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Coxeter groups

Coxeter groups

A Coxeter group is a group with a certain presentation. Choose a

finite generating set S = {s1, . . . , sn} and for every i < j , choose

an integer m(i , j) ≥ 2. Define:

W =
〈
S | s2

i = 1, ∀ i and (sisj)
m(i ,j) = 1, ∀ i < j

〉
.
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A Coxeter group is a group with a certain presentation. Choose a

finite generating set S = {s1, . . . , sn} and for every i < j , choose
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i = 1, ∀ i and (sisj)
m(i ,j) = 1, ∀ i < j

〉
.

Why would anyone write this down?
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Finite (Real!) reflection groups

A hyperplane in R
d is a subspace of dimension d − 1.

An orthogonal reflection is a linear transformation which fixes a
hyperplane with a (−1)-eigenspace orthogonal to the hyperplane.
A finite reflection group is a finite group generated by reflections.

Example (Symmetries of a square)

s1 s2

All symmetries of the square are com-
positions of the reflections s1 and s2.
This is a finite reflection group.

The composition s1s2 is a 90◦ rotation,
so (s1s2)

4 = 1. Abstractly, this group is

〈
{s1, s2} | s2

1 = s2
2 = (s1s2)

4
〉
.

This is a Coxeter group.
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Finite (Real!) reflection groups (continued)

Theorem. A finite group is a Coxeter group if and only if it is a
finite reflection group.

Finite reflection groups are interesting for many reasons, including
applications to Lie theory and algebraic geometry. Finite reflection
groups enjoy very pretty invariant theory. (Today at 1:45.)

Besides the generators S , other elements act as reflections. The
collection A of reflecting hyperplanes for all these reflections cuts
space into “regions.” The generators S are the reflections in the
walls of some region D. Identify D with the identity element 1.
The map w 7→ wD is a bijection from W to A-regions.
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Finite (Real!) reflection groups (continued)

Theorem. A finite group is a Coxeter group if and only if it is a
finite reflection group.

Finite reflection groups are interesting for many reasons, including
applications to Lie theory and algebraic geometry. Finite reflection
groups enjoy very pretty invariant theory. (Today at 1:45.)

Besides the generators S , other elements act as reflections. The
collection A of reflecting hyperplanes for all these reflections cuts
space into “regions.” The generators S are the reflections in the
walls of some region D. Identify D with the identity element 1.
The map w 7→ wD is a bijection from W to A-regions.

1

s1

s2

s1s2

s2s1

s2s1s2

s1s2s1
* ∗ = s1s2s1s2 = s2s1s2s1
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Symmetric group S4 (symmetries of regular tetrahedron)

Blue region is 1.

Regions ↔
elements.

Largest circles:
hyperplanes for
s1, s2, and s3.
(s2 on top.)

m(s1, s2) = 3.
m(s2, s3) = 3.
m(s1, s3) = 2.
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Infinite groups

Theorem. Any discrete group generated by reflections in a
(constant curvature) spherical, Euclidean or hyperbolic space is a
Coxeter group.

Theorem. For any Coxeter group W , one can define a symmetric
bilinear form B on R

S and construct W as a discrete subgroup of
the orthogonal group O(RS ,B) generated by reflections (i.e.
reflections that are orthogonal with respect to B).

Again, a particular region (connected component of R
S minus the

reflecting hyperplanes) represents the identity. Important point:
The Tits cone is defined to be the union of closures of all regions
in the W -orbit of the region representing 1. When W is infinite,
the Tits cone is not all of R

S .
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A reflection group in the Poincare disk
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A reflection group in the Poincare disk

1
a

b

c

m(a, b) = 5, m(b, c) = 4, m(a, c) = 2
7



A reflection group in the Euclidean plane

1

a

b

c

m(a, b) = 3, m(b, c) = 6, m(a, c) = 2
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The weak order on a Coxeter group

A reduced word for w ∈ W : a shortest possible sequence of
elements of S such that the product of the sequence is w .
The weak order on W : the poset generated by relations ws < w

when s ∈ S and w has a reduced word ending in s.
Weak order encodes the structure of reduced words.

Example: weak
order on Sn

Move “up” by
swapping two
adjacent entries of
the permutation, so
as to put them out of
order.

S = {a, b}
a = (1 2), b = (2 3)

1

a b

ab ba

aba = bab

123

213

312

132

231

321
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The weak order as a poset of regions (Example: S4)

Recall: Group elements ↔ regions (in Tits cone).
Geometric characterization of weak order: go “up” from 1 by
crossing hyperplanes.
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First take-home lesson

The beauty of Coxeter groups lies in the rich interplay between
geometry, combinatorics and order/lattice theory.

Most proofs about Coxeter groups exploit a combination of
methods:

1. Combinatorics of words in S .

2. Geometry of arrangements of reflecting hyperplanes.
(Alternately, geometry of root systems. A root system is a
collection of two normal vectors per hyperplane, chosen so
that the root system is permuted by W .)

