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Main points

The theory of lattice congruences of finite lattices (and
particularly the weak order on a Coxeter group) is very
combinatorial, and not very forbidding, and can uncover
hidden combinatorial meaning/structures.

Lattice congruences of the weak order have a nice
discrete-geometric structure and meaning.

There are connections to

cluster algebras,
representation theory of finite-dimensional algebras, and
mirror symmetry in algebraic geometry/string theory.
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Section 1: Lattice congruences for combinatorialists



Lattices

(Universal) algebra

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

Combinatorics

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .
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Lattices

(Universal) algebra

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

x ≤ y iff x∨y = y iff x∧y = x

Combinatorics

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .

x ∨ y =
∨

{x , y}

x ∧ y =
∧

{x , y}
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Homomorphisms, congruences, quotients

(Lattice) homomorphism: a map η : L1 → L2 such that

η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y).

Congruence: an equivalence relation ≡ on L such that

(x1 ≡ x2 and y1 ≡ y2) =⇒ (x1∧y1 ≡ x2∧y2 and x1∨y1 ≡ x2∨y2).

Quotient: The set L/ ≡ of congruence classes with meet and join

[x ] ∨ [y ] = [x ∨ y ] and [x ] ∧ [y ] = [x ∧ y ].
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Homomorphisms, congruences, quotients

(Lattice) homomorphism: a map η : L1 → L2 such that

η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y).

Congruence: an equivalence relation ≡ on L such that

(x1 ≡ x2 and y1 ≡ y2) =⇒ (x1∧y1 ≡ x2∧y2 and x1∨y1 ≡ x2∨y2).

Quotient: The set L/ ≡ of congruence classes with meet and join

[x ] ∨ [y ] = [x ∨ y ] and [x ] ∧ [y ] = [x ∧ y ].

What do these mean in the order-theoretic definition of lattices?
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of its
equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of its
equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

A take-home lesson:
If you encounter a surjective set map η : L → S (a set):

Check if the fibers (preimages of el’ts of S) are intervals in L.

If so, check (ii) and (iii) on the fibers.

If these hold, then the fibers of η are a congruence ≡, and η
induces a lattice structure on S , isomorphic to L/ ≡.
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

1

2

3 4

5

6
7

8

90
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42
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5

6
7

8

90

Lattice congruences of the weak order Lattice congruences for combinatorialists 5



Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

427
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

4278

1

2

3 4

5

6
7

8

90
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

427831
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

4278316
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783165
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783165

1

2

3 4

5

6
7

8

90

Lattice congruences of the weak order Lattice congruences for combinatorialists 5



S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

4321
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

43210
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5
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S4 to triangulations

0

1
2 3

4

5
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S4 to triangulations Fibers are a congruence.
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S4 to triangulations Fibers are a congruence.
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S4 to triangulations Fibers are a congruence.

0
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S4 to triangulations Fibers are a congruence. Quotient = Tamari lattice
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2 3

4

5
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S4 to triangulations (for a different polygon)

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

43210
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4

5
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S4 to triangulations (for a different polygon)
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S4 to triangulations (for a different polygon)
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S4 to triangulations (for a different polygon)
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S4 to triangulations (Quotient is a Cambrian lattice)
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Order-theoretic characterization of congruence (concluded)

Recap of the example: We encountered a surjective map η from
the weak order on permutations to the set of triangulations. One
can check in general (using iterated fiber polytopes):

Its fibers are intervals in the weak order.

(ii) and (iii) hold for the fibers.

Conclude: Fibers of η are a congruence ≡, and η induces a
lattice structure on S , isomorphic to L/ ≡.

In general, these lattices are “Cambrian lattices of type A.” Covers
are diagonal flips, and “going up” means increasing the slope of the
diagonal. For a special choice of polygon, this is a Tamari lattice.

On finite L, an equivalence relation ≡ is a lattice congruence iff:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ is order-preserving.

(iii) The map π↑ is order-preserving.
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Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then the induced
subposet π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.
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Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then the induced
subposet π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.

Example.

0

1
2 3

4

5

∼=

0

1
2 3

4

5
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Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then the induced
subposet π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.

Example.

