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Abstract. We give a convolution formula for cd-index coefficients. The con-

volution formula, together with the proof by Davis and Okun of the Charney-

Davis Conjecture in dimension 3, imply that certain cd-coefficients are non-

negative for all Gorenstein* posets. Additional coefficients are shown to be

non-negative by interpreting them in terms of the top homology of certain

Cohen-Macaulay complexes. In particular we verify, up to rank 6, Stanley’s

conjecture that the coefficients in the cd-index of a Gorenstein* ranked poset
are non-negative.

1. Introduction

We begin by summarizing the main results, putting off most definitions until
Section 2. Throughout this paper, P is an Eulerian poset with rank function ρ and
cd-index ΦP , and 〈w|ΦP 〉 is the coefficient of a cd-word w in ΦP . We prove the
following convolution formula for coefficients of the cd-index:

Theorem 1. If w = w1dcdw2 with deg(w1d) = k − 1 then

2〈w|ΦP 〉 =
∑

x∈P
ρ(x)=k

〈w1d|Φ[0̂,x]〉 · 〈dw2|Φ[x,1̂]〉.

A similar formula holds when w1d or dw2 is replaced by an empty cd-word.
Theorem 1 has been discovered independently by Mahajan [10] and Stenson [15].
The idea of using convolution formulas to generate new inequalities for flag numbers
was originated by G. Kalai in [9].

We establish directly the non-negativity of the coefficient of any cd-word having
at most one d. If P is a graded poset with a unique minimal element 0̂ and a unique
maximal element 1̂, we denote by χ̃(P ) the reduced Euler characteristic of the poset

P −{0̂, 1̂} and by Hm(P ) the mth simplicial homology of the order complex of P −

{0̂, 1̂}. For a graded poset P , the subposet Skm(P ) := {x ∈ P : ρ(x) ≤ m+ 1} ∪

{1̂} is called the m-skeleton of P . If P is the face poset of a CW-complex, this
corresponds to the usual notion of skeleton.

Theorem 2. If P is an Eulerian poset of rank n+ 1 then

〈cmdcn−m−2|ΦP 〉 = (−1)mχ̃ (Skm(P ))− 1.

If P is Gorenstein* then

〈cmdcn−m−2|ΦP 〉 = rank [Hm (Skm(P ))]− 1 ≥ 0.
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Theorem 2 is similar to a result of Novik [11] for Eulerian Buchsbaum simplicial
complexes. In particular, Novik’s result implies Theorem 2 in the case when P is a
simplicial poset, i.e. when every lower interval of P is a Boolean lattice.

An Eulerian poset P has the Charney-Davis property if 〈dk|Φ[x,y]〉 ≥ 0 for any
interval [x, y] ⊆ P of rank 2k+1, for any k. The name of this property refers to the
Charney-Davis conjecture about Gorenstein* flag simplicial complexes (see [5, 12]
for details). In the special case of order complexes, the conjecture is that any
Gorenstein* poset has the Charney-Davis property. This connection between the
Charney-Davis conjecture and the cd-index was observed by Babson (see [5]). Stan-
ley [14] conjectured that the coefficients of the cd-index are non-negative whenever
P is Gorenstein*. Davis and Okun [6] proved the Charney-Davis conjecture for
Gorenstein* flag complexes of dimension 3. Their result, combined with Theorems
1 and 2, yields the following theorem, which supports Stanley’s conjecture. The
case where j = 1 and e1 = 1 is Theorem 2. If j = 1 and e1 = 2, then the Davis-
Okun result and Theorem 1 give non-negativity. For j > 1, the result follows by
Theorem 1 and induction.

Theorem 3. Let P be a Gorenstein* poset of rank n+1. Let w be a cd-monomial
of degree n with w = ckde1cde2c · · · cdejcm for j ≥ 1 and ei ∈ {1, 2} for each
i. If e1 6= 1, require that k ∈ {0, 1}; if ej 6= 1, require that m ∈ {0, 1}. Then
〈w|ΦP 〉 ≥ 0. ¤

As far as we are aware, Theorem 3 gives the complete list of cd-coefficients
which are known to be non-negative for all Gorenstein* posets. If the Charney-
Davis conjecture is true for order complexes of all dimensions, then the restriction
ei ∈ {1, 2} can be replaced by ei ≥ 1.

For any Eulerian poset P , the coefficient of cn is 1, and for n ≤ 5, any other
cd-monomial w satisfies the hypotheses of Theorem 3. Therefore:

Corollary 4. If P is a Gorenstein* poset with rank(P ) ≤ 6, then ΦP has non-

negative coefficients.

For Gorenstein* posets of rank 7, the only coefficients of Φ not shown in this
paper to be non-negative are the coefficients of ccdd, dccd, ddcc and ddd. The most
that the present work can say about these coefficients is that 2〈v|Φ〉+ 〈ddd|Φ〉 ≥ 0
for v = ccdd, dccd or ddcc. (See Proposition 9).

