Cambrian lattices and generalized associahedra

Nathan Reading University of Michigan

http://www.math.lsa.umich.edu/~nreading nreading@umich.edu

Cambrian Lattices

For any finite Coxeter group W, we define a family of *Cambrian lattices*.

- Defined as certain lattice quotients of the weak order.
- Each orientation of the diagram for W gives a Cambrian lattice and a related complete *Cambrian fan*.

Orientations

An orientation of the B_6 diagram.

A *bipartite* orientation of the D_7 diagram. The white vertices are sinks and the black vertices are sources.

3

Conjectures

(Theorems for A_n and B_n):

- When W is crystallographic, each Cambrian fan is combinatorially isomorphic to the normal fan of Fomin and Zelevinsky's generalized associahedron for W.
- When the orientation is bipartite:
 - The Cambrian fan is linearly isomorphic to this normal fan.
 - The Cambrian lattice is isomorphic to a certain natural partial order on the *clusters* (the vertices of the generalized associahedron).

Proofs in types A and B follow from a(n) (equivariant) fiber-polytope construction.

Other results

- One of the type-A Cambrian lattices is the Tamari lattice.
- We identify two Cambrian lattices for B_n as "type-B Tamari lattices" and characterize them by signed pattern avoidance.
- Intervals in Cambrian lattices are either contractible or homotopy-equivalent to spheres.
- In types A and B, and conjecturally in general, Cambrian lattices are sublattices of weak order. (Tamari lattice case: Björner and Wachs).

Non-crystallographic types

- Cambrian fans suggest a definition of generalized associahedra applicable to all (not necessarily crystallographic) types.
- The $I_2(m)$ -associated ron is an (m+2)-gon.

The 1-skeleton of the H_3 -associahedron is shown below (one vertex is at ∞).

These have the f-vectors one would expect.

Associahedra

• Catalan numbers:

 $C_{n+1} = #\{\text{triangulations of an } (n+3)-\text{gon}\}$

• Associahedron: a simple *n*-polytope.

Vertices: triangulations of an (n+3)-gon.

Edges: "diagonal flips."

• Tamari lattice: a partial order on triangulations.

Hasse diagram isomorphic to the 1-skeleton of the associahedron.

Isomorphic to weak order restricted to 312avoiding permutations. (Björner and Wachs).

Coxeter groups

• The symmetric group S_n :

Generators: $s_i := (i \ i+1)$.

Relations: $s_i^2 = 1$, $(s_i s_{i+1})^3 = 1$ and $(s_i s_j)^2 = 1$ for |i - j| > 1.

• Coxeter group W:

Generators: a set S of involutions called *simple generators*.

Relations: $(st)^m = 1$ for $s, t \in S$.

Coxeter groups (continued)

• **Coxeter diagram** on vertex set *S*.

Edges: s - t for $(st)^m = 1$ and $m \ge 3$.

Labeled with m if m > 3.

• Classification of finite Coxeter groups.

Infinite families include $A_n = S_{n+1}$:

and the group B_n of signed permutations (the "hyperoctahedral group"):

 $\bullet \xrightarrow{4} \bullet \xrightarrow{} \bullet \xrightarrow{} \bullet \cdots \bullet \xrightarrow{} \bullet$

The (right) weak order

- In general: The covers are w ≤ ws for every w ∈ W and s ∈ S with l(w) < l(ws) (using the usual length function).
- In the symmetric group S_n : Covers are transpositions of adjacent entries.

Going "up" means putting the entries out of numerical order.

The weak order on S_3 :

The (usual) Catalan numbers are "type A."

• They are known to count, for $W = A_n$, various objects which can be defined for general (crystallographic) W, including

antichains in the root poset,

positive regions of the Shi arrangement,

non-crossing partitions,

conjugacy classes of elements of finite order in the associated compact Lie group.

• There is a well-known map from permutations to triangulations with nice properties.

Generalized Associahedra

• *W*-Catalan numbers

A general-type formula involving the exponents and Coxeter number of W.

• *B_n*-associahedron or cyclohedron (Bott and Taubes, Simion). A simple *n*-polytope.

Vertices: centrally symmetric triangulations of a (2n+2)-gon.

Edges: diameter flips or symmetric pairs of diagonal flips.

• *W*-associahedron (for crystallographic *W*)

A simple polytope defined by Fomin and Zelevinsky (and Chapoton).

Dimension: rank of W (i.e. |S|)

Vertices: counted by *W*-Catalan numbers

The *B*₃-associahedron

Clusters

Fomin and Zelevinsky constructed complete simplicial fans and conjectured they were polytopal. Later, with Chapoton, they proved this conjecture.

