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Overview

Scattering diagrams arose from mirror symmetry, Donaldson-
Thomas theory (string theory), integrable systems, and I know
almost nothing about any of that. Gross, Hacking, Keel, and
Kontsevich recently applied scattering diagrams to prove
longstanding conjectures about cluster algebras.

Today’s goal: Introduce scattering diagrams and cluster algebras,
make the connection between them, and point out some
interesting combinatorics and discrete geometry.

Main points:

• Even in the two-dimensional case (e.g. affine type Ã1), you have
to work a bit to construct the cluster scattering diagram. I’ll show
how to do affine type Ã1 using cluster algebras.

• I’ll show how the generating function for alternating-signed
Narayana numbers arises naturally.
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Section 1: Scattering diagrams



Basic setup

Summary: skew-symmetric matrix, vector space and its dual,
integer points ↔ Laurent monomials.
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Basic setup

Summary: skew-symmetric matrix, vector space and its dual,
integer points ↔ Laurent monomials.

Details:

B is n × n and skew-symmetric

V real vector space, basis α1, . . . , αn

V ∗ its dual space, basis ρ1, . . . , ρn

〈ρi , αj 〉 = δij (Kronecker delta)

integer points in V ∗: λ =
∑n

i=1 ciρi ↔ xλ = xc11 · · · x
cn
n

integer points in V : β =
∑n

i=1 diαi ↔ ŷβ = ŷd11 · · · ŷ
dn
n

ω : V × V → R skew-symmetric, bilinear. In the αi basis, its
matrix is B .
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Scattering diagrams

1 + ŷ1 + 7ŷ21 + · · ·

1 + ŷ1
1

1+ŷ3
1 ŷ2

1 + ŷ21 ŷ
3
2

1 + ŷ21 + ŷ2

1 + ŷ51 ŷ
4
2

A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .
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1 + ŷ21 ŷ
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A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .

Details:

• Each wall is normal to a
primitive, positive integer
vector β. (That is,
β =

∑

ciαi with ci ≥ 0,
∑

ci > 0, gcd(ci ) = 1.)
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• The scattering term is a
univariate FPS in ŷβ with
constant term 1.
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Scattering diagrams

1 + ŷ1 + 7ŷ21 + · · ·

1 + ŷ1
1

1+ŷ3
1 ŷ2

1 + ŷ21 ŷ
3
2

1 + ŷ21 + ŷ2

1 + ŷ51 ŷ
4
2

A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .

Details:

• Each wall is normal to a
primitive, positive integer
vector β. (That is,
β =

∑

ciαi with ci ≥ 0,
∑

ci > 0, gcd(ci ) = 1.)

• The scattering term is a
univariate FPS in ŷβ with
constant term 1.

• A finiteness condition
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

γ1
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2
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Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

γ1

γ2

1 + ŷ1ŷ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)

γ1

γ2

1 + ŷ1ŷ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2

1 + ŷ1ŷ2
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Scattering fans

(Vaguely Stated) Theorem (R., 2017). A consistent scattering
diagram cuts space into a complete fan.

A fan is a collection of convex cones, closed under passing to faces,
with the property that, given any two cones in the collection, their
intersection is a face of each.

If there is time, I’ll give details on the construction and proof at
the end. (But this seems unlikely.)
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Cluster scattering diagrams

Theorem (Gross, Hacking, Keel, Kontsevich, 2014). Given a
skew-symmetric integer matrix B , there is unique (up to
equivalence) consistent scattering diagram D such that

D contains the walls (α⊥
i , 1 + ŷi ).

All other walls are outgoing.

A wall (d, fd(ŷ
β)) is outgoing if it does not contain ω( · , β).

This is the cluster scattering diagram ScatT (B).

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

1
+
ŷ
1 ŷ
2

Example. The cluster scattering diagram

for B =
[

0 1
−1 0

]

.

One can check that the wall we added
is outgoing.
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Recap of Section 1: Scattering diagrams

A scattering diagram is a collection of walls. A wall is (d, fd(ŷ
β))

d is a codimension-1 cone.

β is a positive integer normal vector.

fd is the scattering term, a formal power series in ŷβ.

Path-ordered product: at each wall crossing, replaces each
monomial by itself times a power of the scattering term fd.

Consistent scattering diagram: path-ordered products depend only
on endpoints.