3. Order/lattice theory of the weak order. (Alternately, the
Bruhat order.)

4. Linear algebra.

5. More. . .
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The classical associahedron

An n-dimensional polytope whose vertices are labeled by
triangulations of a convex (n + 3)-gon. (Counted by the Catalan
number.) Edges correspond to diagonal flips. For n = 3:
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Combinatorial clusters

Root system Φ for W : two normals for each reflecting hyperplane.
Positive roots: nice choice of one root for each hyperplane.
Simple roots: positive roots associated to the generators S .
Almost positive roots: positive roots union negatives of simples.

Triangulations of a polygon are generalized by clusters: maximal
sets of pairwise “compatible” roots in Φ≥−1.

Clusters are counted by Cat(W ), the W -Catalan number. (When
W is the symmetric group, this is the usual Catalan number.)
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Rank-two examples (i.e. |S | = 2)

Root systems.
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Rank-two examples (i.e. |S | = 2)

Positive roots. (Simple roots in red.)
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Rank-two examples (i.e. |S | = 2)

Almost positive roots.

In these examples, two almost positive roots are compatible if and
only if they are “adjacent.” Notice that the positive linear spans of
clusters decompose space into cones. This happens in general, and
the decomposition is called the cluster fan. The cluster fan is dual
to a polytope called the generalized associahedron.
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Example (W = Sn)

Simple root: αi corresponding to “reflection” (i i+1).
Positive root: αij = αi + αi+1 + · · ·αj .
Almost positive roots ↔ diagonals of (n+2)-gon.
Compatible ↔ noncrossing.
Negative simple roots ↔ diagonals forming “snake.”
Positive root αij ↔ diagonal crossing −αi , . . . ,−αj and no other
negative simple. (α23 shown dotted.)

−α1

−α2

−α3

−α4
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Example (W = Sn)

Simple root: αi corresponding to “reflection” (i i+1).
Positive root: αij = αi + αi+1 + · · ·αj .
Almost positive roots ↔ diagonals of (n+2)-gon.
Compatible ↔ noncrossing.
Negative simple roots ↔ diagonals forming “snake.”
Positive root αij ↔ diagonal crossing −αi , . . . ,−αj and no other
negative simple. (α23 shown dotted.)

−α1

−α2

−α3

−α4
Compatibility for general W : There
is a “rotation” on Φ≥−1 such that
every positive root can be rotated to
a negative simple root. Compatibility
is rotation invariant and −α is
compatible with β is and only if α

has coefficient zero in the
simple-root expansion of β.
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Cluster algebras (Fomin and Zelevinsky)

Generalized associahedra are the underlying combinatorial
structures for cluster algebras of finite type.
Initial motivation: a framework for the study of total positivity and
of Lusztig/Kashiwara’s canonical bases of quantum groups. Many
algebras related to reductive Lie groups have the structure of a
cluster algebra.

Subsequent applications (due to many researchers):

1. Discrete dynamical systems based on rational recurrences.

2. Y -systems in thermodynamic Bethe Ansatz.

3. Quiver representations.

4. Grassmannians, projective configurations & tropical analogues.

5. Poisson geometry, Teichmüller theory.

6. Triangulations of orientable surfaces.

16



Definition of a cluster algebra (modulo all the details)

A seed consists of a cluster of n rational functions, called cluster
variables and matrix B .

For each cluster variable x in a seed, mutation creates a new seed:

x is replaced with a new rational function x ′.

The other cluster variables are unchanged.

B is replaced with a new matrix.

(B is the combinatorial data telling you how to do mutations.)

Start with an initial seed and let mutations propagate in all
directions to obtain a (usually infinite) collection of seeds. Use the
collection of all cluster variables in all these seeds to generate an
algebra. This is the cluster algebra associated to the initial seed.
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An example with n = 3

B , x1, x2, x3
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An example with n = 3

B , x1, x2, x3

B1,x
′
1,x2, x3

B2, x1,x
′
2,x3

B3, x1, x2,x
′
3
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An example with n = 3

Theorem (Fomin, Zelevinsky). Cluster algebras with a finite
number of seeds correspond to generalized associahedra.
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Second take-home lesson

Cluster algebras (of “finite type”) are intricately connected with
the combinatorics of Coxeter groups. But in most contexts,
restricting to cluster algebras of finite type is very artificial.

The standard construction of generalized associahedra does not
generalize in an obvious way to an infinite Coxeter group. It also
uses very little Coxeter theoretic machinery.

