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Scattering diagrams arose from mirror symmetry, Donaldson-
Thomas theory (string theory), integrable systems, and | know
almost nothing about any of that. Gross, Hacking, Keel, and
Kontsevich recently applied scattering diagrams to prove
longstanding conjectures about cluster algebras.

Today's goal: Introduce scattering diagrams and cluster algebras,
make the connection between them, and point out some
interesting combinatorics and discrete geometry.

Main points:

e Even in the two-dimensional case (e.g. affine type Al), you have
to work a bit to construct the cluster scattering diagram. I'll show
how to do affine type A; using cluster algebras.

e |'ll show how the generating function for alternating-signed
Narayana numbers arises naturally.
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Section 1: Scattering diagrams



Basic setup

Summary: skew-symmetric matrix, vector space and its dual,
integer points <> Laurent monomials.
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Summary: skew-symmetric matrix, vector space and its dual,
integer points <> Laurent monomials.

Details:

@ B is n x n and skew-symmetric

@ V real vector space, basis ag,...,a,

@ V* its dual space, basis p1,...,pn

o (pi,aj) = djj (Kronecker delta)

@ integer pointsin VX A =31 cipi < N = Xyt xS

o integer pointsin V: =31 diy + PP= f/fll R

@ w: V x V — R skew-symmetric, bilinear. In the «; basis, its

matrix is B.
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Scattering diagrams

~E A ~ ~D A scattering diagram is
L Lrn+iyp+- a set of waﬁs. Eich wall
is a codimension-1 cone
in V*, decorated with a
scattering term—a formal
power series in the y;.

1+ 1+

1+ 9293

1+n 11939
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Scattering diagrams

~E A ~ ~D A scattering diagram is
L Lrn+iyp+- a set of waﬁs. Eich wall
is a codimension-1 cone
in V*, decorated with a
scattering term—a formal
power series in the y;.

14 9 14 9 Details:

e Each wall is normal to a
primitive, positive integer
14 p2p3  vector f. (The_lt is,

8= ZC,'O&,' with ¢; > 0,
> ci >0, gad(c) =1.)

1+n 11939
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Scattering diagrams

~E A ~ ~D A scattering diagram is
L Lrn+iyp+- a set of waﬁs. Eich wall
is a codimension-1 cone
in V*, decorated with a
scattering term—a formal
power series in the y;.

14 9 14 9 Details:

e Each wall is normal to a
primitive, positive integer
14 p2p3  vector f. (The_lt is,

8= ZC,'O&,' with ¢; > 0,
> ci >0, gad(c) =1.)

e The scattering term is a

149 S univariate FPS in §# with
n Lyiv constant term 1.
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Scattering diagrams

~E A ~ ~D A scattering diagram is
L Lrn+iyp+- a set of waﬁs. Eich wall
is a codimension-1 cone
in V*, decorated with a
scattering term—a formal
power series in the y;.

14 9 14 9 Details:

e Each wall is normal to a
primitive, positive integer
14 p2p3  vector f. (The_lt is,

8= ZC,'O&,' with ¢; > 0,
> ci >0, gad(c) =1.)

e The scattering term is a

149 S univariate FPS in §# with
n Lyiv constant term 1.

e A finiteness condition
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (9, f,(97)) acts on polynomials (or FPS):

)745 — 5}45,:0‘”(1‘:/37 ®)
Take "—" if crossing with § or “4" if crossing against (3.

Path-ordered product p,: compose these along a path .
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (9, f,(97)) acts on polynomials (or FPS):

)745 — y¢f.’aw(i/37 ®)

Take "—" if crossing with § or “4" if crossing against (3.

Path-ordered product p,: compose these along a path .