Cluster scattering diagram: Initial walls are coordinate hyperplanes,
∃! way to add “outgoing” walls to get a consistent scattering
diagram.

Questions?
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Section 2: Cluster algebras



(Principal coefficients) Cluster algebras

Start with an initial seed consisting of initial cluster variables
x1, . . . xn and a skew-symmetric integer matrix B .

Mutation: an operation that takes a seed and gives a new seed.

There are n “directions” for mutation.

Mutation does two things:

switches out one cluster variable, replaces it with a new one;
changes B (and some extra rows) by matrix mutation.

The result is a new seed.

Mutation is involutive.
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(Principal coefficients) Cluster algebras (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.

x1, x2, x3
☛
✡

✟
✠

x ′1, x2, x3

☛
✡

✟
✠

�
�
�

❅
❅

❅

x1, x2, x
′

3

☛
✡

✟
✠x1, x

′

2, x3

☛
✡

✟
✠

❅❅��

❅❅��

The cluster algebra for the given initial seed is the subalgebra of F
generated by all cluster variables.
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Mutation

Write [a]+ for max(a, 0). The mutation of B in direction k is the
matrix B ′ = µk(B) with

b′ij =

{

−bij if k ∈ {i , j};

bij + sgn(bkj )[bikbkj ]+ otherwise.

For principal coefficients, we replace B by
[

B
I

]

but we only mutate
in directions 1, . . . , n.

We also introduce coefficients y1, . . . , yn.

Mutating the cluster variables x1, . . . , xn in direction k means
keeping xi for i 6= k and replacing xk by x ′k according to the
exchange relations

xkx
′
k =

n
∏

i=1

x
[bik ]+
i y

[b(n+i)k ]+
i +

n
∏

i=1

x
[−bik ]+
i y

[−b(n+i)k]+
i .
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Mutation

Write [a]+ for max(a, 0). The mutation of B in direction k is the
matrix B ′ = µk(B) with

b′ij =

{

−bij if k ∈ {i , j};

bij + sgn(bkj )[bikbkj ]+ otherwise.

For principal coefficients, we replace B by
[

B
I

]

but we only mutate
in directions 1, . . . , n.

We also introduce coefficients y1, . . . , yn.

Mutating the cluster variables x1, . . . , xn in direction k means
keeping xi for i 6= k and replacing xk by x ′k according to the
exchange relations

xkx
′
k =

n
∏

i=1

x
[bik ]+
i y

[b(n+i)k ]+
i +

n
∏

i=1

x
[−bik ]+
i y

[−b(n+i)k]+
i .

Let’s try it. . .
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Mutation example









0 1
−1 0
1 0
0 1









µ1←→









0 −1
1 0
−1 1
0 1







 µ2←→









0 1
−1 0
0 −1
1 −1









l µ2









0 −1
1 0
1 0
0 −1








µ1←→









0 1
−1 0
−1 0
0 −1








µ2←→









0 −1
1 0
−1 0
−1 1








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
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


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Mutation example









0 1
−1 0
1 0
0 1









[x1 x2]

µ1←→








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1 0
−1 1
0 1






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[

x2+y1
x1

x2
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
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

0 1
−1 0
0 −1
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







[

x2+y1
x1

x1y1y2+x2+y1
x1x2

]

l µ2









0 −1
1 0
1 0
0 −1









[

x1
1+x1y2

x2

]

µ1←→









0 1
−1 0
−1 0
0 −1









[

x1y1y2+x2+y1
x1x2

1+x1y2
x2

]

µ2←→









0 −1
1 0
−1 0
−1 1








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Mutation example









0 1
−1 0
1 0
0 1









[x1 x2]

µ1←→









0 −1
1 0
−1 1
0 1









[

x2+y1
x1

x2

]

µ2←→









0 1
−1 0
0 −1
1 −1









[

x2+y1
x1

x1y1y2+x2+y1
x1x2

]

l µ2









0 −1
1 0
1 0
0 −1









[

x1
1+x1y2

x2

]

µ1←→









0 1
−1 0
−1 0
0 −1









[

x1y1y2+x2+y1
x1x2

1+x1y2
x2

]

µ2←→









0 −1
1 0
−1 0
−1 1









[

x1y1y2+x2+y1
x1x2

x2+y1
x1

]

←−

identify
these

←−
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The cluster variables

Continuing with B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

:

