to ({b, t}, 2). By condition (a) and an
inductive argument similar to the previous paragraph, if {x} is an equivalence class,
and x > t for some b ≡ t, then x > b. Thus x ≥ t in L if and only if {x} ≥ {b, t} in
L/Θ. From here it is easy to check that η is an isomorphism. �

We now restate and prove Theorem 4.

Theorem 4. A lattice L is congruence normal if and only if there exists a CN-
labeling γ : E(L) → P for some poset P .

Proof. First suppose that L is congruence normal. We will show that Cg : E(L) →
Irr(Con(L)) is a CN-labeling. Let C1 and C2 be a fundamental pair. If x ≡ a1
in some congruence on L, then a2 ∨ x ≡ a2 ∨ a1, or in other words, a2 ≡ y,
and therefore b1 ∧ a2 ≡ b1 ∧ y, or in other words, x ≡ b1. Thus for any edge
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(p, q) in (E(C1) ∪ E(C2)) − {(x, a2), (b1, y)}, we have p ≡ q. We have shown that
Cg(x, a1) ≥ Cg(e) for any e ∈ (E(C1)∪E(C2))−{(x, a2), (b1, y)} and in particular,
Cg(x, a1) ≥ Cg(b2, y). If b2 ≡ y in some congruence, then b2∧a1 ≡ y∧a1, or in other
words x ≡ a1. Thus Cg(x, a1) = Cg(b2, y), which is condition (i). For condition
(ii), we have established the first inequality, and also that Cg(b2, y) ≥ Cg(e) for
any e ∈ E(C2)−{(x, a2), (b2, y)}. The second inequality of (ii) follows by the same
argument with C1 and C2 switched. To prove that Cg is a CN-labeling, it remains
to show that the labels on C1 are all distinct. But since C1 is a chain, if any two
edges in C1 have the same label, there is a contradiction to Proposition 21.

Conversely, suppose that L has a CN-labeling γ : E(L) → P and without loss of
generality, let γ be surjective. Letm be any minimal element of P and let Θm be the
equivalence relation generated by setting x ≡ a for any edge (x, a) with label m. We
will show that Θm is an edge contraction satisfying the conditions of Proposition 23.
First, suppose some equivalence class E has cardinality larger than two. Then
either E contains three elements f<· g<·h, or three distinct elements a1 ·>x<·a2.
It is easy to check that when L itself is not a chain, then any three elements
f<· g<·h are contained in the same chain in some fundamental pair, so the fact that
γ(f, g) = γ(g, h) = m contradicts condition (iii) for the CN-labeling γ. If E contains
distinct elements a1 ·>x<·a2 then let y := a1 ∨ a2 and choose a fundamental pair
of chains in [x, y]. Then by condition (i) of a CN-labeling γ(b1, y) = γ(x, a2), but
γ(a1, x) = γ(a2, x) = m, again contradicting condition (iii). Thus each equivalence
class in Θ has cardinality 1 or 2.

Suppose b ≡ t for some b<· t and b′ ·>b for some b′ 6= t, and consider the fun-
damental interval [b, t ∨ b′]. Now t ∨ b′ ·>t and t ∨ b′ ·>b′, because otherwise there
would exist some fundamental pairs such that one of the chains would have more
than two edges, and in that case, conditions (ii) and (iii) on γ would contradict the
minimality of m in P . Thus by condition (i), γ(b′, t∨ b′) = γ(b, t) so b′ ≡ t∨ b′. We
have shown that t∨ b′ is the element t′ required in condition (a) of Proposition 23.
Condition (b) is verified by the dual argument. By Proposition 23, L is obtained
from L/Θm by doubling, and by Proposition 22, L/Θm inherits a CN-labeling. By
induction, L/Θm is congruence normal, and the proof is complete. �

The proof of Theorem 4 leads to several insights about CN-labelings. First of
all, for any order ideal I in P there is a congruence ΘI , generated by identifying
the elements of all pairs with labels in I. By the same token, an order filter yields a
quotient of L. A linear extension of P encodes a sequence in which L can be reduced
to a one-element lattice by quotients, each of which reverses a doubling. The poset
P of labels can always be taken to be Irr(Con(L)), the poset of join-irreducibles
of the congruence lattice of L. In fact, the labeling Cg : E(L) → IrrCon(L) is
universal in the sense of the following proposition, which can be proven by an
induction similar to the proof of Theorem 4.