0

1
2 3

4

5

∼=

0

1
2 3

4

5

Caveat: π↓L is a join-sublattice of L but can fail to be a sublattice:
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Contracting edges

A congruence Θ contracts an edge a ⋖ b if a ≡ b modulo Θ.

Since congruence classes are intervals, we can describe a
congruence completely by specifying which edges are contracted.

As one might expect, edges cannot be contracted independently.

Say a ⋖ b forces c ⋖ d and write (a ⋖ b) → (c ⋖ d) if every
congruence contracting a ⋖ b also contracts c ⋖ d .
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Example: Forcing in a polygon

A “side” edge can be contracted independently.

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Polygonal lattices

A polygon in a lattice: an interval like etc.

L may have many polygons or none.
It is called polygonal if it has as many
polygons as possible. That is:

(i) If distinct elements y1 and y2
both cover an element x , then
[x , y1 ∨ y2] is a polygon.

(ii) If an element y covers distinct
elements x1 and x2, then
[x1 ∧ x2, y ] is a polygon.

Example.

Proposition. The forcing relation in a polygonal lattice L is the
transitive closure of the forcing relation in each polygon of L.
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Example of forcing in a polygonal lattice

The congruence generated by contracting the red and blue edges.
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Example of forcing in a polygonal lattice
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Example of forcing in a polygonal lattice

The congruence generated by contracting the red and blue edges.
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Section 2: Congruences on the weak order



The weak order

We write our permutations in one-line notation, e.g. 37284615.

The weak order on permutations is the partial order on
permutations defined by these cover relations: Going “up” by a
cover means putting adjacent entries out of numerical order.

Example. The weak order on S3:
321

231312

213132

123

The symmetric group Sn is a finite
Coxeter group (finite group generated
by orthogonal reflections).

The weak order on any finite Coxeter group is a polygonal lattice.
In fact it is “congruence uniform” and therefore “semidistributive”.

(We’ll focus on Sn.)
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Weak order on S4

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Join-irreducible elements of the weak order

Join-irreducible
= “can’t be written non-
trivially as a least upper bound”
= “covers exactly one element”.

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Join-irreducible elements of the weak order

Join-irreducible
= “can’t be written non-
trivially as a least upper bound”
= “covers exactly one element”.

Join-irreducible permutations:
Those permutations with
exactly one descent. 1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

124313242134

1423134231242314

41232413

3412

2341
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Forcing equivalence classes (in the weak order)

(a ⋖ b) ≡ (c ⋖ d) means (a ⋖ b) ↔ (c ⋖ d)
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Forcing equivalence classes (in the weak order)

(a ⋖ b) ≡ (c ⋖ d) means (a ⋖ b) ↔ (c ⋖ d)

Fact. Every forcing equivalence
class contains exactly one
edge of the form (j∗ ⋖ j) for j

join-irreducible.
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Forcing equivalence classes (in the weak order)

(a ⋖ b) ≡ (c ⋖ d) means (a ⋖ b) ↔ (c ⋖ d)

Fact. Every forcing equivalence
class contains exactly one
edge of the form (j∗ ⋖ j) for j

join-irreducible.

2134
1324
1243
3124
2314
1423
1342
4123
2413
3412
2341 1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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1423134231242314

41232413

3412

2341
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Upshot:
We can understand forcing
by considering forcing among
forcing equivalence classes (i.e.
among join-irreducible elements)
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Noncrossing arc diagrams

Put 1, . . . , n on a vertical line.

Arcs connect the point (monotone up/down).
Consider arcs up to combinatorics (endpoints
and what points it passes left/right of).

Compatibility of arcs: non-intersecting except
possibly at their endpoints, and don’t share the
same upper endpoint or the same lower endpoint.

Noncrossing arc diagram: a collection of
pairwise-compatible arcs. 1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9
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Seems like it should be difficult to count these. . .
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Seems like it should be difficult to count these. . .
In fact, there are n! of them! We’ll define a map δ such that:

Theorem. The map δ is a bijection from permutations in Sn to
noncrossing arc diagrams on n points. It restricts to a bijection
between join-irreducible permutations and arcs.
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Noncrossing arc diagrams (continued)

Constructing δ(π1 · · · πn):

1. Graph π1 · · · πn by writing πi at the point (i , πi) in the plane.

2. Connect the descents with line segments.

3. Move the numbers to a single vertical line. Segments
connecting descents become arcs.

Example. δ(157842936).
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Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Lattice congruences of the weak order Congruences on the weak order 20



Forcing and subarcs

A subarc of a given arc:

Key point: A join-irreducible permutation j1 forces
another join-irreducible permutation j2 if and only
if δ(j1) is a subarc of δ(j2).

