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Noncrossing (NC) partitions (Kreweras, 1972)

1

2

3

4

Partitions of an n-cycle
with noncrossing parts.

(Shown: n = 4,
refinement order.)

NC partitions ↔
certain elements of Sn.
Bijection: read parts
clockwise as cycles.
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W -NC partitions (Athanasiadis, Bessis, Brady, Reiner, Watt, ∼2000)

W : a finite Coxeter group with simple reflections S

Coxeter element: c = s1 · · · s|S| for S =
{

s1, . . . , s|S|
}

Factor c as a product of |S | reflections t1 · · · t|S|.
W -noncrossing partitions: elements of the form t1 · · · ti
(as both i ≤ |S | and the factorization are allowed to vary).

Example (W = Sn)

c is the product of the adjacent transpositions in any order.
This is always an n-cycle.
Reflections are (not-necessarily adjacent) transpositions.

Why do this?

1. Eilenberg-MacLane spaces (and more) for Artin groups (e.g.
the braid group).

2. Interesting algebraic combinatorics.
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Associahedron (Haiman, Lee, Milnor, Stasheff, 1963–1989)

Triangulations of a
polygon. (Think:
maximal collections of
noncrossing diagonals.)

Edges connecting
triangulations are
“diagonal flips.”
This is a regular graph.

The associahedron is a
simple convex polytope
whose 1-skeleton is this
graph.
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Generalized associahedron (Fomin, Zelevinsky, 2003)

Positive roots ↔ reflections (in Sn: transpositions).
Simple roots ↔ simple reflections (in Sn: adjacent transp.).
Almost positive roots: Positive roots & negatives of simple roots.
Clusters: max’l sets of pairwise “compatible” almost positive roots.
Exchange graph: vertices are clusters, edges delete one root and
replace it with a (unique) other root that makes a new cluster.

Example (W = Sn)

Simples: α1, . . . αn−1, Positives: αi + · · · + αi , i ≤ j

Diagonals of (n + 2)-gon ↔ “almost positive roots.”
(

n+1
2

)

− 1.
“Compatible” = “noncrossing”
Exchanges = diagonal flips. −α1

−α2

−α3

−α4

Why do this?

1. Cluster algebras of finite type.

2. Interesting polytopes.

3. Interesting algebraic combinatorics.
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W -Catalan numbers (various researchers, 1980–present)

Cat(W ) :=

n
∏

i=1

ei + h + 1

ei + 1

Generalizes usual Catalan number (W = Sn).
h (Coxeter number) and ei ’s (exponents) are fundamental
numerical invariants of W .

Cat(W ) counts:

1. W -noncrossing partitions

2. Clusters of almost positive roots for W

3. antichains in the root poset, positive regions in the Shi
arrangement, B-stable ideals, conjugacy classes of elements of
finite order in Lie groups.
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W -Catalan numbers (various researchers, 1980–present)

Cat(W ) :=

n
∏

i=1

ei + h + 1

ei + 1

Generalizes usual Catalan number (W = Sn).
h (Coxeter number) and ei ’s (exponents) are fundamental
numerical invariants of W .

Cat(W ) counts:

1. W -noncrossing partitions

2. Clusters of almost positive roots for W

3. antichains in the root poset, positive regions in the Shi
arrangement, B-stable ideals, conjugacy classes of elements of
finite order in Lie groups.

4. Sortable elements of W .
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
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Sorting words in the example W = Sn

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example (W = S4, c = s1s2s3, π = 4231)

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
7 s1 s1s2s3|s2|s1 1234
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Sortable elements (R., 2005)

In general, write a c-sorting word for w ∈ W by trying the
generators cyclically according to some order on the simple
reflections S . (This order also defines a Coxeter element c .)
Place a divider “|” every time a pass through S is completed.
A c-sorting word can be interpreted as a sequence of sets
(sets of letters between dividers “ | ”).
If the sequence is nested then w is c-sortable.

Example (π = 4231 with c-sorting word s1s2s3s4|s2|s1 )

π is not c-sortable because {s1} 6⊆ {s2}.

Example (W = S3, c = s1s2)
c-sortable: 1, s1, s1s2, s1s2|s1, s2
not c-sortable: s2|s1

Example (W = Sn, c = s1s2 · · · sn)

c-sortables ↔ “231-avoiding” or “stack-sortable” permutations.
(C.f. Björner and Wachs, 1997.) For another c , “312-avoiding.”
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Results on sortable elements

1. For finite W , any c , bijection to W -noncrossing partitions.
w 7→ reflections associated to “descents.” (R., 2005)

2. For finite W , any c , bijection to vertices of the generalized
associahedron—i.e. clusters. (R., 2005)

3. Thus, bijective explanation of why clusters and noncrossing
partitions are equinumerous. (A different explanation:
Athanasiadis, Brady, McCammond, Watt, 2005–2006)

4. Deep connection to the lattice theory of the weak order
on W , specifically Cambrian lattices. (R., 2005)

5. Sortable elements lead to Cambrian fans, a novel
(combinatorial) construction of the generalized associahedron.
(R., Speyer, 2006)
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Coxeter fan, Cambrian fan, cluster fan

The Coxeter arrangement: the set of reflecting hyperplanes of
reflections of W . The hyperplanes cut space into simplicial cones
(the Coxeter fan F). Elements of W ↔ maximal cones of F .

π
c
↓ : the unique longest c-sortable element below w .

(In Sn “length” = “number of inversions.”)
Define x ≡c y if π

c
↓(x) = π

c
↓(y).

The Cambrian fan Fc : Maximal cones are unions (over ≡c -classes)
of maximal cones of the Coxeter fan. (Why is Fc a fan? Because
≡c is a lattice congruence of the weak order.)

The cluster fan: Each cluster defines a maximal cone—the positive
linear span of the roots in the cluster.
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Combinatorial isomorphism

Theorem (R., Speyer, 2006)

The bijection c-sortables ↔ clusters induces a combinatorial

isomorphism between the Cambrian fan and the cluster fan.

Consequences

1. Constructs the combinatorial backbone of cluster algebras of
finite type in a new way. Some cluster algebra constructions
are more natural in the Cambrian setting (e.g. “g-vectors”).

2. Suggests a way to generalize the combinatorics of generalized
associahedra to infinite Coxeter groups (work in progress with
Speyer).
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Example (W = B2, c = s0s1)

1
s0

s0s1

s0s1s0

s0s1s0s1

s1

s1s0

s1s0s1

F

1
s0

s0s1

s0s1s0

s0s1s0s1

s1 Fc

−αs0
−αs1

αs0
αs1

αs0s1s0αs1s0s1

Cluster
fan

cl(1)

cl(s0)

cl(s0s1)

cl(s0s1s0)

cl(s1)

cl(s0s1s0s1)

The
bijection
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1234

1324

12432134

2143

2413

2314 1423

3214 1432

3124 1342

3142

3412

2341 4123

3241 4132

2431 4213

4231

3421 4312

4321

The Coxeter
fan for S4
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1234

1324

12432134

2143

2314

3214 1432

1342

2341

3241

2431

3421

4321

A Cambrian
fan for S4

In this case,
sortable means
312-avoiding.
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