We found that the cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2
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The cluster variables

Continuing with B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

:

We found that the cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set
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The cluster variables

Continuing with B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

:

We found that the cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2
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,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1.
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0 1

]

:

We found that the cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1. The cluster variables become:

x1, x2, x−1
1 x2(1 + ŷ1), x−1

1 (1 + ŷ1 + ŷ1ŷ2), x−1
2 (1 + ŷ2)
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The cluster variables

Continuing with B =
[

0 1
−1 0

]

, extended to

[

0 1
−1 0
1 0
0 1

]

:

We found that the cluster variables are

x1, x2,
x2 + y1

x1
,

x1y1y2 + x2 + y1

x1x2
,

1 + x1y2

x2

Make a change of variables:

Set ŷ1 = y1x
−1
2 and ŷ2 = y2x1. The cluster variables become:

x1, x2, x−1
1 x2(1 + ŷ1), x−1

1 (1 + ŷ1 + ŷ1ŷ2), x−1
2 (1 + ŷ2)

One of these should look familiar. It was the path-ordered product
applied to x−1 in the cluster scattering diagram for B =

[

0 1
−1 0

]

.
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Cluster algebras and scattering diagrams

Theorem (Fomin-Zelevinsky, 2007).
Each cluster variable x is a Laurent
monomial xg11 · · · x

gn
n times a polynomial

in the ŷi . (The vector g(x) = (g1, . . . , gn)
is the g-vector of x .)

Theorem (GHKK, 2014). Part of the
cluster scattering diagram cuts out the

x2

1+ŷ2
x2

x1
1+ŷ1+ŷ1 ŷ2

x1

x
2 1+

ŷ
1x

1

cluster fan, whose rays are spanned by the g-vectors of cluster
variables and whose cones are spanned by the g-vectors of clusters.
Scattering terms in these walls are 1 + ŷβ.

Theorem (morally GHKK, 2014, but R. had fun noticing it for
himself, 2017). Let x be a cluster variable, let C be a cone in the
cluster fan having a ray spanned by g(x), and let γ be a path from
the interior of C to the interior of the positive cone. Then
x = pγ(x

g1
1 · · · x

gn
n ) (path-ordered product).
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Recap of Section 2: Cluster algebras

Cluster algebras: Starting with B , a (very multi-directional)
recurrence produces a lot of rational functions in the xi and yi .
These generate the cluster algebra.

A global change of variables turns each cluster variable x into

x
g1
1 · · · x

gn
n · (a polynomial in the ŷi).

The vector g(x) = (g1, . . . , gn) is the g-vector of x .

All of this fits into the cluster scattering diagram picture.
Specifically:

Each cluster variable x is a path-ordered product for a path starting
near g(x) and ending in the positive cone, applied to x

g1
1 · · · x

gn
n .

Questions?

To scatter or to cluster? Cluster algebras 14



Section 3: Rank-2 affine scattering diagrams



Rank-2 cluster scattering diagrams

B =
[

0 a
−a 0

]

.

In every case, we know all the walls in the cluster fan using
cluster-algebra (g-vector) recurrences. Scattering terms for those
walls are 1 + ŷβ.

Finite case (a < 2): Well-understood. There are finitely many
walls, all in the cluster fan.

Wild case (a > 2): Not well-understood. There is a region where
we know essentially no scattering terms.

Affine case (a = 2): In between. Scattering term on one “limiting”
wall is not obvious.

To scatter or to cluster? Rank-2 affine scattering diagrams 15



“Wild” rank-2 cluster scattering diagrams

B =
[

0 a
−a 0

]

, a > 2.
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“Wild” rank-2 cluster scattering diagrams

B =
[

0 a
−a 0

]

, a > 2.

There is a formula for the scattering term on the red line (Reineke,
2011). No formulas are known for the other scattering terms in the
gray region. As of [GHKK, 2014], it was not even known which
rational rays have nontrivial scattering terms. [Bridgeland, 2017]
says that all of them do.
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Affine rank-2 cluster scattering diagrams

Scattering terms are 1 + ŷβ except on the limiting ray.