Proposition 24. Let L be a lattice with a CN-labeling γ : E(L) → P . Then there
is an order-preserving map f : Irr(Con(L)) → P such that γ = f ◦ Cg. �
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8. Simplicial Arrangements and Congruence Uniformity

In this section we apply Theorem 4 to posets of regions of simplicial hyperplane
arrangements. Specifically, we obtain Theorem 25, a simple way to determine if a
simplicial hyperplane arrangement is congruence uniform, and Theorem 26, a simple
way to determine if a simplicial hyperplane arrangement has a quotient ordering.
(Recall that a lattice is congruence uniform if and only if it is semi-distributive and
congruence normal.) In connection with Theorem 25, we cut the hyperplanes in
a simplicial arrangement into pieces which we call shards. When A is simplicial,
the shards correspond to join-irreducible congruences of P(A, B) and we define a
directed graph on the shards whose transitive closure is Irr(Con(P(A,B))). We give
an example of a simplicial arrangement A and base region B such that P(A, B) is
not congruence uniform. The section ends with a short proof (Proposition 28) that
Coxeter arrangements satisfy the hypotheses of Theorem 26. This, combined with
Theorem 3, accomplishes a simple proof of Theorem 27, which states that the weak
order on a finite Coxeter group is a congruence uniform lattice. The proof given
in [4] actually establishes a stronger property of the weak order, the HH property.
The present proof relies on Theorem 4, which is inspired by the ideas in [4].

We now define two directed graphs which are used to characterize quotient orders
and congruence normality in the simplicial case. Let A be an arrangement with
base region B, and let A′ be a rank-two subarrangement. In other words A′ consists
of all the hyperplanes containing some subspace L of codimension 2, and |A| ≥ 2.
There is a unique region B′ of A′ containing B, and the hyperplanes in A′ bounding
B′ will be called basic hyperplanes in A′. Define a directed graph Q(A, B) on the
hyperplanes inA by lettingH → H ′ wheneverH is a basic hyperplane in some rank-
two subarrangement and H ′ is a non-basic hyperplane in the same subarrangement.
To define the second directed graph we need to decompose the hyperplanes in A
into shards. For each non-basic H ∈ A′, cut H into two connected components by
removing L from H . Do this cutting for each rank-two subarrangement, and call
the resulting connected components of the hyperplanes shards. Define Sh(A, B),
the directed graph whose vertices are the shards, and whose arrows are as follows:
For each rank-two subarrangement, with L as above, there is a directed arrow
Σ1 → Σ2 whenever Σ1 intersects L and Σ2 is incident to but does not intersect L.
In particular, Σ1 is contained in a basic hyperplane of the subarrangement and Σ2

is in a non-basic hyperplane of the subarrangement.

Theorem 25. Given a simplicial arrangement A, the lattice P(A, B) is congruence
uniform if and only if Sh(A, B) is acyclic, in which case the transitive closure of
Sh(A, B) is isomorphic to Irr(Con(P(A, B))).

Proof. The graph Sh(A, B) can be defined on any hyperplane arrangement. So, for
a moment let A be an arbitrary hyperplane arrangement and let γ : E(P(A, B)) →
A label each edge R1<·R2 in P(A, B) by the shard containing the interior of the
boundary of R1 ∩R2. Let C1 and C2 be a fundamental pair of chains with x, y, a1,
a2, b1 and b2 as usual. It is known [9] that any maximal chain in P(A, B) crosses
each hyperplane exactly once. Since the shards are components of the hyperplanes
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the labels on the edges of C1 are all distinct. If in addition A is simplicial, any two
hyperplanes bounding the region x intersect in a codimension two subspace. Thus
the separating set S(x, y) is a rank-two subarrangement and γ(x, a1) = γ(b2, y),
because γ(x, a1) is a shard in a basic hyperplane of the subarrangement. If Sh(A, B)
is acyclic, then the transitive closure Sh(A, B) is a partial order onA. Condition (ii)

for a CN-labeling is satisfied by definition of Sh(A, B). So P(A, B) is congruence
normal, and thus congruence uniform by Theorem 3.

For each shard Σ, define Φ(Σ) to be the smallest congruence with R1 ≡ R2

whenever R1 and R2 are regions such that the interior of R1∩R2 is contained in Σ.
To show that Φ(Σ) is join-irreducible, suppose R1, R2, Q1 and Q2 are regions such
that R1<·R2, Q1<·Q2. Furthermore, suppose R := R1∩R2 and Q := Q1∩Q2 have
interiors contained in Σ, and suppose R∩Q has codimension two. If R1 ≤ Q1 then,
since Q1 6≥ R2, in any congruence we have R1 ≡ R2 if and only if Q1 ≡ Q2. The
same is true if R1 ≥ Q1. If R1 and Q1 are incomparable, then there are at least
two hyperplanes containing R∩Q but not containing Σ, with the base region lying
between two of the hyperplanes. This contradicts the hypothesis that the interiors
of R and Q are contained in the same shard Σ. We have shown that if a congruence
has R1 ≡ R2 for some regions R1 and R2 with the interior of R1 ∩R2 contained in
Σ, then that congruence contains Φ(Σ). So Φ(Σ) is Cg(R1, R2) for any such R1 and
R2, and in particular is join-irreducible. Since every edge in P(A, B) is contained
in some shard, Φ is a surjective map to Irr(Con(P(A, B))).