For the rest of the talk, I’ll describe an alternate approach to
generalized associahedra that uses a wide range of
Coxeter-theoretic tools and which generalizes naturally to infinite
Coxeter groups.
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A map from permutations to triangulations

Arrange the numbers from 0 to n + 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example: π = 42783165

1

2

3 4

5

6 7

8

90
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A map from permutations to triangulations
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

43210

1
2 3

4

5
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S4 to triangulations

0

1
2 3

4

5
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S4 to triangulations

0

1
2 3

4

5
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S4 to triangulations, geometric view

22



S4 to triangulations, geometric view

22



S4 to triangulations, geometric view

22



S4 to triangulations, geometric view

22



S4 to triangulations, geometric view

22



S4 to triangulations, geometric view

22



Summary of the Sn example

Sn

Image(πc
↓)

πc
↓

?

clc

- {Triangulations}

ηc

-

c : the choice of how to label the polygon.

ηc : Permutations to triangulations. Factors through πc
↓ .

πc
↓ : x 7−→ bottom element of η−1

c (ηc(x)).

clc : a bijection from bottom elements to triangulations.

Key point: Combinatorics of associahedron encoded in fibers of πc
↓ .

23



Summary of the Sn example

Sn

Image(πc
↓)

πc
↓

?

clc

- {Triangulations}

ηc

-

c : the choice of how to label the polygon.

ηc : Permutations to triangulations. Factors through πc
↓ .

πc
↓ : x 7−→ bottom element of η−1

c (ηc(x)).

clc : a bijection from bottom elements to triangulations.

Key point: Combinatorics of associahedron encoded in fibers of πc
↓ .

23



Third take-home lesson (for general finite W )

W

{c-sortable elements}

πc
↓

?

clc

- {Clusters}

ηc (?)

-

c : a choice of Coxeter element of W .

c-sortables and πc
↓ defined using weak order and/or reduced words

and/or geometry.

clc : still a bijection.
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Third take-home lesson (for general finite W )

W

{c-sortable elements}

πc
↓

?

clc

- {Clusters}

ηc (?)

-

c : a choice of Coxeter element of W .

c-sortables and πc
↓ defined using weak order and/or reduced words

and/or geometry.

clc : still a bijection. (Also, ncc , a bijection to NC partitions.)

Key point: Fibers of πc
↓ define Cambrian fan, combinatorially

isomorphic to cluster complex (coincides with “g -vector fan”). 24



Infinite Coxeter groups/cluster algebras of infinite type

W

{c-sortable elements}

πc
↓

?

clc

- {Clusters}

ηc

-

c-sortables and πc
↓ : definitions (weak order, reduced words,

geometry) hold verbatim.

clc : No suitable general definition of combinatorial clusters.
ncc : No suitable general definition of noncrossing partitions.

Cambrian fan: Conjecturally, a subfan of the g -vector fan.

The issue: Cambrian fan doesn’t reach outside the Tits cone.
25



An “affine” example (W of type G̃2)
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The same affine example (Negative of Tits cone)
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The same affine example (stereographic view)
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Analysis of the affine example

The Cambrian fan becomes periodic in one direction.

Cluster algebras tell us that the dual “affine associahedron” should
be combinatorially periodic in both directions.

Part of the associahedron is outside of the Cambrian fan, because
the Cambrian fan doesn’t extend (very far) outside the Tits cone.

Speyer and I think we know how to deal with the affine case.
A key point: all of the combinatorics is already present in the
(limiting) periodic part.

The non-affine cases are harder. . .
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A hyperbolic example
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The same hyperbolic example (stereographic view)
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The same hyperbolic example (stereographic view)
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Analysis of the hyperbolic example

Speyer and I don’t think we can deal with the non-affine infinite
case with only sortable elements/Cambrian lattices as tools.

There are indications that some larger object (properly containing
the Coxeter group W ) exists. The key may be to generalize
sortable elements and Cambrian lattices to this bigger setting.
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The geometry of sortable elements
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The geometry of sortable elements (continued)

t

s

r
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The word-combinatorics of sortable elements

A Coxeter element is c = s1 · · · sn for S = {s1, . . . , sn}

Fix (some reduced word for) a Coxeter element c .

Form an infinite word

c∞ = c |c |c |c | · · ·

c-Sorting word for w is the the lexicographically leftmost subword
of c∞ which is a reduced word for w .

35



Example: W = S5, c = s1s2s3s4

c∞ = s1s2s3s4|s1s2s3s4|s1s2s3s4| · · ·

The c-sorting word for 42351 is s1s2s3s4|s2|s1.

Step c-Sorting word Permutation

0 42351
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Sortable elements

A sorting word can be interpreted as a sequence of sets (letters
between dividers “ | ”). If the sequence is nested then w is
c-sortable.

Example: w with c-sorting word s1s2s3s4|s2|s1 is not c-sortable
because {s1} 6⊆ {s2}.

Example: W = S3, c = s1s2.

c-sortable: not c-sortable:
1 123 s2|s1 312
s1 213
s1s2 231
s1s2|s1 321
s2 132

Example: W = Sn

For one choice of c , the c-sortable elements are the “231-avoiding”
or “stack-sortable” permutations.
For another c , “c-sortable” = “312-avoiding”.
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