Generic rectangulations and pattern-avoiding permutations

Nathan Reading

AMS Special Session on Species and Hopf-Algebraic Combinatorics Cornell University, Sept. 10, 2011

Generic rectangulations

A general Hopf-Algebraic construction

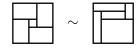
Back to generic rectangulations

Rectangulation: a tiling of a rectangle by rectangles.

Rectangulation: a tiling of a rectangle by rectangles.

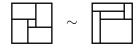
We'll consider them up to combinatorial equivalence.

Rectangulation: a tiling of a rectangle by rectangles.



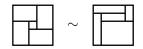
We'll consider them up to combinatorial equivalence.

Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence. n g. rects. w/ n tiles #

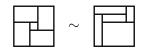
Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

and the second s			
n	g. rects. w/ <i>n</i> tiles	#	
1		1	
-			

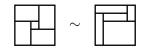
Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

The in consider them up to combinational equivalence.		
n	g. rects. w/ <i>n</i> tiles	#
1		1
2		2
-		

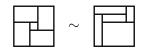
Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

we is consider them up to combinational equivalence.			
n	g. rects. w/ <i>n</i> tiles	#	
1		1	
2		2	
3	$ \longrightarrow \times 2 $	6	

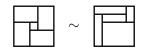
Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

we in consider them up to combinational equivalence.			
n	g. rects. w/ <i>n</i> tiles	#	
1		1	
2		2	
3	$\square \times 2 \qquad \square \times 4$	6	
4		24	

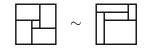
Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

n	g. rects. w/n tiles	#
1		1
2		2
3	$\square \times 2 \qquad \square \times 4$	6
4		24
5		116

Rectangulation: a tiling of a rectangle by rectangles.



We'll consider them up to combinatorial equivalence.

n	g. rects. w/ n tiles	#
1		1
2		2
3	$\square \times 2 \qquad \square \times 4$	6
4		24
5		116
:		3
27		$53845049871942333501408 \sim 5 \cdot 10^{22}$

```
Let y be a permutation of the form \frac{\text{increasing}}{k1} k1 \frac{\text{increasing}}{k} \in S_k. A scramble of y is \frac{\text{any order}}{k1} k1 \frac{\text{any order}}{k1}. Example: Scrambles of 256134: 256134, 256143, 526134, 526143. Define \text{Av}_n(y) = \{x \in S_n : x \text{ avoids instances of scrambles of } y \text{ with } k1 \text{ adjacent} \} Example: 613982574 \notin \text{Av}_9(256134).
```

```
Let y be a permutation of the form \frac{\text{increasing}}{k1} k1 \frac{\text{increasing}}{k} \in S_k. A scramble of y is \frac{\text{any order}}{k1} k1 \frac{\text{any order}}{k1}. Example: Scrambles of 256134: 256134, 256143, 526134, 526143. Define \text{Av}_n(y) = \{x \in S_n : x \text{ avoids instances of scrambles of } y \text{ with } k1 \text{ adjacent} \} Example: 613982574 \not\in \text{Av}_9(256134).
```

Let y be a permutation of the form $\stackrel{\text{increasing}}{----} k1 \stackrel{\text{increasing}}{----} \in \mathcal{S}_k$.

A scramble of y is $\frac{\text{any order}}{\text{any order}} k1 \frac{\text{any order}}{\text{any order}}$.

Example: Scrambles of 256134: 256134, 256143, 526134, 526143.

Define $Av_n(y) =$

 $\{x \in S_n : x \text{ avoids instances of scrambles of } y \text{ with } k1 \text{ adjacent}\}$

Example: $613982574 \notin Av_9(256134)$.

Define $Av_n(y_1, \ldots, y_m) = Av_n(y_1) \cap \cdots \cap Av_n(y_m)$.

Write Av_n when y or y_1, \ldots, y_m is understood.

Fix y or y_1, \ldots, y_m as before.

Define $\pi_{\downarrow}: S_n \to Av_n$:

- If $x \in Av_n$ then $\pi_{\downarrow}(x) = x$.
- ▶ Otherwise, find an instance of a scramble of y (or some y_i) in x and swap "k" and "1" to get x'. Define $\pi_{\downarrow}(x) = \pi_{\downarrow}(x')$.

Example: Take y = 256134.

 π_{\downarrow} (613982574)

Fix y or y_1, \ldots, y_m as before.

