NON-NEGATIVE CD-COEFFICIENTS OF GORENSTEIN*
POSETS

NATHAN READING

ABSTRACT. We give a convolution formula for cd-index coefficients. The con-
volution formula, together with the proof by Davis and Okun of the Charney-
Davis Conjecture in dimension 3, imply that certain cd-coefficients are non-
negative for all Gorenstein®™ posets. Additional coefficients are shown to be
non-negative by interpreting them in terms of the top homology of certain
Cohen-Macaulay complexes. In particular we verify, up to rank 6, Stanley’s
conjecture that the coefficients in the cd-index of a Gorenstein* ranked poset
are non-negative.

1. INTRODUCTION

We begin by summarizing the main results, putting off most definitions until
Section 2. Throughout this paper, P is an Eulerian poset with rank function p and
cd-index ®p, and (w|Pp) is the coefficient of a cd-word w in ®p. We prove the
following convolution formula for coefficients of the cd-index:

Theorem 1. If w = widedws with deg(wid) =k — 1 then

2ul@p) = 3 (widl@p ) - (dws|Dy, 1).
rEP
p(z)=k

A similar formula holds when w;d or dws is replaced by an empty cd-word.
Theorem 1 has been discovered independently by Mahajan [10] and Stenson [15].
The idea of using convolution formulas to generate new inequalities for flag numbers
was originated by G. Kalai in [9].

We establish directly the non-negativity of the coefficient of any cd-word having
at most one d. If P is a graded poset with a unique minimal element 0 and a unique
maximal element 1, we denote by Y(P) the reduced Euler characteristic of the poset
pP— {O, i} and by H,,(P) the mth simplicial homology of the order complex of P —
{0,1}. For a graded poset P, the subposet Sk, (P) := {z € P:p(z) <m+1} U
{1} is called the m-skeleton of P. If P is the face poset of a CW-complex, this
corresponds to the usual notion of skeleton.

Theorem 2. If P is an Eulerian poset of rank n + 1 then
(A" 2 0 p) = (=1)"F (Skm(P)) — 1.
If P is Gorenstein™* then
(c™dc" ™™ 2| D p) = rank[H,, (Skn(P))] —1 > 0.

1991 Mathematics Subject Classification. Primary 06A07; Secondary 05E99, 52B05.
Key words and phrases. cd-index, Charney-Davis Conjecture, Eulerian poset, flag f-vector,
Gorenstein.

1



2 NATHAN READING

Theorem 2 is similar to a result of Novik [11] for Eulerian Buchsbaum simplicial
complexes. In particular, Novik’s result implies Theorem 2 in the case when P is a
simplicial poset, i.e. when every lower interval of P is a Boolean lattice.

An Eulerian poset P has the Charney-Davis property if (dk|<I>[x,y]) > 0 for any
interval [z, y] C P of rank 2k+1, for any k. The name of this property refers to the
Charney-Davis conjecture about Gorenstein* flag simplicial complexes (see [5, 12]
for details). In the special case of order complexes, the conjecture is that any
Gorenstein* poset has the Charney-Davis property. This connection between the
Charney-Davis conjecture and the cd-index was observed by Babson (see [5]). Stan-
ley [14] conjectured that the coefficients of the cd-index are non-negative whenever
P is Gorenstein*. Davis and Okun [6] proved the Charney-Davis conjecture for
Gorenstein* flag complexes of dimension 3. Their result, combined with Theorems
1 and 2, yields the following theorem, which supports Stanley’s conjecture. The
case where j = 1 and e; = 1 is Theorem 2. If j = 1 and e; = 2, then the Davis-
Okun result and Theorem 1 give non-negativity. For j > 1, the result follows by
Theorem 1 and induction.

Theorem 3. Let P be a Gorenstein® poset of rank n+ 1. Let w be a cd-monomial
of degree n with w = cFd®cd®*c---cd®c™ for 7 > 1 and e; € {1,2} for each
i. If e # 1, require that k € {0,1}; if e; # 1, require that m € {0,1}. Then
(w|®p) > 0. O

As far as we are aware, Theorem 3 gives the complete list of cd-coefficients
which are known to be non-negative for all Gorenstein* posets. If the Charney-
Davis conjecture is true for order complexes of all dimensions, then the restriction
e; € {1,2} can be replaced by e; > 1.