Recall that a join-irreducible permutation serves
as a representative of its forcing equivalence class.
Recall also that arcs correspond to join-irreducible
permutations. So we can understand lattice quo-
tients of the weak order in terms of noncrossing arc
diagrams and the subarc relation:

Constructing a lattice quotient of the weak order means choosing a
set U of arcs that is closed under passing to subarcs.

U ↔ forcing congruence classes that are not contracted.

The quotient is the subposet of the weak order induced by
permutations π such that δ(π) only involves arcs in U.
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Example: Right (or left-right) noncrossing arc diagrams

The set of all right arcs (arcs that don’t pass left
of any points) is closed under passing to subarcs.
The quotient is the Tamari lattice. (Rotate
diagrams 90◦ to get noncrossing partitions.)
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Similarly left arcs don’t
pass right of any points,
and there is a left-arc
version of the Tamari
lattice.
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The set {left arcs} ∪ {right arcs} is closed
under passing to subarcs. A left-right non-
crossing arc diagram is a diagram made from
left and right arcs. (More on this quotient soon.)
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What is a quotient of the weak order on permutations?

One answer: Choose a set U of arcs that will not be contracted by
the congruence. (U is closed under passing to subarcs.) Elements
of the quotient are noncrossing arc diagrams only using arcs in U.

Another answer: Think about arcs (forcing congruence classes)
that will be contracted by the congruence. Use these to
characterize permutations in the quotient by “(vincular)
subsequence avoidance”.

Suppose you have an arc α connecting i to j , with points
ℓ1, . . . , ℓk left of the arc and points r1, . . . , rm right of the arc.

What property of permutation π ensures that the arc diagram δ(π)
does not use the arc α or any superarc of α?

π must not have a subsequence (for j ′ ≥ j and i ′ ≤ i):

(permution of ℓ1, . . . , ℓk)·(j
′ adjacent to i ′)·(permution of r1, . . . , rm)
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Example (continued): Right noncrossing arc diagrams

You can get the set of all right arcs by leaving out all arcs
connecting i to i + 2 and passing to the left of i +1 (and of course
leaving out all superarcs of these). The corresponding
permutations avoid subsequences

(≥ i + 2) adjacent to (≤ i) followed by i + 1.

This quotient is the weak order restricted to 312-avoiding (also
known as the Tamari lattice).
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Example (continued): Left-right arc diagrams

You can get the set {right arcs} ∪ {left arcs} by leaving out the
following arcs and their superarcs:

arcs connecting i to i + 3 and passing to the left of i + 1 and
right of i + 2.

arcs connecting i to i +3 and passing to the right of i +1 and
left of i + 2.

The corresponding permu-
tations avoid the (vincular)
patterns 2-41-3 and 3-41-2.
They are the twisted Bax-
ter permutations, counted
by the Baxter number

2
n3+2n2+n

∑n
k=1

(

n+1
k−1

)(

n+1
k

)(

n+1
k+1

)

.
The quotient is isomorphic to
a lattice of diagonal rectangu-
lations (Law, R., 2011).
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More examples

Cambrian lattices, given by a condition that interpolates between
231-avoidance and 312-avoidance. (For each point, we decide once
and for all: either all arcs pass left of it or all arcs pass right of it.)

(Pilaud-Pons, 2016). Lattices of “permutrees” that interpolate
between the weak order and Cambrian lattices. (Some points may
allow arcs on both sides.)

(Pilaud, 2015). A k-triangulation of a convex (n + 2k)-gon is a
maximal set of diagonals such that no k + 1 of them are pairwise
crossing. For each k , there is a lattice of k-triangulations,
generalizing the Tamari lattice, appearing as a quotient of the
weak order. (Each arc may pass left of at most k points.)
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Another example: Generic rectangulations

There is a coarser congruence than the congruence associated to
diagonal rectangulations that gives rise to a lattice of generic
rectangulations.