Theorem (Reineke, 2011 for
[

0 2
−2 0

]

, R. 2017 for
[

0 1
−4 0

]

?).
The scattering term on the limiting walls are:

1
(1−ŷ1 ŷ2)2

= 1 + 2ŷ1
1 ŷ

1
2 + 3ŷ2

1 ŷ
2
2 + · · ·

1+ŷ1 ŷ
2
2

(1−ŷ1 ŷ
2
2 )

2 = 1 + 3ŷ1ŷ
2
2 + 5ŷ2

1 ŷ
4
2 + · · ·

[

0 2
−2 0

] [

0 1
−4 0

]
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Affine rank-2 cluster scattering diagrams

Scattering terms are 1 + ŷβ except on the limiting ray.

Theorem (Reineke, 2011 for
[

0 2
−2 0

]

, R. 2017 for
[

0 1
−4 0

]

?).
The scattering term on the limiting walls are:

1
(1−ŷ1 ŷ2)2

= 1 + 2ŷ1
1 ŷ

1
2 + 3ŷ2

1 ŷ
2
2 + · · ·

1+ŷ1 ŷ
2
2

(1−ŷ1 ŷ
2
2 )

2 = 1 + 3ŷ1ŷ
2
2 + 5ŷ2

1 ŷ
4
2 + · · ·

[

0 2
−2 0

] [

0 1
−4 0

]

We’ll spend some time on the proof of the case
[

0 2
−2 0

]

.
To scatter or to cluster? Rank-2 affine scattering diagrams 17



Why this is nontrivial (despite a simple answer)
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The proof for [ 0 2
−2 0 ]

We want to find the scattering term on the red ray. Call it f .

Let γ∞ be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let γ−∞ be the same, but
counterclockwise. Write p∞ for pγ∞ and similarly p−∞ for pγ−∞

.

Crossing the red wall (moving
Northeast) sends the monomial
x1x2 to x1x2f

−2.

So consistency says:
p−∞(x1x2) = p∞(x1x2f

−2).

We will, in essence, solve this for f . γ−∞

γ∞
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The proof for [ 0 2
−2 0 ]

We want to find the scattering term on the red ray. Call it f .

Let γ∞ be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let γ−∞ be the same, but
counterclockwise. Write p∞ for pγ∞ and similarly p−∞ for pγ−∞

.

Crossing the red wall (moving
Northeast) sends the monomial
x1x2 to x1x2f

−2.

So consistency says:
p−∞(x1x2) = p∞(x1x2f

−2).

We will, in essence, solve this for f .

Key observations:

γ−∞

γ∞

• all terms ŷ i1ŷ
j
2 of x−1

1 x−1
2 p∞(x1x2f

−2) have i ≥ j .

• The diagonal terms (terms with i = j) are exactly f −2.
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The proof for [ 0 2
−2 0 ]

We want to find the scattering term on the red ray. Call it f .

Let γ∞ be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let γ−∞ be the same, but
counterclockwise. Write p∞ for pγ∞ and similarly p−∞ for pγ−∞

.

Crossing the red wall (moving
Northeast) sends the monomial
x1x2 to x1x2f

−2.

So consistency says:
p−∞(x1x2) = p∞(x1x2f

−2).

We will, in essence, solve this for f .

Key observations:

γ−∞

γ∞

←−These black walls have

scattering terms

1 + ŷ i+1
1 ŷ i

2

The red wall has

scattering term f ,

a FPS in ŷ1ŷ2

• all terms ŷ i1ŷ
j
2 of x−1

1 x−1
2 p∞(x1x2f

−2) have i ≥ j .

• The diagonal terms (terms with i = j) are exactly f −2.
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The proof for [ 0 2
−2 0 ] (continued)

The diagonal terms of x−1
1 x−1

2 p∞(x1x2f
−2) are exactly f −2.

So the diagonal terms of x−1
1 x−1

2 p−∞(x1x2) are exactly f −2.

That is, f = diagonal terms of
√

x1x2
p−∞(x1x2)

γ−∞

γ∞
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The proof for [ 0 2
−2 0 ] (continued)

The diagonal terms of x−1
1 x−1

2 p∞(x1x2f
−2) are exactly f −2.

So the diagonal terms of x−1
1 x−1

2 p−∞(x1x2) are exactly f −2.

That is, f = diagonal terms of
√

x1x2
p−∞(x1x2)

γ−∞

γ∞

What is
√

x1x2
p−∞(x1x2)

?
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The proof for [ 0 2
−2 0 ] (continued)

The diagonal terms of x−1
1 x−1

2 p∞(x1x2f
−2) are exactly f −2.