The paper is structured as follows: In Section 2, we give a few basic definitions
and formulas. Theorem 1 and several generalizations are proven in Section 3, and
Theorem 2 is proven in Section 4.

2. The cd-index

In this section, we define the flag f -vector and the flag L-vector, then use the
flag L-vector to define the cd-index. It is more common to transform the flag f -
vector to the flag h-vector, and use the flag h-vector to define the cd-index. For
more details on flag f -vectors and the cd-index, including the usual definitions, the
reader is referred to [14].

Let P be an Eulerian poset of rank n + 1 with rank function ρ. A poset with
0̂ and 1̂ is Eulerian if its Möbius function has the simple formula [13, Sections 3.8,
3.14]

µ(x, y) = (−1)ρ(y)−ρ(x).
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For a chain C in P − {0̂, 1̂} define ρ(C) = {ρ(x) : x ∈ C}. For any S ⊆ [n], let

C(S) be the set of chains C in P − {0̂, 1̂} such that ρ(C) = S. The flag f -vector
is fS := |C(S)|. The flag f -vector is written fS(P ) when it is important to specify
the poset P explicitly.

A set S ⊆ [n] is even if it is a disjoint union of intervals of even cardinality. A set
is anti-even if its complement is even. Bayer and Hetyei defined the flag L-vector

LS := (−1)n−|S|
∑

T⊇Sc

(−2)−|T |fT .(1)

This formula can be inverted, with Sc := {1, 2, . . . , n} − S.

fS = 2|S|
∑

T⊆Sc

LT .(2)

Bayer and Hetyei [2] noted that LS = 0 when S is not an even set and that the LS

are actually the coefficients of the ce-index [14], which we will not define here.
Let c and d be non-commuting variables in c and d, and let the degree of c

be 1 and the degree of d be 2. The length l(w) of a cd-word is the number of
letters in the word. To define the cd-index in terms of the flag L-vector, it is
convenient to introduce two partial orders on cd-words. The Fibonacci order “≤,”
is a partial order on cd-words, generated by the following covering relations: v ·>w
if w is obtained from v by replacing some d with cc. Intervals in the Fibonacci
order are boolean algebras, so the Möbius function is µ(w, v) = (−1)l(v)−l(w) for
w ≤ v. The strong Fibonacci order is also defined by covering relations. Say that
v ·>sw if w is obtained from v by replacing some dk with cdk−1c for any k ≥ 1, and
let “≤s” be the transitive closure of these cover relations. The Möbius function of
the strong Fibonacci order, denoted by µs, has the following useful, easily-proved
property:

Proposition 5. If v ≤s w = w1cw2, then v = v1cv2 for v1 ≤s w1 and v2 ≤s w2,

and [v, w]s ∼= [v1, w1]s × [v2, w2]s. In particular,

µs(v, w) = µs(v1, w1) · µs(v2, w2). ¤

Given a cd-word w, an even set Ew is obtained by lining up w with the set [n]
such that each d covers two elements of [n]. Then for each d in w, both elements
covered by the d are included in Ew and each element covered by a c is excluded
from Ew. An anti-even set can be defined by Aw := (Ew)

c. So if w = cdddcdcd,
then Ew = {2, 3, 4, 5, 6, 7, 9, 10, 12, 13} and Aw = {1, 8, 11}. Because LS = 0 when
S is not even, we can index L by cd-words, with Lw := LEw

. We wish to consider
flag f -vectors in the case when S is anti-even, as was done in [3]. We denote the
anti-even flag f -vectors by faw := fAw

.
Restricting Equation (2) to anti-even flag f -vectors and rewriting in terms of the

strong Fibonacci order yields:

faw = 22l(w)−n
∑

v≤sw

Lv.(3)

Bayer [1] gave the following formula for the cd-index, which we take to be the
definition. Specifically, define the cd-index ΦP to be the homogenous polynomial
of degree n in non-commuting c and d whose coefficients are given by:

〈w|Φ〉 = (−2)n−l(w)
∑

v≥w

Lv(4)
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The partial order here is the Fibonacci order.

3. Convolution Formulas for cd-Coefficients

In this section we prove Theorem 1 and several generalizations.
There is a simple convolution formula for fa, also found in [3, Proposition 1.2].

If the degree of w1 is k − 1, then

faw1cw2
=

∑

x∈P
ρ(x)=k

faw1
([0̂, x]) · faw2

([x, 1̂]).(5)

Combined with Proposition 5, Equation (5) leads to a convolution formula for the
flag L-vector [2, Appendix B].

Proposition 6. If w = w1cw2, with deg(w1) = k − 1 then

2Lw(P ) =
∑

x∈P
ρ(x)=k

Lw1
([0̂, x]) · Lw2

([x, 1̂]).

Proof. Notice that v ≤ w if and only if v = v1cv2 with v1 ≤ w1 and v2 ≤ w2. There-
fore we can use the Möbius inversion of Equation (3) to rewrite the right side, then
apply Proposition 5 and Equation (5) to simplify the products of Möbius functions
and of anti-even flag f -vectors. We finish by applying the Möbius inversion of
Equation (3) again. ¤

Proposition 6 allows us to prove Theorem 1.