For any Eulerian poset P, the coefficient of ¢™ is 1, and for n < 5, any other
cd-monomial w satisfies the hypotheses of Theorem 3. Therefore:

Corollary 4. If P is a Gorenstein® poset with rank(P) < 6, then ®p has non-
negative coefficients.

For Gorenstein® posets of rank 7, the only coefficients of ® not shown in this
paper to be non-negative are the coefficients of ccdd, deed, ddec and ddd. The most
that the present work can say about these coefficients is that 2{v|®) + (ddd|®) > 0
for v = cedd, deed or ddec. (See Proposition 9).

The paper is structured as follows: In Section 2, we give a few basic definitions
and formulas. Theorem 1 and several generalizations are proven in Section 3, and
Theorem 2 is proven in Section 4.

2. THE CD-INDEX

In this section, we define the flag f-vector and the flag L-vector, then use the
flag L-vector to define the cd-index. It is more common to transform the flag f-
vector to the flag h-vector, and use the flag h-vector to define the cd-index. For
more details on flag f-vectors and the cd-index, including the usual definitions, the
reader is referred to [14].

Let P be an Eulerian poset of rank n + 1 with rank function p. A poset with
0 and 1 is Eulerian if its Mdbius function has the simple formula [13, Sections 3.8,
3.14]

pla,y) = (~1)P 07,



NON-NEGATIVE CD-COEFFICIENTS 3

For a chain C' in P — {0,1} define p(C) = {p(x): 2z € C}. For any S C [n], let
C(S) be the set of chains C in P — {0,1} such that p(C) = S. The flag f-vector
is fs :=|C(S)|. The flag f-vector is written fg(P) when it is important to specify
the poset P explicitly.

A set S C [n] is even if it is a disjoint union of intervals of even cardinality. A set
is anti-even if its complement is even. Bayer and Hetyei defined the flag L-vector

1) Ly = (-5 (~2) 7T

T2Se
This formula can be inverted, with §¢:={1,2,...,n} — S.

(2) fs = 28l Z Lr.

TCSe
Bayer and Hetyei [2] noted that Ls = 0 when S is not an even set and that the Lg
are actually the coefficients of the ce-index [14], which we will not define here.

Let ¢ and d be non-commuting variables in ¢ and d, and let the degree of ¢
be 1 and the degree of d be 2. The length I(w) of a cd-word is the number of
letters in the word. To define the cd-index in terms of the flag L-vector, it is
convenient to introduce two partial orders on cd-words. The Fibonacci order “<,”
is a partial order on cd-words, generated by the following covering relations: v>w
if w is obtained from v by replacing some d with cc. Intervals in the Fibonacci
order are boolean algebras, so the Mébius function is pu(w,v) = (—1)4®)~1®) for
w < v. The strong Fibonacci order is also defined by covering relations. Say that
v>,w if w is obtained from v by replacing some d* with ¢d*~'c for any k > 1, and
let “<,” be the transitive closure of these cover relations. The Mobius function of
the strong Fibonacci order, denoted by pus, has the following useful, easily-proved
property:

Proposition 5. If v <; w = wicws, then v = vicvy for v <; wy and vy <4 wa,
and [v,w]s = [v1,w1]s X [v2,ws]s. In particular,

ps(v, w) = ps(v1,wr) - ps(v2, w2). O

Given a cd-word w, an even set E,, is obtained by lining up w with the set [n]
such that each d covers two elements of [n]. Then for each d in w, both elements
covered by the d are included in E,, and each element covered by a c is excluded
from E,. An anti-even set can be defined by A, := (Ey)¢ So if w = edddeded,
then F,, = {2,3,4,5,6,7,9,10,12,13} and A,, = {1,8,11}. Because Ls = 0 when
S is not even, we can index L by cd-words, with L,, := Lg,. We wish to consider
flag f-vectors in the case when S is anti-even, as was done in [3]. We denote the
anti-even flag f-vectors by f¢ := fa, .