If Σ1 → Σ2 in Sh(A, B), then consideration of the regions incident to L gives
Φ(Σ1) ≥ Φ(Σ2). Thus Φ is an order-preserving surjection of the transitive closure
of Sh(A, B) onto Irr(Con(P(A, B))). When Sh(A, B) is acyclic, we can let its
transitive closure be the poset P in Proposition 24. The order-preserving map f
found in Proposition 24 is surjective, and thus bijective, since a surjection Φ exists
in the opposite direction. In particular, Φ is an order isomorphism whose inverse
is f .

Conversely, suppose A is congruence uniform. Then in particular, the map Cg
is a CN-labeling. As noted above, Cg is constant on shards and Cg(Σ1) > Cg(Σ2)
whenever Σ1 → Σ2. Thus Sh(A, B) is acyclic. �

The following theorem can be proven using a similar but simpler argument. We
omit the details.

Theorem 26. A simplicial arrangement A has a quotient ordering with respect
to B if and only if Q(A, B) is acyclic, in which case any linear extension of the
transitive closure of Q(A, B) is a quotient ordering.

Figure 5 shows a simplicial hyperplane arrangement A with base region B such
that P(A, B) is not congruence uniform. Some of the shards are shaded and labeled,
and

Σ1 → Σ2 → Σ3 → Σ4 → Σ1

is a cycle in Sh(A, B). The example in Figure 5 comes from Grünbaum’s list of
simplicial line arrangements in the projective plane [14]. We are not aware of an
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example where Sh(A, B) is acyclic but Q(A, B) is not, but we expect that one
exists.

Figure 5. A simplicial arrangement A with base region B such
that P(A, B) is not congruence uniform. The shards Σ1, Σ2, Σ3

and Σ4 form a cycle in Sh(A, B).
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Theorem 26 can be used to prove that the poset of regions of a Coxeter arrange-
ment has a quotient ordering, which in turn proves the following theorem.

Theorem 27 ([4]). The weak order on a finite Coxeter group is a congruence
uniform lattice.

In particular, the weak order on a finite Coxeter group is congruence normal
and, in light of Theorem 3, congruence uniform. There are several ways to see that
Q(A, B) is acyclic when A is a Coxeter arrangement. In [4], Caspard, Le Conte de
Poly-Barbut and Morvan used an edge-labeling scheme to prove that weak orders
have the HH property, a stronger property than congruence uniformity. Part of
their proof, translated into the language of this paper, was to verify that if H → H ′

then l(H) < l(H ′). Here l(H) is the Coxeter group length of the group element
corresponding to reflection through H . In particular, Q(A, B) is acyclic.

Since this proof uses Coxeter group methods which have not been explained here,
we give a short elementary proof. The angle between a vector v and a hyperplane
H is the minimum over vectors x ∈ H of the angle between x and v, denoted
∠(v,H). A simplicial arrangement A is called equiangular if, whenever two or
more hyperplanes intersect in a codimension three subspace L, the hyperplanes
intersecting in L can be ordered H1, H2, . . . Hk such that the angle between Hi

and Hi+1 is 2π/k. Coxeter arrangements are equiangular, and that fact can be
exploited to prove that Q(A, B) is acyclic.
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Proposition 28. If A is a finite Coxeter arrangement and B is any region, then
Q(A, B) is acyclic.

Proof. Let b be a unit vector in the interior of B. We will show that whenever
H1 → H ′ in Q(A, B), we have ∠(b,H1) < ∠(b,H ′).

Suppose that H1 → H ′ in Q(A, B). Then H1 is a basic hyperplane in some
rank-two subarrangement containing H ′. Call the other basic hyperplane H2. Let
v′ be a unit vector in H ′ such that ∠(b,H ′) = ∠(b, v′). Let l be the shortest path
on the unit sphere from b to v′. There is a unique shortest path because b is not
antipodal to v′. If l intersects H1 in some vector v1 then since H1 6= H ′, we have

∠(b,H ′) = ∠(b, v′) > ∠(b, v1) ≥ ∠(b,H1).

Otherwise, l intersects H2 in some vector v2. Let l′ be the reflection of l in the
hyperplane H2. Then l′ intersects H1 in some vector v1 with ∠(v2, v1) ≤ ∠(v2, v

′).
The angle between vectors is a metric on the sphere, so by the triangle inequality,

∠(b,H ′) = ∠(b, v2) + ∠(v2, v
′) ≥ ∠(b, v2) + ∠(v2, v1) ≥ ∠(b, v1) ≥ ∠(b,H1).

Equality would imply in particular that a shortest path from v1 to v′ would go
through v2, so we have ∠(b,H ′) > ∠(b,H1). �
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