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Summary

We show that the order dimension of the weak order

on a Coxeter group of type A, B or D is equal to the

rank of the Coxeter group, and give bounds on the order

dimensions for the other finite types. This result arises

from a unified approach which, in particular, leads to a

simpler treatment of the previously known cases, types

A and B. The result for weak orders follows from an

upper bound on the dimension of the poset of regions

of an arbitrary hyperplane arrangement. In some cases,

including the weak orders, the upper bound is the chro-

matic number of a certain graph. For the weak orders,

this graph has the positive roots as its vertex set, and

the edges are related to the pairwise inner products of

the roots.



Résumé

Nous prouvons que la dimension d’ordre de l’ordre faible

sur un groupe de Coxeter de type A, B ou D est égale

au rang du groupe de Coxeter. Pour les autres groupes

finis de Coxeter, nous donnons des bornes inférieures

et supérieures sur la dimension d’ordre. Ce résultat

découle d’une approche unifiée qui, en particulier, nous

permet de traiter les cas deja connus des types A et

B d’une maniere plus simple. Le résultat concernant

les ordres faibles découle d’une borne supérieure sur la

dimension du poset des régions d’un arrangement arbi-

traire d’hyperplans. Dans certains cas, incluant les ordre

faibles, la borne supérieure est le nombre chromatique

d’un certain graphe. Pour les ordres faibles, l’ensemble

des sommets de ce graph correspond aux racines posi-

tives tandis que les arcs sont reliés aux produits scalaires

entre les racines.



Main Result

Theorem 1. The order dimension of the weak order

on an irreducible finite Coxeter group has the following

value or bounds:

dim(An) = n
dim(Bn) = n
dim(Dn) = n

6 ≤ dim(E6) ≤ 9
7 ≤ dim(E7) ≤ 11
8 ≤ dim(E8) ≤ 19
4 ≤ dim(F4) ≤ 5

dim(H3) = 3
4 ≤ dim(H4) ≤ 6

dim(I2(m)) = 2

• Order dimension of a poset P : The smallest n so
that P can be embedded as an induced subposet of the
componentwise order on R

n.

• Order dimension for reducible Coxeter groups: The
sum of the dimensions of the irreducible components.

• Lower bounds of Theorem 1: Easy (consider the
atoms and coatoms of the poset).

• Upper bounds: By Theorem 2, below, which gives
an upper bound on the order dimension of the poset of
regions of any hyperplane arrangement.



The Poset of Regions
• A central hyperplane arrangement A is a collection of
linear (d− 1)-subspaces of R

d.

• The regions are the connected components of Rd−∪A.

• Fix a base region B.

• The poset of regions P(A, B) is the adjacency graph
of the regions of A, directed away from B.

• Below, we define the basic digraph, D(A, B), a directed
graph with vertex set A.

Theorem 2. For a central hyperplane arrangement A
with base region B, the order dimension of P(A, B) is

bounded above by the size of any covering of D(A, B)
by acyclic induced sub-digraphs.

• A covering of size k of D(A, B) by acyclic induced sub-
digraphs is a partition A = I1∪I2∪· · ·∪Ik such that each
Ij induces an acyclic sub-digraph of D(A, B).

• For a general poset P , there is a directed graph so that
dim(P ) is the size of the smallest covering by acyclic
induced sub-digraphs. Theorem 2 gives a directed graph
with much fewer vertices.



Example
In the figure below, an arrangement is represented by
showing the intersection of each hyperplane with the
unit sphere. The sphere is opaque so we only see its
“top,” and the base region is marked B. In the poset of
regions, each region R is represented by its separating

set S(R), the set of hyperplanes separating R from B.
The partial order P(A, B) is containment of separating
sets. This example, in green typeface, runs through the
rest of the poster.
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The Basic Digraph
• Given a codimension-2 subspace L of Rd, the set A′ of
hyperplanes containing L is a rank-two subarrangement

of A, provided |A′| ≥ 2.

• The basic hyperplanes of A′ are the two hyperplanes
closest to the base region B.

• These are the rank-two subarrangements of the exam-
ple, with the two basic hyperplanes underlined in each.

146 13 15
245 12 26
356 23 34

• The basic digraph D(A, B) is the directed graph whose
vertex set is A, with an edge H1 → H2 whenever H1

is basic in the rank-two subarrangement determined by
H1 ∩H2.

• This is D(A, B) in the example.
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The Embedding
• The proof of Theorem 2 gives an explicit embedding:

• Let I1, I2, . . . , In be the covering of D(A, B) by acyclic
induced sub-digraphs.

• Totally order each Ij compatibly with D(A, B), and
use this total order to interpret subsets of Ij as
binary numbers.

• The map is

η : R 7→ (S(R) ∩ I1, S(R) ∩ I2, . . . , S(R) ∩ In).

