Dual combinatorics of clusters

Nathan Reading and David Speyer

NC State University

AMS Sectional Meeting Davidson, NC, March 3, 2007

The usual (not "dual") combinatorics of clusters Associahedra

Generalized associahedra

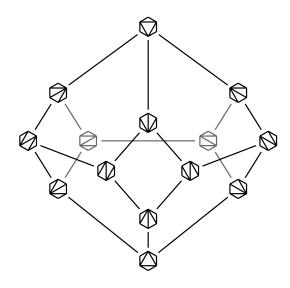
Sortable elements

Definition Results

Dual combinatorics of clusters

Cambrian fans Examples

Associahedron (Haiman, Lee, Milnor, Stasheff, 1963–1989)



Triangulations of a polygon. (Think: maximal collections of noncrossing diagonals.)

Edges connecting triangulations are "diagonal flips." This is a regular graph.

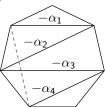
The associahedron is a simple convex polytope whose 1-skeleton is this graph.

Combinatorial datum: a finite crystallographic root system.

Almost positive roots: Positive roots & negatives of simple roots. Clusters: max'l sets of pairwise "compatible" almost positive roots. Compatibility graph: vertices are clusters, edges delete one root and replace it with the unique other root that makes a new cluster. This graph is the 1-skeleton of the generalized associahedron.

Example (The root system of type A_n)

Diagonals of (n + 3)-gon \leftrightarrow "almost positive roots." $\binom{n+2}{2} - 1$. Simples: $\alpha_1, \ldots \alpha_n$, Positives: $\alpha_i + \cdots + \alpha_i$, $i \leq j$ "Compatible" = "noncrossing" Exchanges = diagonal flips.



Fomin and Zelevinsky's definition arose from their study of cluster algebras. Specifically, each cluster algebra \mathcal{A} of finite type corresponds to a crystallographic root system Φ . The generalized associahedron for Φ encodes the combinatorics of \mathcal{A} . In particular:

- 1. The cluster variables of ${\cal A}$ are indexed by the almost-positive roots of $\Phi.$
- Compatibility graph for almost-positive roots ↔ exchange graph for cluster variables.
- Denominator vector of a cluster variable ↔ simple-root coordinates of the almost positive root.

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i+1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.") Example ($W = S_4$, $c = s_1 s_2 s_3$, $\pi = 4231$)

 $\frac{\text{Step } s_i \text{ tried Sorting word Permutation}}{0}$ 4231

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s _i tried	Sorting word	Permutation
0			4231
1	<i>s</i> ₁	<i>s</i> ₁	4132

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s; tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	<i>s</i> ₂	<i>s</i> ₁ <i>s</i> ₂	4123

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	si tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	<i>s</i> ₂	<i>s</i> ₁ <i>s</i> ₂	4123
3	<i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s; tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	<i>s</i> ₂	<i>s</i> ₁ <i>s</i> ₂	4123
3	<i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124
4	<i>s</i> ₁	$s_1 s_2 s_3$	3124

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s _i tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	s 2	<i>s</i> ₁ <i>s</i> ₂	4123
3	<i>s</i> 3	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124
4	s_1	$s_1 s_2 s_3$	3124
5	<i>s</i> ₂	$s_1 s_2 s_3 s_2$	2134

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s _i tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	<i>s</i> ₂	<i>s</i> ₁ <i>s</i> ₂	4123
3	<i>s</i> 3	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124
4	s_1	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124
5	<i>s</i> ₂	$s_1 s_2 s_3 s_2$	2134
6	<i>s</i> ₃	$s_1 s_2 s_3 s_2$	2134

Multiplying a permutation π on the left by an adjacent transposition $s_i := (i \ i+1)$ swaps the entries i and i + 1 in π . Do this repeatedly, always putting entries into numerical order, and record the sequence of s_i 's. Result: a reduced word for π . Fix an order on the adjacent transpositions, and write a reduced word for π by trying the adjacent transpositions in that order, cyclically. Result: a sorting word for π . (C.f. "bubble sort.")