Define $\pi_{\downarrow}: S_n \to \mathsf{Av}_n$:

- If $x \in Av_n$ then $\pi_{\downarrow}(x) = x$.
- ▶ Otherwise, find an instance of a scramble of y (or some y_i) in x and swap "k" and "1" to get x'. Define $\pi_{\downarrow}(x) = \pi_{\downarrow}(x')$.

Example: Take y = 256134.

$$\pi_{\downarrow}(613982574) = \pi_{\downarrow}(613928574)$$

Fix y or y_1, \ldots, y_m as before.

Define $\pi_{\downarrow}: S_n \to \mathsf{Av}_n$:

- ▶ If $x \in Av_n$ then $\pi_{\downarrow}(x) = x$.
- ▶ Otherwise, find an instance of a scramble of y (or some y_i) in x and swap "k" and "1" to get x'. Define $\pi_{\downarrow}(x) = \pi_{\downarrow}(x')$.

Example: Take y = 256134.

$$\pi_{\downarrow}(613982574) = \pi_{\downarrow}(613928574) = \pi_{\downarrow}(613298574)$$

Fix y or y_1, \ldots, y_m as before.

Define $\pi_{\downarrow}: S_n \to \mathsf{Av}_n$:

- If $x \in Av_n$ then $\pi_{\downarrow}(x) = x$.
- ▶ Otherwise, find an instance of a scramble of y (or some y_i) in x and swap "k" and "1" to get x'. Define $\pi_{\downarrow}(x) = \pi_{\downarrow}(x')$.

Example: Take y = 256134.

$$\pi_{\downarrow}(613982574) = \pi_{\downarrow}(613928574) = \pi_{\downarrow}(613298574) = 613298574.$$

A downward projection (hiding a lattice congruence)

Fix y or y_1, \ldots, y_m as before.

Define $\pi_{\downarrow}: S_n \to \mathsf{Av}_n$:

- ▶ If $x \in Av_n$ then $\pi_{\downarrow}(x) = x$.
- ▶ Otherwise, find an instance of a scramble of y (or some y_i) in x and swap "k" and "1" to get x'. Define $\pi_{\downarrow}(x) = \pi_{\downarrow}(x')$.

Example: Take y = 256134.

$$\pi_{\downarrow}(613982574) = \pi_{\downarrow}(613928574) = \pi_{\downarrow}(613298574) = 613298574.$$

The fibers of π_{\downarrow} are the congruence classes of a lattice congruence of the weak order on S_n . In particular, the fibers are intervals. The quotient lattice is a lattice structure on Av_n .

The Hopf algebra

Define a graded vector space $\mathbb{K}[Av_{\infty}] = \bigoplus_{n>0} \mathbb{K}[Av_n]$.

Define $c: \mathbb{K}[\mathsf{Av}_\infty] o \mathbb{K}[\mathcal{S}_\infty]$ by

$$c(z) = \sum_{x: \pi_{\perp}(x)=z} x$$
, for $z \in Av_n$.

Define $r: \mathbb{K}[S_{\infty}] \to \mathbb{K}[Av_{\infty}]$ by

$$r(x) = \begin{cases} x & \text{if } x \in Av_n \\ 0 & \text{otherwise} \end{cases} \text{ for } x \in S_n.$$

Theorem (R., 2005)

 $(\mathbb{K}[\mathsf{Av}_\infty], ullet_{\mathsf{Av}}, \Delta_{\mathsf{Av}})$ is a graded Hopf algebra, where

$$x \bullet_{\mathsf{Av}} y = r(c(x) \bullet_{\mathsf{S}} c(y)) = r(x \bullet_{\mathsf{S}} y), \text{ and } \Delta_{\Delta_{\mathsf{V}}}(z) = (r \otimes r)(\Delta_{\mathsf{S}}(c(z))).$$

Corollary

The map c embeds $(\mathbb{K}[Av_{\infty}], \bullet_{Av}, \Delta_{Av})$ as a Hopf subalgebra of $(\mathbb{K}[S_{\infty}], \bullet_{S}, \Delta_{S})$.