So the diagonal terms of x−1
1 x−1

2 p−∞(x1x2) are exactly f −2.

That is, f = diagonal terms of
√

x1x2
p−∞(x1x2)

γ−∞

γ∞

What is
√

x1x2
p−∞(x1x2)

? A limit involving cluster variables!
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How to understand
√

x1x2
p−∞(x1x2)

Number the cluster variables.

For i ≤ −1, xi is x i1x
−i−1
2 · Fi .

x3 x2

x1

x0

x−1

x−2
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How to understand
√

x1x2
p−∞(x1x2)

Number the cluster variables.

For i ≤ −1, xi is x i1x
−i−1
2 · Fi .

Define paths γi for i ≤ −1.

x3 x2

x1

x0

x−1

x−2

γ−1
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How to understand
√

x1x2
p−∞(x1x2)

Number the cluster variables.

For i ≤ −1, xi is x i1x
−i−1
2 · Fi .

Define paths γi for i ≤ −1.

Recall the connection between cluster variables and
path-ordered products:

pγi (x
i
1x

−i−1
2 ) = x i1x

−i−1
2 · Fi

pγi (x
i+1
1 x−i−2

2 ) = x i+1
1 x−i−2

2 · Fi+1

x3 x2

x1

x0

x−1

x−2

γ−1

γ−2

γ−3
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How to understand
√

x1x2
p−∞(x1x2)

Number the cluster variables.

For i ≤ −1, xi is x i1x
−i−1
2 · Fi .

Define paths γi for i ≤ −1.

Recall the connection between cluster variables and
path-ordered products:

pγi (x
i
1x

−i−1
2 ) = x i1x

−i−1
2 · Fi

pγi (x
i+1
1 x−i−2

2 ) = x i+1
1 x−i−2

2 · Fi+1

Conclude:

√

x1x2
p−∞(x1x2)

=
√

limi→∞ x1x2 · F
2i+3
i · F−2i−1

i+1

x3 x2

x1

x0

x−1

x−2

γ−1

γ−2

γ−3
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Finally, we find the scattering term

We want the diagonal terms of
√

limi→∞ x1x2 · F
2i+3
i · F−2i−1

i+1 ,

where each cluster variable xi is x
i
1x

−i−1
2 · Fi .

Using a simple recursion for the Fi (coming from the exchange
relations that define cluster variables), we prove just enough about
the Fi . For example, the terms of F−4 are:

1

+ 3ŷ1 +2ŷ1ŷ2

+3ŷ21 +6ŷ21 ŷ2 +3ŷ21 ŷ
2
2

+ ŷ31 +4ŷ31 ŷ2 +6ŷ31 ŷ
2
2 +4ŷ31 ŷ

3
2 +ŷ31 ŷ

4
2
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Finally, we find the scattering term

We want the diagonal terms of
√

limi→∞ x1x2 · F
2i+3
i · F−2i−1

i+1 ,

where each cluster variable xi is x
i
1x

−i−1
2 · Fi .

Using a simple recursion for the Fi (coming from the exchange
relations that define cluster variables), we prove just enough about
the Fi . For example, the terms of F−4 are:

1

+ 3ŷ1 +2ŷ1ŷ2

+3ŷ21 +6ŷ21 ŷ2 +3ŷ21 ŷ
2
2

+ ŷ31 +4ŷ31 ŷ2 +6ŷ31 ŷ
2
2 +4ŷ31 ŷ

3
2 +ŷ31 ŷ

4
2

The diagonal terms of x1x2 · F
2i+3
i · F−2i−1

i+1 limit to

(1 + 2ŷ1ŷ2 + 3ŷ21 ŷ
2
2 + 4ŷ31 ŷ

3
2 + · · · )2 = (1− ŷ1ŷ2)

−4
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Finally, we find the scattering term

We want the diagonal terms of
√

limi→∞ x1x2 · F
2i+3
i · F−2i−1

i+1 ,

where each cluster variable xi is x
i
1x

−i−1
2 · Fi .