L7 Let's try this in an example (B = [ _¢ §]):
1L+ 1+
1+n
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (9, f,(97)) acts on polynomials (or FPS):

)745 — y¢f.’aw(i/37 ®)

Take "—" if crossing with § or “4" if crossing against (3.
Path-ordered product p,: compose these along a path .
1+
n "

-1 ~1 ~1 o
1+}727/ 1+ Pnixy X X (1+ )

/
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (9, f,(97)) acts on polynomials (or FPS):

)745 — y¢f.’aw(i/37 ®)
Take "—" if crossing with § or “4" if crossing against (3.
Path-ordered product p,: compose these along a path .

L7 Let's try this in an example (B = [ _¢ §]):

A,}l/ﬁ N 'X_lb—>X_1b—>X_1(]_—|—A)
1+ 1+ PniX 1 1 i

L 72 Py X e x4 1) = x ML+ (L 50))

1+%
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 47

1+
1+ 1+
1+wn
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 47

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

1+
1+wm 1+
1+
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 47

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1+

g
14+ /ﬁl +
ja

1+
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example. Does the diagram below have 2 walls or 47

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

Ltnde |14 9

1
14+ ﬁl +
L//w

1+

We can make it consistent by adding one wall.
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example.

A scatterin

Does the diagram below have 2 walls or 47

g diagram is consistent if path-ordered products depend

only on the endpoints of the path.

Example.

1+ %5

14 9

As we saw, this scattering diagram is not consistent

1+n We can make it consistent by adding one wall.

ﬁl—kffz Py ZX1_1 »—>X1_1 |—>x1_1(1—|—f/1f/2)

[ A

g = x ML+ 9L+ upe(l 4+ 91)7Y)
2

1+
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for sufficiently generic paths).

Example.

A scatterin

Does the diagram below have 2 walls or 47

g diagram is consistent if path-ordered products depend

only on the endpoints of the path.

Example.
1+

1
14 9

As we saw, this scattering diagram is not consistent

1+n We can make it consistent by adding one wall.

ﬁl—kffz Py ZX1_1 »—>X1_1 |—>x1_1(1—|—f/1f/2)

[

g = x ML+ 9L+ upe(l 4+ 91)7Y)
2

| P i X0 N1+ J1) = xq (L (L4 52)
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Scattering fans

(Vaguely Stated) Theorem (R., 2017). A consistent scattering
diagram cuts space into a complete fan.

A fan is a collection of convex cones, closed under passing to faces,
with the property that, given any two cones in the collection, their
intersection is a face of each.

If there is time, I'll give details on the construction and proof at
the end. (But this seems unlikely.)
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Cluster scattering diagrams

Theorem (Gross, Hacking, Keel, Kontsevich, 2014). Given a
skew-symmetric integer matrix B, there is unique (up to
equivalence) consistent scattering diagram © such that

o D contains the walls (ai, 1 + 9;).
@ All other walls are outgoing.

A wall (0, f,(97)) is outgoing if it does not contain w( -, 3).

This is the cluster scattering diagram Scat” (B).

Example. The cluster scattering diagram X, 1+
for B = [_(1) é] &
One can check that the wall we added 1+ 1+7%

is outgoing.

1+
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Recap of Section 1: Scattering diagrams

A scattering diagram is a collection of walls. A wall is (9, fa(f//g))
@ 0 is a codimension-1 cone.

@ [ is a positive integer normal vector.

@ f, is the scattering term, a formal power series in §7.
Path-ordered product: at each wall crossing, replaces each
monomial by itself times a power of the scattering term f,.

Consistent scattering diagram: path-ordered products depend only
on endpoints.

Cluster scattering diagram: Initial walls are coordinate hyperplanes,
J!l way to add “outgoing” walls to get a consistent scattering
diagram.

Questions?
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Section 2: Cluster algebras



(Principal coefficients) Cluster algebras

Start with an initial seed consisting of initial cluster variables
X1, ...Xp and a skew-symmetric integer matrix B.

Mutation: an operation that takes a seed and gives a new seed.

@ There are n “directions” for mutation.
@ Mutation does two things:

o switches out one cluster variable, replaces it with a new one;
@ changes B (and some extra rows) by matrix mutation.