 $\mathbb{K}[\mathsf{Av}_\infty(21)]$

 $\mathbb{K}[\mathsf{Av}_\infty(312,231)]$

 $\mathbb{K}[Av_{\infty}(312)]$

 $\mathbb{K}[\mathsf{Av}_\infty(231)]$

 $\mathbb{K}[\mathsf{Av}_\infty(21)]$

One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_\infty(312,231)]$

 $\mathbb{K}[\mathsf{Av}_\infty(312)]$

 $\mathbb{K}[\mathsf{Av}_\infty(231)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$

One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_\infty(312,231)]$

NSym

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$

 $\mathbb{K}[\mathsf{Av}_\infty(231)]$

 $\mathbb{K}[\mathsf{Av}_\infty(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_\infty(312,231)]$ NSym

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_\infty(231)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)] \quad \textit{NSym}$

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)] \hspace{1cm} \mathsf{LR} \hspace{1.5cm} (\text{an antisymmetric copy})$

 $\mathbb{K}[Av_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ *NSym*

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ *NSym*

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

$$\mathbb{K}[\mathsf{Av}_\infty(3412,2413)]$$

 $\mathbb{K}[\mathsf{Av}_{\infty}(35124,24513)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(231,4123)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ NSym

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

 $\mathbb{K}[\mathsf{Av}_{\infty}(3412,2413)] \qquad \text{Hopf algebra of diagonal rectangulations} \\ \text{or (twisted) Baxter permutations}$

 $\mathbb{K}[\mathsf{Av}_{\infty}(35124,24513)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(231,4123)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ *NSym*

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

 $\mathbb{K}[\mathsf{Av}_{\infty}(3412,2413)]$ Hopf algebra of diagonal rectangulations or (twisted) Baxter permutations $\mathbb{K}[\mathsf{Av}_{\infty}(35124,24513)]$ Hopf algebra of generic rectangulations (!)

 $\mathbb{K}[\mathsf{Av}_{\infty}(231,4123)]$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ NSym

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

 $\mathbb{K}[\mathsf{Av}_{\infty}(3412,2413)] \qquad \text{Hopf algebra of diagonal rectangulations} \\ \text{or (twisted) Baxter permutations} \\ \mathbb{K}[\mathsf{Av}_{\infty}(35124,24513)] \qquad \text{Hopf algebra of generic rectangulations (!)} \\ \mathbb{K}[\mathsf{Av}_{\infty}(231,4123)] \qquad \text{Hopf algebra of sashes (Law's talk)} \\$

 $\mathbb{K}[\mathsf{Av}_{\infty}(21)]$ One-dimensional graded pieces.

 $\mathbb{K}[\mathsf{Av}_{\infty}(312,231)]$ NSym

 $\mathbb{K}[\mathsf{Av}_{\infty}(312)]$ LR

 $\mathbb{K}[\mathsf{Av}_{\infty}(231)]$ LR (an antisymmetric copy)

In every case above, the pattern-avoidance condition defines the Hopf algebra "extrinsically," but there is a much simpler "intrinsic" description in terms of some combinatorial object. In other specific examples, we would like to discover the intrinsic combinatorics.

 $\mathbb{K}[\mathsf{Av}_{\infty}(3412,2413)] \qquad \text{Hopf algebra of diagonal rectangulations} \\ \text{or (twisted) Baxter permutations}$

 $\mathbb{K}[\mathsf{Av}_\infty(35124,24513)]$ Hopf algebra of generic rectangulations (!)

 $\mathbb{K}[\mathsf{Av}_\infty(231,4123)]$ Hopf algebra of sashes (Law's talk)

÷

A map from permutations to diagonal rectangulations

 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)

A map from permutations to diagonal rectangulations

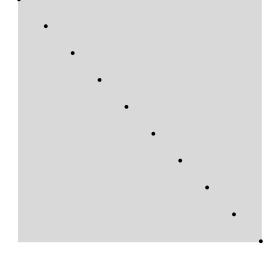
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)

A map from permutations to diagonal rectangulations

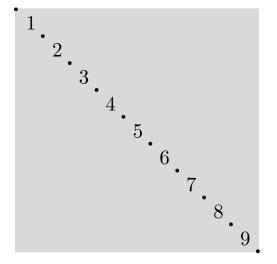
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



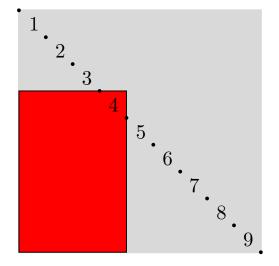
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