The corresponding
arc diagrams allow
arcs that pass left
of some points and
right of some oth-
ers, but only cross
between left and
right once.
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Another example: Alternating arc diagrams

Alternating arcs: arcs that never pass left of two adjacent
points and never pass right of two adjacent points.

The set of alternating arcs is closed under passing to
subarcs, so there is an associated quotient of the weak
order.

Theorem (E. Barnard, 2015, Châtel-Pilaud 2014).
There are

(

2n
n

)

alternating arc diagrams on n points.
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Section 3: Geometry and algebra



The geometry of Coxeter groups and congruences

Every Coxeter group W is a group generated by reflections.
A: the collection of all reflecting hyperplanes for reflections in W .

For W = Sn, the reflecting hyperplanes are xi = xj in R
n.

Regions: connected components of the complement of A.
These are in bijection with elements of W . Using the bijection, we
see the weak order as a poset of regions.

The regions and their faces constitute a simplicial fan.

For any lattice congruence Θ on the weak order, define a collection
FΘ of cones, closed under passing to faces:

Maximal cones of FΘ are unions, over congruence classes of Θ, of
maximal cones of the fan defined by A.

Theorem. FΘ is a fan.
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Example: FΘ for a congruence on the weak order on S4
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Example: FΘ for a congruence on the weak order on S4

FΘ = normal fan of associahedron. S4/Θ = Tamari lattice.
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Example: FΘ for a congruence on the weak order on S4
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Polytopes, generalized associahedra, and cluster algebras

Theorem (Pilaud, Santos, 2018). For any congruence Θ on the
weak order on Sn, the fan FΘ is the normal fan of a polytope.

This is probably true for any Coxeter group W , or more generally.

Theorem (R., Speyer, 2006). For any Coxeter group W and any
Cambrian congruence, the Cambrian fan FΘ is combinatorially
isomorphic to the normal fan of a generalized associahedron.

Theorem (Hohlweg, Lange, Thomas, 2006). The Cambrian fan is
the normal fan of a certain realization of the generalized
associahedron. (They gave an explicit realization.)

Theorem(R.-Speyer 2006, Yang-Zelevinsky 2008, R.-Speyer 2011).
The Cambrian fan coincides with the g-vector fan of the associated
cluster algebra.
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Shards

To make the fan FΘ for a congruence Θ on the weak order, we glue
cones of the Coxeter fan together according to congruence classes.

So: contracting an edge means removing the wall between two
adjacent cones.

A shard is (the union of) the collection of walls corresponding to a
forcing equivalence class. Each shard turns out to consist of walls
all in the same hyperplane. There is a simple geometric description.

Example.

1

We describe a congruence by specifying which shards are removed.
There is a geometric description of forcing among shards.
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Shards in S4
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Shard removal/forcing example in S4
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Shard removal/forcing example in S4 (A Cambrian fan)
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Shards in algebra, geometry, and physics

Representation theory of finite dimensional algebras (or quivers):

Theorem (H. Thomas, 2017). The shards associated to W are
precisely the closures of domains of semistability of the bricks in
the corresponding preprojective algebra.

Mirror symmetry (algebraic geometry, string theory):

Theorem. The shards not removed by the Cambrian congruence
constitute the walls of the associated cluster scattering diagram of
finite type.

Theorem (R., Stella 2019). For an affine Coxeter group, the
shards associated to the doubled Cambrian fan (R., Speyer 2015),
and one “shard at infinity” constitute the walls of the associated
cluster scattering diagram of affine type.
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Future work

For a general (not-necessarily finite) Coxeter group, the weak order
is a semilattice, but not a lattice.

With Speyer and Thomas, I am trying to construct a complete
lattice associated to any Coxeter group.

In finite type, we know how to build the weak order using the
shards: We have found that there is a Fundamental Theorem of
Finite Semidistributive Lattices (FTFSDL) generalizing the
well-known FTFDL.

One direction of FTFSDL works to create infinite semidistributive
lattices, and we think we can use it to make the desired lattice.

The eventual goal is to do everything in complete generality:
Congruences, Cambrian congruences, generalized associahedra or
their fans, representation theory, cluster scattering diagrams,. . .
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