• Description:

Rays: positive roots and negative simple roots.

Cones: sets of "compatible" roots.

Maximal sets of compatible roots are called *clusters* (cf. cluster algebras).

• Tools:

A bipartition of the diagram of W.

Piecewise-linear maps τ_+ and τ_- which generate a finite dihedral group of combinatorial symmetries of the associahedron.

A type-B Tamari lattice?

Simion: asked for a " B_n Tamari lattice."

Reiner: defined maps from B_n to vertices of the B_n -associahedron, and asked if the maps define a partial order.

Our approach was guided by this observation:

The map from weak order on S_n to the Tamari lattice is a lattice homomorphism.

Surprisingly: Each of Reiner's maps is a lattice homomorphism and defines a "Tamarilike" lattice. A similar family of Tamari-like lattices exists in type A. This led to the generaltype definition of Cambrian lattices.

(Hugh Thomas constructed a type-B Tamari lattice at about the same time, using a different approach.)

Lattice congruences

- **Definition:** equivalence relations respecting meet and join. (Analogous to congruences on rings).
- They arise as the fibers of lattice homomorphisms.
- A congruence *contracts* an edge $x \leq y$ if $x \equiv y$.
- Given a collection of edges, there is a welldefined smallest lattice congruence contracting those edges.

Example

The smallest congruence of the weak order with $1324 \equiv 3124$ and $1243 \equiv 1423$.

Congruence classes

- Congruence classes in a finite lattice are always intervals.
- The quotient mod the congruence is isomorphic to the subposet induced by the bottoms of intervals.

Example (continued)

In this example, the bottoms of congruence classes are exactly the 312-avoiding permutations. Thus the quotient is the Tamari lattice.

Example

The quotient of the weak order mod the smallest congruence with $1324 \equiv 3124$ and $1324 \equiv 1342$. This is not the Tamari lattice, but its Hasse diagram is still the 1-skeleton of the associahedron. This is a Cambrian lattice.

Cambrian congruences

An orientation of the diagram for W specifies certain edges in the weak order which are to be contracted.

The *Cambrian congruence* for this orientation is the smallest congruence contracting the specified edges.

Cambrian lattices

- The Cambrian lattice for an orientation is the weak order on W mod the Cambrian congruence for the orientation.
- We have seen the Cambrian lattices for the orientations

Tamari lattices

The (usual, type A) Tamari lattice is the Cambrian lattice for the orientation

In type B, there are two anti-isomorphic analogs. Each can be characterized by signed pattern avoidance.

The B₃ Tamari lattice

Cambrian fans

Any congruence of the weak order defines a complete fan.

One takes the complete fan arising from the Coxeter arrangement for W and glues together its maximal faces according to the congruence.

For example, in A_2 :

The fan arising from the Cambrian congruence is the *Cambrian fan*.

Type A_{n-1}

Define a convex polygon Q:

Vertices $0, 1, \ldots, n + 1$, with 0 and n + 1 on a horizontal line.

Make horizontal positions of the other vertices consistent with numerical order.

For example, with n = 8:

Permutations to Triangulations

From an iterated fiber polytope construction (Billera, Sturmfels). Given a permutation $\pi \in S_n$, define a triangulations of Q as follows:

- Start with a path along the bottom of Q.
- Read a permutation π from left to right.
- For each symbol encountered, add/delete the corresponding vertex to/from the path.
- The union of the paths is a triangulation.

Example: *π* = 42783165

Orientations to polygons

Each choice of direction of an edge of the diagram corresponds to choosing a vertex to be on top of Q or on bottom.

Only the vertices 2 through n-1 really matter.

For example, the Q of the previous diagram corresponds to this orientation of the diagram of A_7 :

Example

31

Example

Example (continued)

Flips and Slopes

In both of these examples, and in general, the Cambrian lattice can be realized as follows:

- Fix a polygon Q for the orientation as described previously.
- Covers are diagonal flips.
- Going "up" means increasing the slope of the diagonal.

The type-B Cambrian lattices have a similar realization using centrally-symmetric polygons. (Uses an equivariant fiber polytope contruction due to Reiner).

Pattern avoidance

The Cambrian lattices of type A can also be realized in terms of pattern avoidance.

- One "colors" the symbols in [n] using two colors "up" and "down."
- The Cambrian lattice is the subposet consisting of permutations avoiding certain "colored patterns."
- For the Tamari lattice, every symbol is the same color, so we get ordinary pattern avoid-ance.
- A similar characterization exists for type B.

Preprints available on the arXiv.

Thank you

Nathan Reading University of Michigan

http://www.math.lsa.umich.edu/~nreading nreading@umich.edu