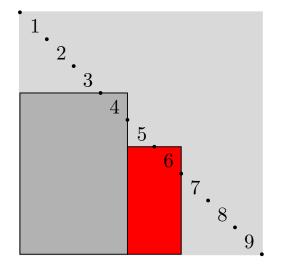
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



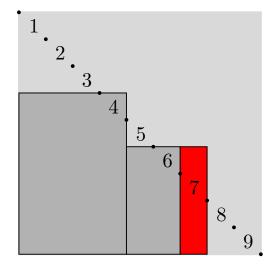
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: $\rho(467198352)$



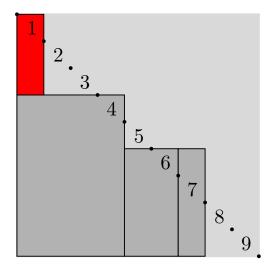
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: $\rho(467198352)$



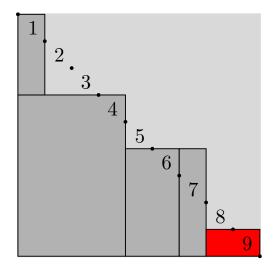
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: $\rho(467198352)$



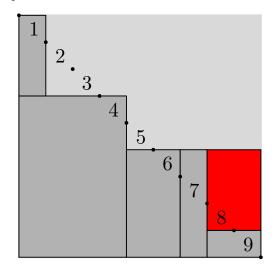
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



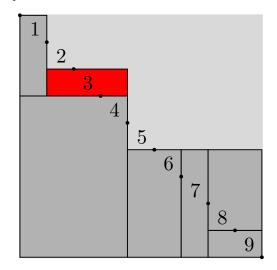
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



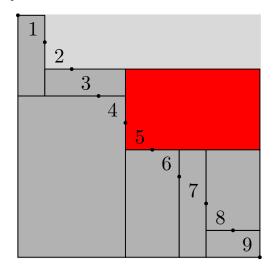
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



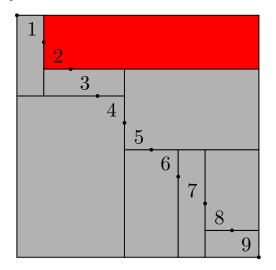
 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: $\rho(467198352)$



 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: $\rho(467198352)$



 $\rho: S_n \to \{\text{rectangulations}\}.$

Example: ρ (467198352)



Diagonal rectangulations and pattern-avoidance

$$\rho(3142) = \begin{array}{|c|c|} \hline 1 \\ \hline 2 \\ \hline & 3 \\ \hline & 4 \\ \hline \end{array} = \rho(3412)$$

$$\rho(2143) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = \rho(2413)$$

These two examples are the essence of the reason why $\pi_{\downarrow}(x)$ is the smallest permutation (in weak order) with $\rho(\pi_{\downarrow}(x)) = \rho(x)$.

A map from permutations to generic rectangulations

$$\gamma(3142) = \boxed{\begin{array}{c|c} 1 \\ 2 \\ \hline & 3 \\ 4 \end{array}}$$

$$\gamma(3142) = \begin{array}{|c|c|} \hline 1 \\ \hline 3 \\ \hline 4 \\ \hline \end{array} \qquad \gamma(3412) = \begin{array}{|c|c|} \hline 1 \\ \hline 3 \\ \hline 4 \\ \hline \end{array}$$

$$\gamma(2143) = \begin{array}{|c|c|} 1 & 3 \\ \hline & 2 & 4 \\ \hline \end{array}$$

$$\gamma(2143) = \begin{bmatrix} 1 & 3 \\ & & \\ & & \\ \hline & 2 & 4 \end{bmatrix} \qquad \gamma(2413) = \begin{bmatrix} 1 & \\ & 2 \\ & & \\ & & 4 \end{bmatrix}$$

Generic rectangulations and pattern-avoidance

$$\rho(31524) = \begin{array}{|c|c|}\hline 1 & & \\ & 2 & \\ & & 3 & \\ & & & 5 & \\ & & & 5 & \\ \end{array} = \rho(35124)$$

$$\gamma(31524) = \begin{array}{|c|c|c|c|c|}\hline 1 & & & \\ & 2 & & \\ & & 3 & \\ & & & 5 \end{array} = \gamma(35124)$$

Similarly, $\gamma(24153) = \gamma(24513)$.

These examples are the essence of the proof that generic rectangulations are in bijection with $Av_n(24513, 35124)$.