Step	s _i tried	Sorting word	Permutation
0			4231
1	s_1	<i>s</i> ₁	4132
2	<i>s</i> ₂	<i>s</i> ₁ <i>s</i> ₂	4123
3	<i>s</i> ₃	<i>s</i> ₁ <i>s</i> ₂ <i>s</i> ₃	3124
4	s_1	$s_1 s_2 s_3$	3124
5	<i>s</i> ₂	$s_1 s_2 s_3 s_2$	2134
6	<i>s</i> ₃	$s_1 s_2 s_3 s_2$	2134
7	<i>s</i> ₁	$s_1 s_2 s_3 s_2 s_1$	1234

Sortable elements of a Coxeter group W (R., 2005)

In general, write a *c*-sorting word for $w \in W$ by trying the generators cyclically according to some order on the simple reflections *S*. (This order also defines a Coxeter element *c*.) Place a divider "|" every time a pass through *S* is completed. A *c*-sorting word can be interpreted as a sequence of sets (sets of letters between dividers "|"). If the sequence is nested then *w* is *c*-sortable.

Example ($\pi = 4231$ with *c*-sorting word $s_1s_2s_3|s_2|s_1$) π is not *c*-sortable because $\{s_1\} \not\subseteq \{s_2\}$.

Example $(W = S_3, c = s_1s_2)$ *c*-sortable: 1, s_1 , s_1s_2 , $s_1s_2|s_1$, s_2 not *c*-sortable: $s_2|s_1$

Example $(W = S_n, c = s_1 s_2 \cdots s_n)$

c-sortables \leftrightarrow "231-avoiding" or "stack-sortable" permutations. (C.f. Björner and Wachs, 1997.) For another *c*, "312-avoiding."

- 1. For finite W, any c, bijection to W-noncrossing partitions. $w \mapsto$ reflections associated to "descents." (R., 2005)
- 2. For finite *W*, any *c*, bijection to vertices of the generalized associahedron—i.e. clusters. (R., 2005)
- Thus, bijective explanation of why clusters and noncrossing partitions are equinumerous. (A different explanation: Athanasiadis, Brady, McCammond, Watt, 2005–2006)
- Deep connection to the lattice theory of the weak order on W, specifically Cambrian lattices. (R., 2005)
- Sortable elements lead to Cambrian fans, a novel (combinatorial) construction of the generalized associahedron. (R., Speyer, 2006)

Coxeter fan, Cambrian fan, cluster fan

The Coxeter arrangement: the set of reflecting hyperplanes of reflections of W. The hyperplanes cut space into simplicial cones (the Coxeter fan \mathcal{F}). Elements of $W \leftrightarrow$ maximal cones of \mathcal{F} .

 π_{\downarrow}^{c} : the unique longest *c*-sortable element below *w*. (In S_n "length" = "number of inversions.") Define $x \equiv_c y$ if $\pi_{\downarrow}^{c}(x) = \pi_{\downarrow}^{c}(y)$.

The Cambrian fan \mathcal{F}_c : Maximal cones are unions (over \equiv_c -classes) of maximal cones of the Coxeter fan. (Why is \mathcal{F}_c a fan? Because \equiv_c is a lattice congruence of the weak order.)

The cluster fan: Each cluster defines a maximal cone—the positive linear span of the roots in the cluster.

Theorem (R., Speyer, 2006)

The bijection c-sortables \leftrightarrow clusters induces a combinatorial isomorphism between the Cambrian fan and the cluster fan.

Consequences for cluster algebras

- 1. Constructs the combinatorial backbone of cluster algebras of finite type in a new way.
- 2. Some cluster algebra constructions are more natural in the Cambrian setting. For example, *g*-vectors of cluster variables are obtained as fundamental-weight coordinates. Also, this setting offers some insight into Fomin and Zelevinsky's sign-coherence conjecture.
- 3. Suggests a way to generalize the combinatorics of generalized associahedra to infinite Coxeter groups (work in progress).

Example ($W = B_2$, $c = s_0 s_1$)