The result is a new seed.

@ Mutation is involutive.
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(Principal coefficients) Cluster algebras (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.

’ !

X1, X2, X3

X, X2, X3

The cluster algebra for the given initial seed is the subalgebra of F
generated by all cluster variables.

To scatter or to cluster? Cluster algebras 9



Write [a]+ for max(a,0). The mutation of B in direction k is the
matrix B’ = p(B) with

;L {—b,-j if ke {i,j};

! bij 4 sgn(byj)[bikbij]+ otherwise.

For principal coefficients, we replace B by [‘,3] but we only mutate

in directions 1,...,n.
We also introduce coefficients yi, ..., yp.
Mutating the cluster variables xi, ..., X, in direction k means

keeping x; for i # k and replacing xi by x according to the
exchange relations

n n
o [bil+ . [b(nyiyel+ [=bul+ . [=b(nriyl+
XX = H X; Y; + H X; Y; .
i=1 i=1
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Write [a]+ for max(a,0). The mutation of B in direction k is the
matrix B’ = p(B) with

;L {—b,-j if ke {i,j};

! bij 4 sgn(byj)[bikbij]+ otherwise.

For principal coefficients, we replace B by [‘,3] but we only mutate

in directions 1,...,n.
We also introduce coefficients yi, ..., yp.
Mutating the cluster variables xi, ..., X, in direction k means

keeping x; for i # k and replacing xi by x according to the
exchange relations

n n
;o [bil+ . [b(nyiyel+ [=bul+ . [=b(nriyl+
Xka—HX,' Ty —I-HX,- Ty :
i=1 i=1
Let's try it. ..
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Mutation example

0 1 0 -1 0 1
~1 0 1 0 -1 0
1 0 M -1 1 H2 0 -1
1 0 1 1 -1

$M2
0 -1 0 1 0 -1
1 0 -1 0 1 0
1 0 H1 -1 0 H2 -1 0
0 -1 0 -1 -1 1
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Mutation example

0 1 0 -1 0 1
-1 0 1 0 -1 0
1 0 M1 -1 1 2 0 -1
1 0 1 1 -1
[x1 x]
$M2
0 -1 0 1 0 -1
1 0 -1 0 1 0
1 0 M1 -1 0 12 -1 0
0 -1 0 -1 -1 1

To scatter or to cluster? Cluster algebras 11



Mutation example

0 1 0 -1 0 1
~1 0 1 0 -1 0
1 0 M -1 1 H2 0 -1
1 0 1 1 -1

[Xl X2] |:—X2;Zy1 X2:|

i M2

0 —1 0 1 0 -1
1 0 -1 0 1 0
1 0 H1 -1 0 H2 -1 0
0 -1 0 -1 -1 1
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Mutation example

0 1 0 -1 0 1
-1 0 1 0 10
1 0 e -1 1 K2 0 -1
[x1 x] {ij—lyl Xz} {%IYI _lelyi::gfrm]
T p2
0 -1 0 1 0 —1
1o -1 0 1 0
1 0 M -1 0 H2 -1 0
0 -1 0 -1 1 1
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Mutation example

0 1 0 -1 0 1
-1 0 1 0 -1 0
1 0 e -1 1 K2 0 -1
[X1 x2] |:X2:;y1 X2:| |:X2j<;_y1 x1y1,V)2< :;;(2 +vi }
yiyo+ 2
T2 Tl
0 -1 0 1 0 —1
1 0 -1 0 1 0
] Lt -1 0 o, 1 0
0 -1 0 -1 1 1

To scatter or to cluster? Cluster algebras 11



Mutation example

0 1 0 -1 0 1
-1 0 1 0 -1 0
1 0 e -1 1 K2 0 -1
[X1 X2] {—XQZY L Xz} [XQ ;}/1 Xl}’l}’)z( :;:2 ¥ ]
$M2
0 -1 0 1 0 -1
1o -1 0 1 0
1 0 LN -1 0 H2 -1 0
0 -1 0 -1 1 1
I+xys xwiyotxotyr  1+xiy xayyetxetyr xety
X1 X X1X2 X X130 X
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Mutation example

0 1

-1 0
1 0 M1

1

[x1 x]

i H2

0 -1

1 0
1 0 M1

0 -1

[Xl 1+;;1y2}

To scatter or to cluster?

