Dual combinatorics of clusters

Nathan Reading and David Speyer
NC State University

AMS Sectional Meeting
Davidson, NC, March 3, 2007



Dual combinatorics of clusters

The usual (not “dual”) combinatorics of clusters
Associahedra
Generalized associahedra

Sortable elements
Definition
Results

Dual combinatorics of clusters
Cambrian fans
Examples



Associahedron (Haiman, Lee, Milnor, Stasheff, 1063-1989)

Triangulations of a
polygon. (Think:
maximal collections of
noncrossing diagonals.)

Edges connecting
triangulations are
“diagonal flips."

This is a regular graph.

The associahedron is a
simple convex polytope
whose 1-skeleton is this
graph.



Generalized associahedron (Fomin, Zelevinsky, 2003)

Combinatorial datum: a finite crystallographic root system.

Almost positive roots: Positive roots & negatives of simple roots.
Clusters: max’l sets of pairwise “compatible” almost positive roots.
Compatibility graph: vertices are clusters, edges delete one root
and replace it with the unique other root that makes a new cluster.
This graph is the 1-skeleton of the generalized associahedron.

Example (The root system of type A,)

Diagonals of (n + 3)-gon < “almost positive roots.” ("5?) — 1.
Simples: as,...ap,, Positives: a; + -+, i <

“Compatible” = “noncrossing”
Exchanges = diagonal flips.




Motivation for generalized associahedra

Fomin and Zelevinsky's definition arose from their study of cluster
algebras. Specifically, each cluster algebra A of finite type
corresponds to a crystallographic root system ®. The generalized
associahedron for ® encodes the combinatorics of A. In particular:

1. The cluster variables of A are indexed by the almost-positive
roots of ®.

2. Compatibility graph for almost-positive roots «
exchange graph for cluster variables.

3. Denominator vector of a cluster variable <
simple-root coordinates of the almost positive root.



Sorting words in the Coxeter group W = S,

Multiplying a permutation 7 on the left by an adjacent
transposition s; := (i i+1) swaps the entries i and i + 1 in 7.

Do this repeatedly, always putting entries into numerical order, and
record the sequence of s;'s. Result: a reduced word for 7.

Fix an order on the adjacent transpositions, and write a reduced
word for 7 by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for . (C.f. “bubble sort.”)

Example (W =S;, ¢ =s15s, m=4231)

Step sj tried Sorting word Permutation
0 4231
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Sortable elements of a Coxeter group W (R., 2005)

In general, write a c-sorting word for w € W by trying the
generators cyclically according to some order on the simple
reflections S. (This order also defines a Coxeter element c.)
Place a divider “|" every time a pass through S is completed.
A c-sorting word can be interpreted as a sequence of sets
(sets of letters between dividers “|").

If the sequence is nested then w is c-sortable.

Example (7 = 4231 with c-sorting word s;5,53|s,|s; )
7 is not c-sortable because {s;} Z {s>}.
Example (W = 53, Cc = 5152)
c-sortable: 1, s1, s1s, sis|s1, s
not c-sortable: s2s1
Example (W =S,, c=s%"--s,)

c-sortables « "231-avoiding” or “stack-sortable” permutations.
(C.f. Bjorner and Wachs, 1997.) For another ¢, “312-avoiding.”



Results on sortable elements

1. For finite W, any c, bijection to W-noncrossing partitions.
w — reflections associated to “descents.” (R., 2005)

2. For finite W, any c, bijection to vertices of the generalized
associahedron—i.e. clusters. (R., 2005)

3. Thus, bijective explanation of why clusters and noncrossing
partitions are equinumerous. (A different explanation:
Athanasiadis, Brady, McCammond, Watt, 2005-2006)

4. Deep connection to the lattice theory of the weak order
on W, specifically Cambrian lattices. (R., 2005)

5. Sortable elements lead to Cambrian fans, a novel
(combinatorial) construction of the generalized associahedron.
(R., Speyer, 2006)



Coxeter fan, Cambrian fan, cluster fan

The Coxeter arrangement: the set of reflecting hyperplanes of
reflections of W. The hyperplanes cut space into simplicial cones
(the Coxeter fan F). Elements of W « maximal cones of F.

wf: the unique longest c-sortable element below w.
(In' S, “length” = "number of inversions.”)
Define x =c y if 7{(x) = 7f(y).

The Cambrian fan F.: Maximal cones are unions (over =c-classes)
of maximal cones of the Coxeter fan. (Why is F. a fan? Because
= is a lattice congruence of the weak order.)

The cluster fan: Each cluster defines a maximal cone—the positive
linear span of the roots in the cluster.



Combinatorial isomorphism

Theorem (R., Speyer, 2006)

The bijection c-sortables < clusters induces a combinatorial
isomorphism between the Cambrian fan and the cluster fan.

Consequences for cluster algebras

1. Constructs the combinatorial backbone of cluster algebras of
finite type in a new way.

2. Some cluster algebra constructions are more natural in the
Cambrian setting. For example, g-vectors of cluster variables
are obtained as fundamental-weight coordinates. Also, this
setting offers some insight into Fomin and Zelevinsky's
sign-coherence conjecture.

3. Suggests a way to generalize the combinatorics of generalized
associahedra to infinite Coxeter groups (work in progress).
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Example (W = B,, ¢ = s5p51)

505150

515051 505150

]?

cl(1)

The

1
i) bijection

01(50 5150 51)
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A Cambrian
fan for S,
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