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Generic rectangulations

Rectangulation: a tiling of a rectangle by rectangles.

∼

We’ll consider them up to combinatorial equivalence.
n g. rects. w/ n tiles #

1 1

2 2

3 × 2 × 4 6

4 24

5 116
...

...

27 53845049871942333501408 ∼ 5 · 1022

Recursive formula: Conant and Michaels, 2011.
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Let y be a permutation of the form
increasing

———— k1
increasing

———— ∈ Sk .

A scramble of y is
any order

———— k1
any order

————.

Example: Scrambles of 256134: 256134, 256143, 526134, 526143.

Define Avn(y) =
{x ∈ Sn : x avoids instances of scrambles of y with k1 adjacent}

Example: 613982574 6∈ Av9(256134).
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pattern-avoidance

Let y be a permutation of the form
increasing

———— k1
increasing

———— ∈ Sk .

A scramble of y is
any order

———— k1
any order

————.

Example: Scrambles of 256134: 256134, 256143, 526134, 526143.

Define Avn(y) =
{x ∈ Sn : x avoids instances of scrambles of y with k1 adjacent}

Example: 613982574 6∈ Av9(256134).

Define Avn(y1, . . . , ym) = Avn(y1) ∩ · · · ∩ Avn(ym).

Write Avn when y or y1, . . . , ym is understood.
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A downward projection

Fix y or y1, . . . , ym as before.

Define π↓ : Sn → Avn:

◮ If x ∈ Avn then π↓(x) = x .

◮ Otherwise, find an instance of a scramble of y (or some yi) in
x and swap “k” and “1” to get x ′. Define π↓(x) = π↓(x

′).

Example: Take y = 256134.

π↓(613982574)
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A downward projection (hiding a lattice congruence)

Fix y or y1, . . . , ym as before.

Define π↓ : Sn → Avn:

◮ If x ∈ Avn then π↓(x) = x .

◮ Otherwise, find an instance of a scramble of y (or some yi) in
x and swap “k” and “1” to get x ′. Define π↓(x) = π↓(x

′).

Example: Take y = 256134.

π↓(613982574) = π↓(613928574) = π↓(613298574) = 613298574.

The fibers of π↓ are the congruence classes of a lattice congruence
of the weak order on Sn. In particular, the fibers are intervals. The
quotient lattice is a lattice structure on Avn.
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The Hopf algebra

Define a graded vector space K[Av∞] =
⊕

n≥0 K[Avn].

Define c : K[Av∞] → K[S∞] by

c(z) =
∑

x :π↓(x)=z

x , for z ∈ Avn .

Define r : K[S∞] → K[Av∞] by

r(x) =

{

x if x ∈ Avn

0 otherwise
for x ∈ Sn.

Theorem (R., 2005)

(K[Av∞], •Av,∆Av) is a graded Hopf algebra, where

x •Av y = r(c(x) •S c(y)) = r(x •S y), and

∆Av(z) = (r ⊗ r)(∆S(c(z))).

Corollary

The map c embeds (K[Av∞], •Av,∆Av) as a Hopf subalgebra of

(K[S∞], •S ,∆S ). 5
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Example: ρ(467198352)
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Diagonal rectangulations and pattern-avoidance

ρ(3142) =

1
2

3
4

= ρ(3412)

ρ(2143) =

1
2

3
4

= ρ(2413)

These two examples are the essence of the reason why π↓(x) is the
smallest permutation (in weak order) with ρ(π↓(x)) = ρ(x).
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A map from permutations to generic rectangulations

γ(3142) =

1
2

3
4

γ(3412) =

1
2

3
4

γ(2143) =

1

2

3

4

γ(2413) =

1
2

3
4
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Generic rectangulations and pattern-avoidance

ρ(31524) =

1
2

3
4

5

= ρ(35124)

γ(31524) =

1
2

3
4

5

= γ(35124)

Similarly, γ(24153) = γ(24513).

These examples are the essence of the proof that generic
rectangulations are in bijection with Avn(24513, 35124).
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