Using a simple recursion for the Fi (coming from the exchange
relations that define cluster variables), we prove just enough about
the Fi . For example, the terms of F−4 are:

1

+ 3ŷ1 +2ŷ1ŷ2

+3ŷ21 +6ŷ21 ŷ2 +3ŷ21 ŷ
2
2

+ ŷ31 +4ŷ31 ŷ2 +6ŷ31 ŷ
2
2 +4ŷ31 ŷ

3
2 +ŷ31 ŷ

4
2

The diagonal terms of x1x2 · F
2i+3
i · F−2i−1

i+1 limit to

(1 + 2ŷ1ŷ2 + 3ŷ21 ŷ
2
2 + 4ŷ31 ŷ

3
2 + · · · )2 = (1− ŷ1ŷ2)

−4

f = (1− ŷ1ŷ2)
−2
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Recap of Section 3: Rank-2 affine scattering diagrams

Rank-2 scattering diagrams are not understood in the “wild” case.

In the rank-2 affine case, one piece is not easy: the scattering term
on the limiting ray. This term can be found using the connection
to cluster algebras:

Use consistency to reduce this to finding the diagonal terms in
a path-ordered product evaluation.

Rewrite the path-ordered product evaluation as a limit
involving cluster variables (F -polynomials).

Use the recursion on F -polynomials to find the diagonal terms
of the limit.

Questions?
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Section 4: Narayana numbers in affine rank 2



Something like a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, . . . , gn), then

x = pγ(x
g1
1 · · · x

gn
n ),

for any path γ starting near g(x) and ending in the positive cone.

γ−∞

γ∞
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Something like a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, . . . , gn), then

x = pγ(x
g1
1 · · · x

gn
n ),

for any path γ starting near g(x) and ending in the positive cone.

For B =
[

0 2
−2 0

]

, there is a cluster variable for every ray except the
limiting ray. What if we take the g-vector of the limiting ray and a
path starting near the limiting ray? In other words:

γ−∞

γ∞
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Something like a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, . . . , gn), then

x = pγ(x
g1
1 · · · x

gn
n ),

for any path γ starting near g(x) and ending in the positive cone.

For B =
[

0 2
−2 0

]

, there is a cluster variable for every ray except the
limiting ray. What if we take the g-vector of the limiting ray and a
path starting near the limiting ray? In other words:

What is p∞(x−1
1 x2)?

γ−∞

γ∞
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Narayana numbers (a refinement of the Catalan numbers)

By definition, p∞(x−1
1 x2) = x−1

1 x2 · N (ŷ1, ŷ2) for some FPS N .
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Narayana numbers (a refinement of the Catalan numbers)

By definition, p∞(x−1
1 x2) = x−1

1 x2 · N (ŷ1, ŷ2) for some FPS N .

Theorem (R., 2017)

N (ŷ1, ŷ2) = 1 + ŷ1
∑

i ,j≥0(−1)
i+j Nar(i , j)ŷ i ŷ j ,

where the Nar(i , j) are the Narayana numbers:

Nar(i , j) =











1 if i = j = 0,

0 if ij = 0 otherwise, or
1
i

(

i
j

)(

i
j−1

)

if i , j ≥ 1.
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Narayana numbers (a refinement of the Catalan numbers)

By definition, p∞(x−1
1 x2) = x−1

1 x2 · N (ŷ1, ŷ2) for some FPS N .

Theorem (R., 2017)

N (ŷ1, ŷ2) = 1 + ŷ1
∑

i ,j≥0(−1)
i+j Nar(i , j)ŷ i ŷ j ,

where the Nar(i , j) are the Narayana numbers:

Nar(i , j) =











1 if i = j = 0,

0 if ij = 0 otherwise, or
1
i

(

i
j

)(

i
j−1

)

if i , j ≥ 1.
1

+ŷ1
+ŷ21 ŷ2
−ŷ31 ŷ2 +ŷ31 ŷ

2
2

+ŷ41 ŷ2 −3ŷ41 ŷ
2
2 +ŷ41 ŷ

3
2

−ŷ51 ŷ2 +6ŷ51 ŷ
2
2 −6ŷ51 ŷ

3
2 +ŷ51 ŷ

4
2

+ŷ61 ŷ2 −10ŷ61 ŷ
2
2 +20ŷ61 ŷ

3
2 −10ŷ61 ŷ

4
2 +ŷ61 ŷ

5
2

−ŷ71 ŷ2 +15ŷ71 ŷ
2
2 −50ŷ71 ŷ

3
2 +50ŷ71 ŷ

4
2 −15ŷ71 ŷ

5
2 +ŷ71 ŷ

6
2

+ŷ81 ŷ2 −21ŷ81 ŷ
2
2 +105ŷ81 ŷ

3
2 −175ŷ81 ŷ

4
2 +105ŷ81 ŷ

5
2 −21ŷ81 ŷ

6
2 +ŷ81 ŷ

7
2

+ · · ·
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In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞
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In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞

Proof ideas:
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In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞

Proof ideas:

The first two equalities: similar to our earlier argument.
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In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞

Proof ideas:

The first two equalities: similar to our earlier argument.