Proof of Theorem 1. If w = w1dcdw2, then v ≥ w if and only if v = v1cv2 for
v1 ≥ w1d and v2 ≥ dw2. Thus we can use Equation (4) to rewrite the right side in
terms of flag L-vectors, then simplify using Proposition 6 and Equation (4). When

dw2 is the empty word, the intervals [x, 1̂] on the right side are two-element chains,
so Φ[x,1̂] = 1, and the same proof goes through. ¤

Theorem 1 implies the following, which is the easier direction of a theorem of
Bayer [1]. Bayer’s theorem also shows that there are no other lower or upper bounds
on cd-coefficients of Eulerian posets.

Theorem 7. Let P be an Eulerian poset of rank n+ 1. The coefficients of dcn−2,

cn−2d, cdcn−3 and cn−3dc are all non-negative. Also, let v be a cd-monomial start-

ing and ending in d and alternating dcdc · · · cd with at least one c, such that ckvcm

has degree n. Then 〈ckvcm|ΦP 〉 ≥ 0.

Proof. The coefficients 〈dcn−2|ΦP 〉 and 〈cn−2d|ΦP 〉 are easily seen to be non-
negative, and the other coefficients follow by Theorem 1. ¤

Theorem 1 has several generalizations, which we state without proof.

Proposition 8. If w = w1dc
mdw2 with deg(w1d) = k − 1, then

∑

v≥cm

2l(v)〈w1dvdw2|ΦP 〉 =
∑

(x1<· ···<· xm)∈C([k,k+m−1])

〈w1d|Φ[0̂,x1]
〉 · 〈dw2|Φ[xm,1̂]〉.

¤
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Besides replacing c by cm, there is another way of generalizing Theorem 1. In
the proof of Theorem 1, we found a c in w and wrote down a convolution formula by
splitting w at that c. The formula came out nicely because the c was between two
d’s. There are other formulas when the c is not between two d’s. These formulas
were also discovered independently by Stenson [15].

Proposition 9. If w = w1dccw2 with deg(w1d) = k − 1, then

2〈w|ΦP 〉+ 〈w1ddw2|ΦP 〉 =
∑

x∈P :ρ(x)=k

〈w1d|Φ[0̂,x]〉 · 〈cw2|Φ[x,1̂]〉.

¤

Proposition 10. If w = w1cccw2 with deg(w1c) = k − 1, then

2〈w|ΦP 〉+ 〈w1cdw2|ΦP 〉+ 〈w1dcw2|ΦP 〉 =
∑

x∈P :ρ(x)=k

〈w1c|Φ[0̂,x]〉 · 〈cw2|Φ[x,1̂]〉.

¤

Theorem 1 and Propositions 8 through 10 also have coproduct proofs, suggested
by Ehrenborg and Readdy [8]. For example, the right side of Theorem 1 can be
rewritten as ∑

0̂<x<1̂

δw1d(Φ[0̂,x]) · δdw2
(Φ[x,1̂]),

where δw is a linear functional on cd-polynomials which returns the coefficient of
w. Now the proposition follows, after some calculation, from the fact that Φ is
a coalgebra homomorphism. See [7] for more information on coproducts as they
relate to the cd-index.

4. cd-Coefficients and Skeleta

We conclude by proving Theorem 2. In what follows, topological statements
about a poset P apply to the geometric realization of the order complex of P−{0̂, 1̂},
as in [13, Section 3.8]. Recall from the introduction that the m-skeleton of a graded

poset is the subposet Skm(P ) := {x ∈ P : ρ(x) ≤ m+ 1} ∪ {1̂}.

Theorem 2. If P is an Eulerian poset of rank n+ 1 then

〈cmdcn−m−2|ΦP 〉 = (−1)mχ̃ (Skm(P ))− 1.

If P is Gorenstein* then

〈cmdcn−m−2|ΦP 〉 = rank [Hm (Skm(P ))]− 1 ≥ 0.

Proof.

(−1)mχ̃ (Skm(P )) = f{m+1} − f{m} + · · ·+ (−1)mf{1} + (−1)m+1.

This is easily seen to be equal to 〈cmdcn−m−2|ΦP 〉+ 1. Also,

(−1)mχ̃ (Skm(P )) =
∑

i

(−1)m−irank [Hi (Skm(P ))] .

If P is a homology sphere then by the Rank-Selection Theorem for Cohen-Macaulay
posets [4], the skeleton Skm(P ) is Cohen-Macaulay, so Hi (Skm(P )) = 0 for i < m.
To show that Hm (Skm(P )) > 0, consider any element p ∈ P of rank m + 2. The

interval [0̂, p] is a Gorenstein* poset, i.e. the order complex of (0̂, p) is a homology
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m-sphere. The orientation class of that homology sphere is a non-zero element of
Hm (Skm(P )). ¤
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