0 -1 0 1
1 0 -1 0
-1 1 H2 0 -1
0 1 1 -1
{Xerh X2:| [X2+y1 X1y1yo+xo +y1]
X1 X1 X1X2
identify
these
0 1 0 -1
-1 0 1 0]
-1 0 H2 -1 0
0 -1 -1 1
[ xyiyetxetyr ltxays } [ xyyetxetyr Xty ]
X1 X0 X2 X1 X2 X1
Cluster algebras 11



The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2 X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

oo
O OR

We found that the cluster variables are
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The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2 X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

oo
O OR

We found that the cluster variables are

Make a change of variables:

Set
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The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2y X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

o~ RO
O OR

We found that the cluster variables are

Make a change of variables:

Set y; = y1x2_1
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The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2 X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

oo
O OR

We found that the cluster variables are

Make a change of variables:

Set 1 = y1x, ' and J» = yoxi.
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The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2 X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

oo
O OR

We found that the cluster variables are

Make a change of variables:

Set y1 = y1x2_1 and y» = yox1. The cluster variables become:

x1, x2, xg x2(1+91), xg L+ 91+ ndn), x5 (1+ 92)
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The cluster variables

. 2 +y1 xwyiyet+x+y1 1+xm
1 2 X1 ) X1X0 ) x5

Continuing with B = [ _9 §], extended to [_

oo
O OR

We found that the cluster variables are

Make a change of variables:

Set y; = y1x2_1 and y» = y»xy. The cluster variables become:
xi, x2, X (14 $1), x N1+ 9+ ), x5 (L4 )

One of these should look familiar. It was the path-ordered product

applied to x~! in the cluster scattering diagram for B = [_(1) (IJ]

To scatter or to cluster? Cluster algebras 12



Cluster algebras and scattering diagrams

X2

Theorem  (Fomin-Zelevinsky,  2007). t%
Each cluster variable x is a Laurent N
monomial xlgl---xf,'"" times a polynomial

in the y;. (The vector g(x) = (g1,---,8&n) —
is the g-vector of x.) B

X1

Theorem (GHKK, 2014). Part of the Lo

cluster scattering diagram cuts out the 3

cluster fan, whose rays are spanned by the g-vectors of cluster
variables and whose cones are spanned by the g-vectors of clusters.
Scattering terms in these walls are 1+ §5.

Theorem (morally GHKK, 2014, but R. had fun noticing it for
himself, 2017). Let x be a cluster variable, let C be a cone in the
cluster fan having a ray spanned by g(x), and let v be a path from
the interior of C to the interior of the positive cone. Then

x = py (£ x5")  (path-ordered product).
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Recap of Section 2: Cluster algebras

Cluster algebras: Starting with B, a (very multi-directional)
recurrence produces a lot of rational functions in the x; and y;.
These generate the cluster algebra.

A global change of variables turns each cluster variable x into

xEL ... xE" - (a polynomial in the §;).

The vector g(x) = (g1, - -,&n) is the g-vector of x.

All of this fits into the cluster scattering diagram picture.
Specifically:

Each cluster variable x is a path-ordered product for a path starting
near g(x) and ending in the positive cone, applied to x§* - - x5".

Questions?

To scatter or to cluster? Cluster algebras 14



Section 3: Rank-2 affine scattering diagrams



Rank-2 cluster scattering diagrams

_To
B = [—a (a)]
In every case, we know all the walls in the cluster fan using

cluster-algebra (g-vector) recurrences. Scattering terms for those
walls are 1 4 y7.