As before, observe that N (ŷ1, ŷ2) = 1+ terms ŷ i1ŷ
j
2 with j < i .

To scatter or to cluster? Narayana numbers in affine rank 2 26



In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞

Proof ideas:

The first two equalities: similar to our earlier argument.

As before, observe that N (ŷ1, ŷ2) = 1+ terms ŷ i1ŷ
j
2 with j < i .

Use the expression for N as a limit of ratios of cluster
variables to establish a functional equation:

(1+ ŷ2) · N (ŷ1(1+ ŷ2)
−2, ŷ2) = (1+ ŷ1) · N (ŷ2(1+ ŷ1)

−2, ŷ1).
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In fact, it’s even nicer

Theorem (R., 2017)

N (ŷ1, ŷ2) = lim
i→−∞

Fi

Fi+1
= lim

i→∞

Fi+1

Fi

= 1 + ŷ1
∑

i ,j≥0

(−1)i+j Nar(i , j)ŷ i ŷ j .

γ∞

Proof ideas:

The first two equalities: similar to our earlier argument.

As before, observe that N (ŷ1, ŷ2) = 1+ terms ŷ i1ŷ
j
2 with j < i .

Use the expression for N as a limit of ratios of cluster
variables to establish a functional equation:

(1+ ŷ2) · N (ŷ1(1+ ŷ2)
−2, ŷ2) = (1+ ŷ1) · N (ŷ2(1+ ŷ1)

−2, ŷ1).

Verify, using the observation, that the given formula satisfies
the functional equation.
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Some details I won’t have time for

To prove the functional equation:

Define x̃i = x1−i for all i .

Know: x−1
1 x2 · N (ŷ1, ŷ2) = limi→∞

xi+1

xi
= limi→−∞

x̃i
x̃i+1

RHS is basically x̃−1
1 x̃2 · N (ŷ1, ŷ2), but there is a technical

issue (coefficients are not principal at the seed {x̃1, x̃2}). But
we set y1 = y2 = 1 and remember ŷ1 = y1x

−2
2 and ŷ2 = y2x

2
1

and use exchange relations to write:

x̃1 = x0 =
1+x21
x2

and x̃2 = x−1 =
1+(1+x21 )

2x−2
2

x1
.

Substitute:

x−1
1 x2 · N (x−2

2 , x21 ) = N

(

x21
(1+(1+x21 )

2x−2
2 )2

,
(1+x21 )

2

x22

)

· x2
1+x21

·
1+(1+x21 )

2x−2
2

x1

Replacing x−2
2 by ŷ1 and x21 by ŷ2 and rearranging, we get

(1+ ŷ2) · N (ŷ1(1+ ŷ2)
−2, ŷ2) = (1+ ŷ1) · N (ŷ2(1+ ŷ1)

−2, ŷ1).
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Some more details I won’t have time for

To complete the proof:

We can extract coefficients from the functional equation

(1+ ŷ2) · N (ŷ1(1+ ŷ2)
−2, ŷ2) = (1+ ŷ1) · N (ŷ2(1+ ŷ1)

−2, ŷ1).

to get a relationship among the coefficients of N (ŷ1, ŷ2).

This is not enough information to determine the coefficients
uniquely.

But, with the observation that

N (ŷ1, ŷ2) = 1 + terms ŷ i1ŷ
j
2 with j < i ,

we have enough information to prove the theorem.

The verification uses the Saalschutz 3F2 evaluation.
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Recap of Section 4: Narayana numbers in affine rank 2

Using the connection to cluster algebras, we find the Narayana
numbers hiding in the scattering diagram for B =

[

0 2
−2 0

]

.

Questions?

To scatter or to cluster? Narayana numbers in affine rank 2 29



Thank you for listening.

Scattering diagrams and scattering fans. arXiv:1712.06968
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