Restricting Equation (2) to anti-even flag f-vectors and rewriting in terms of the
strong Fibonacci order yields:

3) fo=20 S,
v<sw

Bayer [1] gave the following formula for the cd-index, which we take to be the
definition. Specifically, define the cd-index ®p to be the homogenous polynomial
of degree n in non-commuting ¢ and d whose coefficients are given by:

(4) (w|®) = (=2""™ Y L,

v>w
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The partial order here is the Fibonacci order.

3. CONVOLUTION FORMULAS FOR CD-COEFFICIENTS

In this section we prove Theorem 1 and several generalizations.
There is a simple convolution formula for f¢, also found in [3, Proposition 1.2].
If the degree of wy is k — 1, then

(5) ews = D i ([0,2]) - fi, ([, 1)).
z€EP
p(x)=k
Combined with Proposition 5, Equation (5) leads to a convolution formula for the
flag L-vector [2, Appendix B].

Proposition 6. If w = wycws, with deg(wy) =k — 1 then

2Lw(P) = Z Lwl([()?x]) : sz([xv ﬂ)
zeP
p(x)=k
Proof. Notice that v < w if and only if v = vy cvy with v; < w; and vy < wy. There-
fore we can use the Mobius inversion of Equation (3) to rewrite the right side, then
apply Proposition 5 and Equation (5) to simplify the products of Mobius functions
and of anti-even flag f-vectors. We finish by applying the Mobius inversion of
Equation (3) again. O

Proposition 6 allows us to prove Theorem 1.

Proof of Theorem 1. If w = widedws, then v > w if and only if v = vycvy for
v1 > wid and vy > dwy. Thus we can use Equation (4) to rewrite the right side in
terms of flag L-vectors, then simplify using Proposition 6 and Equation (4). When
dws is the empty word, the intervals [z, i] on the right side are two-element chains,
SO (I)[w,i] =1, and the same proof goes through. O

Theorem 1 implies the following, which is the easier direction of a theorem of
Bayer [1]. Bayer’s theorem also shows that there are no other lower or upper bounds
on cd-coefficients of Eulerian posets.

Theorem 7. Let P be an Fulerian poset of rank n+ 1. The coefficients of dc™ 2,
c"2d, cdc™ 2 and " 3dc are all non-negative. Also, let v be a cd-monomial start-
ing and ending in d and alternating dedc - - - cd with at least one ¢, such that cFvc™
has degree n. Then {cFvc™|®p) > 0.

Proof. The coefficients (dc"~2|®p) and (c"~2d|®p) are easily seen to be non-
negative, and the other coefficients follow by Theorem 1. O

Theorem 1 has several generalizations, which we state without proof.
Proposition 8. If w = widc™dwy with deg(wid) =k — 1, then

> 210 (wy dvdw, | T p) = > (wid|®p ;1) - (dwa|®p,, 1)-
v>em (Il<<$m)ec([kvk+m71})
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Besides replacing ¢ by ¢, there is another way of generalizing Theorem 1. In
the proof of Theorem 1, we found a ¢ in w and wrote down a convolution formula by
splitting w at that ¢. The formula came out nicely because the ¢ was between two
d’s. There are other formulas when the ¢ is not between two d’s. These formulas
were also discovered independently by Stenson [15].

Proposition 9. If w = widecws with deg(wid) = k — 1, then

2(w|®p) + (widdwa|®p) = Y (wid|®pg ) - (cwa|Pp, ).
zEP:p(x)=k
O
Proposition 10. If w = wycccws with deg(wic) =k — 1, then
2{(w|®p) + (wrcdws|Pp) + (widcws|Pp) = Z (wic| @5 ) - (cw2| Py, gp)-
zE€P:p(x)=k
|

Theorem 1 and Propositions 8 through 10 also have coproduct proofs, suggested
by Ehrenborg and Readdy [8]. For example, the right side of Theorem 1 can be

rewritten as
Z 5w1d(q)[(3,z]) : 5dw2 ((b[z,i])a
O<x<1
where §,, is a linear functional on cd-polynomials which returns the coefficient of
w. Now the proposition follows, after some calculation, from the fact that ® is
a coalgebra homomorphism. See [7] for more information on coproducts as they
relate to the cd-index.