• The easy direction of the proof is that R1 ≤ R2 implies
η(R1) ≤ η(R2).



Example
In the example, there is a unique covering of D(A, B)
by three acyclic induced sub-digraphs. Thus the poset
of regions in the example is 3-dimensional. The sub-
digraphs are I1 := {1 → 4}, I2 := {2 → 5} and I3 :=
{3 → 6}.

We totally order I1 as 1,4. etc. So for example,

η({1,3,4}) = ({1,4}, ∅, {3}) = (11,0,10) binary,

= (3,0,2) decimal.

The embedding given by the proof of Theorem 2 is
shown below. All elements lie on the surface of a cube,
with 13 on the front face.
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Coxeter Arrangements
• Coxeter arrangement: The set of reflecting hyper-
planes of a finite group generated by reflections (a Cox-

eter group). These are classified, and the types are
named with capital letters.

• There is a nice way to chose normal vectors (called
positive roots) to the hyperplanes of a Coxeter arrange-
ment.

• For Coxeter arrangements, the minimal cycles in the
basic digraph D(A, B) have cardinality two. Specifically
if H1 → H2 but H2 6→ H1, then l(H1) < l(H2). Here
“l(H)” is the length of H considered as an element (a
reflection) in the Coxeter group.

• Thus we can rephrase the upper bound as the chro-
matic number of the graph G(A, B) whose vertex set is
A and whose edges are the two-cycles of D(A, B). In
other words, the edges in G(A, B) are the pairs H1, H2 of
hyperplanes which are both basic in the rank-two sub-
arrangement determined by H1 ∩H2.

• The edges of G(A, B) can be determined by consider-
ing inner products of pairs of roots in the corresponding
root system. This leads to straightforward colorings
of the graphs for Coxeter arrangements of types A, B
and D. Chromatic numbers or bounds for types E, F
and H were computed by John Stembridge.



Coloring Root Systems
The Coxeter arrangement An−1 consists of the hyper-
planes whose normals (“positive roots”) are

{ǫi − ǫj : 1 ≤ j < i ≤ n}.

The Coxeter arrangement Bn has positive roots

{ǫi : 1 ≤ i ≤ n} ∪ {ǫi ± ǫj : 1 ≤ j < i ≤ n}.

The Coxeter arrangement Dn has positive roots

{ǫi ± ǫj : 1 ≤ j < i ≤ n}.

Key Point: In each of these cases, the inner product of
the two basic roots in a rank-two subarrangement is 0
or -1.

There are many ways to n-color G(A, B) when A is the
Coxeter arrangement An, Bn or Dn. We illustrate one
nice coloring scheme which works for any n. In this ex-
ample, the columns form a 6-coloring of B6, and restrict
to a 6-coloring of D6 or a 5-coloring of A5.

ǫ6 + ǫ1 ǫ6 + ǫ2 ǫ6 + ǫ3 ǫ6 + ǫ4 ǫ6 + ǫ5 ǫ6
ǫ5 + ǫ1 ǫ5 + ǫ2 ǫ5 + ǫ3 ǫ5 + ǫ4 ǫ5 ǫ6 − ǫ5
ǫ4 + ǫ1 ǫ4 + ǫ2 ǫ4 + ǫ3 ǫ4 ǫ5 − ǫ4 ǫ6 − ǫ4
ǫ3 + ǫ1 ǫ3 + ǫ2 ǫ3 ǫ4 − ǫ3 ǫ5 − ǫ3 ǫ6 − ǫ3
ǫ2 + ǫ1 ǫ2 ǫ3 − ǫ2 ǫ4 − ǫ2 ǫ5 − ǫ2 ǫ6 − ǫ2

ǫ1 ǫ2 − ǫ1 ǫ3 − ǫ1 ǫ4 − ǫ1 ǫ5 − ǫ1 ǫ6 − ǫ1



Other chromatic numbers were computed (or bounded)
by John Stembridge. We summarize below:

Type Chromatic number Order dimension

An, Bn or Dn n n
E6 9 6 ≤ dim ≤ 9
E7 11 7 ≤ dim ≤ 11
E8 16 ≤ χ ≤ 19 8 ≤ dim ≤ 19
F4 5 4 ≤ dim ≤ 5
H3 3 3
H4 6 4 ≤ dim ≤ 6

Open Question

What are the order dimensions for the groups

E6, E7, E8, F4, and H4?

• If any of the dimensions exceeds the number of gener-
ators, it would be the first example known to the author
of a simplicial arrangement in which the dimension of
the poset of regions exceeds the rank.

• If each dimension is equal to the rank, is there a uni-
form proof of that fact (i.e. not relying on the classifi-
cation of finite Coxeter groups)?
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