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Associahedron (Haiman, Lee, Milnor, Stasheff, 1963–1989)

Triangulations of a
polygon. (Think:
maximal collections of
noncrossing diagonals.)

Edges connecting
triangulations are
“diagonal flips.”
This is a regular graph.

The associahedron is a
simple convex polytope
whose 1-skeleton is this
graph.
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Generalized associahedron (Fomin, Zelevinsky, 2003)

Combinatorial datum: a finite crystallographic root system.

Almost positive roots: Positive roots & negatives of simple roots.
Clusters: max’l sets of pairwise “compatible” almost positive roots.
Compatibility graph: vertices are clusters, edges delete one root
and replace it with the unique other root that makes a new cluster.
This graph is the 1-skeleton of the generalized associahedron.

Example (The root system of type An)

Diagonals of (n + 3)-gon ↔ “almost positive roots.”
(

n+2
2

)

− 1.
Simples: α1, . . . αn, Positives: αi + · · · + αi , i ≤ j

“Compatible” = “noncrossing”
Exchanges = diagonal flips.

−α1

−α2

−α3

−α4

4



Motivation for generalized associahedra

Fomin and Zelevinsky’s definition arose from their study of cluster
algebras. Specifically, each cluster algebra A of finite type
corresponds to a crystallographic root system Φ. The generalized
associahedron for Φ encodes the combinatorics of A. In particular:

1. The cluster variables of A are indexed by the almost-positive
roots of Φ.

2. Compatibility graph for almost-positive roots ↔
exchange graph for cluster variables.

3. Denominator vector of a cluster variable ↔
simple-root coordinates of the almost positive root.
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
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Sorting words in the Coxeter group W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
7 s1 s1s2s3|s2|s1 1234
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Sortable elements of a Coxeter group W (R., 2005)

In general, write a c-sorting word for w ∈ W by trying the
generators cyclically according to some order on the simple
reflections S . (This order also defines a Coxeter element c .)
Place a divider “|” every time a pass through S is completed.
A c-sorting word can be interpreted as a sequence of sets
(sets of letters between dividers “ | ”).
If the sequence is nested then w is c-sortable.

Example (π = 4231 with c-sorting word s1s2s3|s2|s1 )

π is not c-sortable because {s1} 6⊆ {s2}.

Example (W = S3, c = s1s2)
c-sortable: 1, s1, s1s2, s1s2|s1, s2
not c-sortable: s2|s1

Example (W = Sn, c = s1s2 · · · sn)

c-sortables ↔ “231-avoiding” or “stack-sortable” permutations.
(C.f. Björner and Wachs, 1997.) For another c , “312-avoiding.”
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Results on sortable elements

1. For finite W , any c , bijection to W -noncrossing partitions.
w 7→ reflections associated to “descents.” (R., 2005)

2. For finite W , any c , bijection to vertices of the generalized
associahedron—i.e. clusters. (R., 2005)

3. Thus, bijective explanation of why clusters and noncrossing
partitions are equinumerous. (A different explanation:
Athanasiadis, Brady, McCammond, Watt, 2005–2006)

4. Deep connection to the lattice theory of the weak order
on W , specifically Cambrian lattices. (R., 2005)

5. Sortable elements lead to Cambrian fans, a novel
(combinatorial) construction of the generalized associahedron.
(R., Speyer, 2006)
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Coxeter fan, Cambrian fan, cluster fan

The Coxeter arrangement: the set of reflecting hyperplanes of
reflections of W . The hyperplanes cut space into simplicial cones
(the Coxeter fan F). Elements of W ↔ maximal cones of F .

π
c

↓ : the unique longest c-sortable element below w .
(In Sn “length” = “number of inversions.”)
Define x ≡c y if π

c

↓(x) = π
c

↓(y).

The Cambrian fan Fc : Maximal cones are unions (over ≡c -classes)
of maximal cones of the Coxeter fan. (Why is Fc a fan? Because
≡c is a lattice congruence of the weak order.)

The cluster fan: Each cluster defines a maximal cone—the positive
linear span of the roots in the cluster.
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Combinatorial isomorphism

Theorem (R., Speyer, 2006)

The bijection c-sortables ↔ clusters induces a combinatorial

isomorphism between the Cambrian fan and the cluster fan.

Consequences for cluster algebras

1. Constructs the combinatorial backbone of cluster algebras of
finite type in a new way.

2. Some cluster algebra constructions are more natural in the
Cambrian setting. For example, g -vectors of cluster variables
are obtained as fundamental-weight coordinates. Also, this
setting offers some insight into Fomin and Zelevinsky’s
sign-coherence conjecture.

3. Suggests a way to generalize the combinatorics of generalized
associahedra to infinite Coxeter groups (work in progress).
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Example (W = B2, c = s0s1)

1
s0

s0s1

s0s1s0

s0s1s0s1

s1

s1s0

s1s0s1

F

1
s0

s0s1

s0s1s0

s0s1s0s1

s1 Fc

−αs0
−αs1

αs0
αs1

αs0s1s0
αs1s0s1

Cluster
fan

cl(1)

cl(s0)

cl(s0s1)

cl(s0s1s0)

cl(s1)

cl(s0s1s0s1)

The
bijection
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1234

1324

12432134

2143

2413

2314 1423

3214 1432

3124 1342

3142

3412

2341 4123

3241 4132

2431 4213

4231

3421 4312

4321

The Coxeter
fan for S4
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1234

1324

12432134

2143

2314

3214 1432

1342

2341

3241

2431

3421

4321

A Cambrian
fan for S4
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