4. c¢D-COEFFICIENTS AND SKELETA

We conclude by proving Theorem 2. In what follows, topological statements
about a poset P apply to the geometric realization of the order complex of P—{0, 1},
as in [13, Section 3.8]. Recall from the introduction that the m-skeleton of a graded
poset is the subposet Sk,,(P) :={x € P: p(x) <m+1}U{1}.

Theorem 2. If P is an Eulerian poset of rank n + 1 then
(M de™ 2 p) = (~1)"F (ki (P)) — 1.
If P is Gorenstein™* then
(c™dc" ™™ 2D p) = rank[H,, (Sky(P))] — 1 > 0.

Proof.
(=1)"X (Skm(P)) = frma1y = Frmy + -+ (1) fry + (=)™
This is easily seen to be equal to (c™dc" ™ 2|®p) + 1. Also,
(=1)"X (Skm(P)) = Y _(=1)"‘rank [H; (Skn(P))].
If P is a homology sphere then by the lRank—Selection Theorem for Cohen-Macaulay
posets [4], the skeleton Sk, (P) is Cohen-Macaulay, so H; (Sky,(P)) = 0 for i < m.

To show that H,, (Skn,(P)) > 0, consider any element p € P of rank m + 2. The
interval [0, p] is a Gorenstein* poset, i.e. the order complex of (0, p) is a homology
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m-sphere. The orientation class of that homology sphere is a non-zero element of
Hp (Ski(P)). O

5. ACKNOWLEDGMENTS

The author wishes to thank his advisor Vic Reiner for helpful conversations,
and in particular for suggesting that there might be a convolution formula for
(wrdedws|®p). The author also wishes to thank Lou Billera, Richard Ehrenborg
and Margaret Readdy for helpful conversations.

REFERENCES

[1] M. Bayer, Signs in the cd-index of Eulerian partially ordered sets, Proc. Amer. Math. Soc.
129 (2001) no. 8, 2219-2225 (electronic).

[2] M. Bayer and G. Hetyei, Flag vectors of Eulerian partially ordered sets, European J. Combin.
22 (2001) no. 1, 5-26.

[3] L. Billera and N. Liu, Noncommutative enumeration in graded posets, J. Algebraic Combin.
12 (2000) no. 1, 7-24.

[4] A. Bjorner, Topological Methods, in Handbook of Combinatorics (ed. R. Graham, M. Grotschel
and L. Lovdsz), Elsevier, Amsterdam, (1995), 1819-1872.

[5] R. Charney and M. Davis, The Euler characteristic of a nonpositively curved, piecewise-
Euclidean manifold, Pacific J. Math. 171 (1995), 117-137.

[6] M. Davis and B. Okun, Vanishing theorems and conjectures for the £2-homology of right-angled
Cozeter groups, Geom. Topol. 5 (2001) 7-74 (electronic).

[7] R. Ehrenborg and M. Readdy, Coproducts and the cd-Indez, J. Algebraic Combin. 8 (1998),
273-299.

[8] R. Ehrenborg and M. Readdy, personal communication, 2000.

[9] G. Kalai, A new basis of polytopes, J. Combin. Theory Ser. A 49 (1988) no. 2, 191-209.

[10] S. Mahajan, The cd-index of the Boolean lattice, preprint 2002.

[11] I. Novik, Lower bounds for the cd-index of odd-dimensional simplicial manifolds, European
J. Combin. 21 (2000) no. 4, 533-541.

[12] R. Stanley, Combinatorics and Commutative Algebra, Progress in Mathematics, 41,
Birkhauser Boston, 2nd ed., 1996.

[13] R. Stanley, Enumerative Combinatorics, Volume I, Cambridge Studies in Advanced Mathe-
matics, 49, Cambridge Univ. Press 1997.

[14] R. Stanley, Flag f-vectors and the cd-index, Math. Z. 216 (1994), 483-499.

[15] C. Stenson, Relationships among flag f-vector inequalities for polytopes, Discrete Comput.
Geom., to appear.

MATHEMATICS DEPARTMENT, UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109-1109, USA
E-mail address: nreading@umich.edu
URL: http://www.math.lsa.umich.edu/~nreading/