Finite case (a < 2): Well-understood. There are finitely many
walls, all in the cluster fan.

Wild case (a > 2): Not well-understood. There is a region where
we know essentially no scattering terms.

Affine case (a = 2): In between. Scattering term on one “limiting”
wall is not obvious.

To scatter or to cluster? Rank-2 affine scattering diagrams 15



“Wild" rank-2 cluster scattering diagrams

B=[ %3], a>2
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“Wild" rank-2 cluster scattering diagrams

B=[ %3], a>2

There is a formula for the scattering term on the red line (Reineke,
2011). No formulas are known for the other scattering terms in the
gray region. As of [GHKK, 2014], it was not even known which
rational rays have nontrivial scattering terms. [Bridgeland, 2017]
says that all of them do.

To scatter or to cluster? Rank-2 affine scattering diagrams 16



Affine rank-2 cluster scattering diagrams

Scattering terms are 1 4 §7 except on the limiting ray.

Theorem (Reineke, 2011 for [ _9 3], R. 2017 for [ _93]7).
The scattering term on the limiting walls are:

149192
(1-9193)?

m:1+2}711}721+3}712/\22+"' :1+3}A’1}722+5}712)A’§+"'

[-38] (23]
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Affine rank-2 cluster scattering diagrams

Scattering terms are 1 4 §7 except on the limiting ray.

Theorem (Reineke, 2011 for [ _9 3], R. 2017 for [ _93]7).
The scattering term on the limiting walls are:

149192
(1-9193)?

m:1+2}711}721+3}712/\22+"' :1+3}A’1}722+5}712)A’§+"'

[-38] (23]

We'll spend some time on the proof of the case [ _93].
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Why this is nontrivial (despite a simple answer)

To scatter or to cluster? Rank-2 affine scattering diagrams 18



The proof for [ 93

We want to find the scattering term on the red ray. Call it f.

Let 7 be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let v_, be the same, but
counterclockwise. Write p, for p,_ and similarly p_., for p,___.

Crossing the red wall (moving
Northeast) sends the monomial

X1X> to X1X2f_2. Voo

\.\
NI

We will, in essence, solve this for f. Y—oo

So consistency says:
P_oo(x122) = Poo(xaxaf 72).

To scatter or to cluster? Rank-2 affine scattering diagrams 19



The proof for [ 93

We want to find the scattering term on the red ray. Call it f.

Let 7 be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let v_, be the same, but
counterclockwise. Write p, for p,_ and similarly p_., for p,___.

Crossing the red wall (moving
Northeast) sends the monomial
X1X> to X1X2f_2.

Yoo

\.\
NI

We will, in essence, solve this for f. Y—oo

So consistency says:
P_oo(x122) = Poo(xaxaf 72).

Key observations:
e all terms f/{f/{ of xl_lxz_lpoo(xlxzf_z) have i > j.
e The diagonal terms (terms with i = j) are exactly f 2.
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The proof for [ 93

We want to find the scattering term on the red ray. Call it f.

Let 7 be a path starting (in the limit) from the red ray and going
clockwise to the positive cone. Let v_, be the same, but
counterclockwise. Write p, for p,_ and similarly p_., for p,___.

<t These black walls have

scattering terms

Yoo 1519

Crossing the red wall (moving
Northeast) sends the monomial
X1X> to X1X2f_2.

So consistency says:
P_oo(x122) = Poo(xaxaf 72).

The red wall has
scattering term f,

We will, in essence, solve this for f. Y=00 2 FPS in §1»

Key observations:

e all terms f/{f/{ of xl_lxz_lpoo(xlxzf_z) have i > j.
e The diagonal terms (terms with i = j) are exactly f 2.
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The proof for [ 93] (continued)

The diagonal terms of x; x5 'poo(x1x2f ~2) are exactly £—2.
So the diagonal terms of x; 'x; 'p_ o (x1x2) are exactly £~2.

X1X2

Thatis, f = diagonal terms of P Oa)

\-\
NI

To scatter or to cluster? Rank-2 affine scattering diagrams 20



The proof for [ 93] (continued)

The diagonal terms of x; x5 'poo(x1x2f ~2) are exactly £—2.
So the diagonal terms of x; 'x; 'p_ o (x1x2) are exactly £~2.

X1X2

Thatis, f = diagonal terms of P Oa)

Yoo

\-\
/

.

What is , /71370:1(’;21)(2)?

To scatter or to cluster? Rank-2 affine scattering diagrams 20



The proof for [ 93] (continued)

The diagonal terms of x; x5 'poo(x1x2f ~2) are exactly £—2.
So the diagonal terms of x; 'x; 'p_ o (x1x2) are exactly £~2.

X1X2

Thatis, f = diagonal terms of P Oa)

\-\
NI

What is , /—X1X2__7? A limit involving cluster variables!
p—oo(X1%2)

To scatter or to cluster? Rank-2 affine scattering diagrams 20



How to understand

@ Number the cluster variables.
o For i< —1, x; is x{xz_'_l - Fj.

X1

X0

To scatter or to cluster? Rank-2 affine scattering diagrams 21



How to understand

X1X2

P—oo(x1x2)

@ Number the cluster variables.

o For i< —1, x; is x{xz_'_l - Fj.

@ Define paths v; for i < —1.

To scatter or to cluster?

X1

Rank-2 affine scattering diagrams

X0

21



X1X2
P—oo(x1x2)

How to understand

@ Number the cluster variables.
o For i< —1, x; is x{xz_'_l - F;.
@ Define paths v; for i < —1.

X0
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How to understand , / )

@ Number the cluster variables.
o For i< —1, x; is x{xz_'_l - F;.
@ Define paths v; for i < —1.

X0
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X1X2
P—oo(x1x2)

How to understand

@ Number the cluster variables.

@ For i< —1, x;jis x{xz_i_l - F;.

@ Define paths v; for i < —1.

@ Recall the connection between cluster variables and
path-ordered products:

PO ) =it F

iFlo—im2\ il —i—2
Py ) =X X < Fit1

X0
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X1X2
P—oco(x1x

How to understand

@ Number the cluster variables.

@ For i< —1, x;jis x{xz_i_l - F;.

@ Define paths v; for i < —1.

@ Recall the connection between cluster variables and
path-ordered products:

PO ) =it F

iFlo—im2\ il —i—2
Py ) =X X < Fit1

@ Conclude:
xixa
P oo(Xx1Xx2)
. 2i+3 —2i—1
\/|Im,'%ooX1X2 . Fi . Fi+1

X0
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Finally, we find the scattering term

- . 2i+3 —2i—1
We want the diagonal terms of \/I|m,-_>OO x1xo - F; 3. Fi+1’ ,

where each cluster variable x; is X{XQ_’_1 - F;.

Using a simple recursion for the F; (coming from the exchange
relations that define cluster variables), we prove just enough about
the F;. For example, the terms of F_4 are:

1
+351 +20100
+397 46920, +39793
+ 92 A9R0, 469293 +49P93 +9i9s
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Finally, we find the scattering term

- . 2i+3 —2i—1
We want the diagonal terms of \/I|m,-_>OO x1xo - F; 3. Fi+1’ ,

where each cluster variable x; is X{XQ_’_1 - F;.

Using a simple recursion for the F; (coming from the exchange
relations that define cluster variables), we prove just enough about
the F;. For example, the terms of F_4 are:

1
+351 +20h
+397 6989, 439105
+ 9 AR 69095 HADRDS +9i9s
The diagonal terms of x3x - Fl.z"+3 . Fijrzli_l limit to

(L+219 + 39293 + 49393 + - )2 = (L — ;pn)
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Finally, we find the scattering term

- . 2i+3 —2i—1
We want the diagonal terms of \/I|m,-_>OO x1xo - F; 3. Fi+1’ ,

where each cluster variable x; is X{XQ_’_1 - F;.

Using a simple recursion for the F; (coming from the exchange
relations that define cluster variables), we prove just enough about
the F;. For example, the terms of F_4 are:

1
+3%1 +2nh
+397 +6579 39795
+ 97 A 69295 A +99S
The diagonal terms of x3x - Fl.z"+3 . Fijrzli_l limit to
(1+ 29192 + 39795 + 49795 + )7 = (1~ yug2) ™
f=(1-hnp)"?
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Recap of Section 3: Rank-2 affine scattering diagrams

Rank-2 scattering diagrams are not understood in the “wild" case.
In the rank-2 affine case, one piece is not easy: the scattering term

on the limiting ray. This term can be found using the connection
to cluster algebras:

@ Use consistency to reduce this to finding the diagonal terms in
a path-ordered product evaluation.

@ Rewrite the path-ordered product evaluation as a limit
involving cluster variables (F-polynomials).

@ Use the recursion on F-polynomials to find the diagonal terms
of the limit.

Questions?
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Section 4: Narayana numbers in affine rank 2



Something a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, ..., &), then
X =py ("X,

for any path ~ starting near g(x) and ending in the positive cone.

B
L/

V—o0

.
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Something a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, ..., &), then
X =py (Xt xE),
for any path ~ starting near g(x) and ending in the positive cone.

For B =[_3 2], there is a cluster variable for every ray except the
limiting ray. What if we take the g-vector of the limiting ray and a
path starting near the limiting ray? In other words:

Yoo

\-\
/

V—o0

.
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Something a cluster variable

Recall that if x is a cluster variable with g(x) = (g1, ..., &), then
X =py (Xt xE),
for any path ~ starting near g(x) and ending in the positive cone.

For B =[_3 2], there is a cluster variable for every ray except the
limiting ray. What if we take the g-vector of the limiting ray and a
path starting near the limiting ray? In other words:

Yoo

\-\
/

V—o0

What is poo (] 1x2)

? N

Narayana numbers in affine rank 2 24
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Narayana numbers (a refinement of the Catalan numbers)

By definition, peo (X 1x2) = x; 'xa - N'(91, 92) for some FPS A
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Narayana numbers (a refinement of the Catalan numbers)

By definition, peo (X 1x2) = x; 'xa - N'(91, 92) for some FPS A
Theorem (R., 2017)
NG 92) =1+ ZiJZO(_l)i+j Nar(i, )93/,
where the Nar(/, j) are the Narayana numbers:
1 ifi=j=0,
Nar(i,j) =<0 if ij = 0 otherwise, or
1)) iz
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Narayana numbers (a refinement of the Catalan numbers)

By definition, peo (X 1x2) = x; 'xa - N'(91, 92) for some FPS A
Theorem (R., 2017)

NG 92) =1+ ZiJZO(_l)i+j Nar(i, /)9’ 9/,
where the Nar(i, /) are the Narayana numbers:

1 ifi=j=0,
Nar(i,j) =<0 if ij = 0 otherwise, or
TN( i\ s
1 T(j) (j—l) if i,/ > 1.
+
+929n
939 +9392
A 3919 9
—9i%a 469795 —69293  +9i9s
+989, —109992  +209%p3 109993 +9Pp3
—)71;)72 +15)71;)72§ —50}7%73)72: +50)7£)7% —15}7%73)722 +}7£)722 -
ye —21y7Ps  +1059795  —175979;  +1059795 —21979; +¥ids

+ +
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In fact, it's even nicer

Theorem (R., 2017)

F; F;
N1, 92) = lim —— = lim —*2
i——00 i+1 i—00 F,'
=1+ > (=1)" Nar(i,j)9'y’.
ij>0
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In fact, it's even nicer

Theorem (R., 2017)

F; F;
N1, 92) = lim —— = lim —*2
i——00 i+1 i—00 F,'
=1+ > (=1)" Nar(i,j)9'y’.
ij>0

Proof ideas:
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In fact, it's even nicer

Theorem (R., 2017)

F; F;
N1, 92) = lim —— = lim —*2
i——00 i+1 i—00 F,'
=1+ > (=1)" Nar(i,j)9'y’.
ij>0

Proof ideas:

@ The first two equalities: similar to our earlier argument.
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In fact, it's even nicer

Theorem (R., 2017)

F; F;
N1, 92) = lim —— = lim —*2
i——00 i+1 i—00 F,'
=1+ > (=1)" Nar(i,j)9'y’.
ij>0

Proof ideas:

@ The first two equalities: similar to our earlier argument.
@ As before, observe that N'(§1, ») = 1+ terms §;93 with j < i.
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In fact, it's even nicer

Theorem (R., 2017)

Yoo
F.
NG, 92) = lim = |im 22
i——00 i+1 i—00 F,'
—1+ylz 1)™ Nar(i, /)y’

ij>0

Proof ideas:

@ The first two equalities: similar to our earlier argument.
@ As before, observe that N'(§1, ») = 1+ terms §;93 with j < i.

@ Use the expression for A/ as a limit of ratios of cluster
variables to establish a functional equation:

(14 92) - N(G1(L+52) 72 92) = (L+51) - N($2(1+ 91) 72, 1)
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In fact, it's even nicer

Theorem (R., 2017)

Yoo
F.
NG, 92) = lim = |im 22
i——00 i+1 i—00 F,'
—1+ylz 1)™ Nar(i, /)y’

ij>0

Proof ideas:

@ The first two equalities: similar to our earlier argument.
@ As before, observe that N'(§1, ») = 1+ terms §;93 with j < i.

@ Use the expression for A/ as a limit of ratios of cluster
variables to establish a functional equation:

(14 92) - N(G1(L+52) 72 92) = (L+51) - N($2(1+ 91) 72, 1)

@ Verify, using the observation, that the given formula satisfies
the functional equation.
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Some details | won't have time for

To prove the functional equation:

@ Define X; = x;_; for all |.
o1 A~ s Xit1 |t %:
o Know: x; “xo - N(y1, 92) = im0 =2 =limis e o

@ RHS is basically >"<l_l>"<2 - N ($1,92), but there is a technical
issue (coefficients are not principal at the seed {X1,%X}). But
we set y; = y» = 1 and remember y; = y1x2_2 and 5 = yox?
and use exchange relations to write:

- 1+4x2 - 14+(14x3)%x; 2
=X = X21 and X2:X_1:+.
@ Substitute:
2 212 22, —2
1 2 2y X; (14x7) X0 14+(14-x7)°x;
X- X2 X X: = : :
12 No™x) N<(1+(1+x%)2x22)2’ 3 Lxg X1

@ Replacing ><2_2 by y; and X12 by y» and rearranging, we get

(L+92) - NP1+ 92) 72, 92) = (1+ 51) - N($2(1+ 91) 72, ).

To scatter or to cluster? Narayana numbers in affine rank 2 27



Some details | won't have time for

To complete the proof:
@ We can extract coefficients from the functional equation
(14 92) - N1+ 92) 72, 92) = (L4 1) - N (F2(1 + 91) 2, 1)

to get a relationship among the coefficients of (91, y»).

@ This is not enough information to determine the coefficients
uniquely.

@ But, with the observation that
N($1,92) =1+ terms f/{ffé with j < i,

we have enough information to prove the theorem.

@ The verification uses the Saalschutz 3F, evaluation.
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Recap of Section 4: Narayana numbers in affine rank 2

Using the connection to cluster algebras, we find the Narayana

numbers hiding in the scattering diagram for B = [_8 (2)]

Questions?
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Thank you for listening.

Scattering diagrams and scattering fans. arXiv:1712.06968
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