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Cambrian Lattices

For any finite Coxeter group W, we define a
family of Cambrian lattices.

e Defined as certain lattice quotients of the
weak order.

e Each orientation of the diagram for W gives
a Cambrian lattice and a related complete
Cambrian fan.



Orientations

An orientation of the Bg diagram.
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A bipartite orientation of the D+ diagram. The
white vertices are sinks and the black vertices
are sources.
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Conjectures
(Theorems for A, and By):

e When W is crystallographic, each Cam-
brian fan is combinatorially isomorphic to
the normal fan of Fomin and Zelevinsky’s
generalized associahedron for W.

e \When the orientation is bipartite:

The Cambrian fan is linearly isomorphic to
this normal fan.

The Cambrian lattice is isomorphic to a
certain natural partial order on the clusters
(the vertices of the generalized associahe-
dron).

Proofs in types A and B follow from a(n) (equiv-
ariant) fiber-polytope construction.



Other results

e One of the type-A Cambrian lattices is the
Tamari lattice.

e \We identify two Cambrian lattices for B, as
“type-B Tamari lattices” and characterize
them by signed pattern avoidance.

e Intervals in Cambrian lattices are either con-
tractible or homotopy-equivalent to spheres.

e In types A and B, and conjecturally in gen-
eral, Cambrian lattices are sublattices of
weak order. (Tamari lattice case: Bjorner
and Wachs).



Non-crystallographic types

e Cambrian fans suggest a definition of gen-
eralized associahedra applicable to all (not
necessarily crystallographic) types.

e The Ir(m)-associahedron is an (m+2)-gon.

The 1-skeleton of the Hz-associahedron is
shown below (one vertex is at o).

These have the f-vectors one would expect.



ASsSsocCilahedra

e Catalan numbers:

Cn41 = #{triangulations of an (n+3)-gon}

e Associahedron: a simple n-polytope.
Vertices: triangulations of an (n+3)-gon.

Edges: “diagonal flips.”

e Tamari lattice: a partial order on trian-
gulations.

Hasse diagram isomorphic to the 1-skeleton
of the associahedron.

Isomorphic to weak order restricted to 312-
avoiding permutations. (Bjorner and Wachs).



The 3-dimensional
assoclahedron
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Coxeter groups

e T he symmetric group Sy
Generators: s; ;= (i i+1).
Relations: s? =1, (s;5,41)> =1 and
(SZ'S]')2 = 1 for |t — j| > 1.

e Coxeter group W:

Generators: a set S of involutions called
simple generators.

Relations: (st)™ =1 for s,t € S.



Coxeter groups (continued)

e Coxeter diagram on vertex set S.
Edges: s — ¢ for (st)™ =1 and m > 3.

Labeled with m if m > 3.

e Classification of finite Coxeter groups.

Infinite families include Ap = 5,41
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and the group B, of signed permutations
(the “hyperoctahedral group”):
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The (right) weak order

e In general: The covers are w < ws for ev-
ery w € W and s € S with I(w) < l(ws)
(using the usual length function).

e INn the symmetric group S,: Covers are
transpositions of adjacent entries.

Going “up’” means putting the entries out
of numerical order.

The weak order on S3:

321\
312 231
132 213

N/

123
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The (usual) Catalan num-
bers are ‘“type A.”

e T hey are known to count, for W = A,,
various objects which can be defined for
general (crystallographic) W, including

antichains in the root poset,

positive regions of the Shi arrangement,
non-crossing partitions,

conjugacy classes of elements of finite

order in the associated compact Lie group.

e [ here is a well-known map from permuta-
tions to triangulations with nice properties.
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Generalized Associahedra

e WV-Catalan numbers

A general-type formula involving the expo-
nents and Coxeter number of W.

e Bp-associahedron or cyclohedron (Bott
and Taubes, Simion). A simple n-polytope.

Vertices: centrally symmetric triangulations
of a (2n+2)-gon.

Edges: diameter flips or symmetric pairs of
diagonal flips.

e WW-associahedron (for crystallographic W)

A simple polytope defined by Fomin and
Zelevinsky (and Chapoton).

Dimension: rank of W (i.e. |S])

Vertices: counted by W-Catalan numbers

13



The Biz-associahedron
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Clusters

Fomin and Zelevinsky constructed complete
simplicial fans and conjectured they were poly-
topal. Later, with Chapoton, they proved this
conjecture.

e Description:

Rays: positive roots and negative simple
roots.

Cones: sets of “compatible’” roots.

Maximal sets of compatible roots are called
clusters (cf. cluster algebras).

e ToOOIs:
A bipartition of the diagram of W.

Piecewise-linear maps 74 and 7— which gen-
erate a finite dihedral group of combinato-
rial symmetries of the associahedron.
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A type-B Tamari lattice?

Simion: asked for a “B, Tamari lattice.”

Reiner: defined maps from B,, to vertices of
the Bj,-associahedron, and asked if the maps
define a partial order.

Our approach was guided by this observation:

The map from weak order on S, to the
Tamari lattice is a lattice homomorphism.

Surprisingly: Each of Reiner's maps is a lat-
tice homomorphism and defines a ‘“Tamari-
like” lattice. A similar family of Tamari-like lat-
tices exists in type A. This led to the general-
type definition of Cambrian lattices.

(Hugh Thomas constructed a type-B Tamari
lattice at about the same time, using a differ-
ent approach.)
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Lattice congruences

e Definition: equivalence relations respect-
ing meet and join. (Analogous to congru-
ences on rings).

e [ hey arise as the fibers of lattice homo-
morphisms.

e A congruence contracts an edge x < y if

T =1.

e Given a collection of edges, there is a well-
defined smallest lattice congruence contract-
ing those edges.
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Example

The smallest congruence of the weak order
with 1324 = 3124 and 1243 = 1423.

4321
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Congruence classes

e Congruence classes in a finite lattice are
always intervals.

e [ he quotient mod the congruence is iso-
morphic to the subposet induced by the
bottoms of intervals.
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Example (continued)

In this example, the bottoms of congruence
classes are exactly the 312-avoiding permuta-
tions. Thus the quotient is the Tamari lattice.

4321

A

3421

d

3241 2431
/X
2341 3214 1432
\/
2314 2143 1342
N X X
2134 1324 1243

N7

1234
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Example

The quotient of the weak order mod the small-
est congruence with 1324 = 3124 and 1324 =
1342. This is not the Tamari lattice, but its
Hasse diagram is still the 1-skeleton of the as-
sociahedron. This is a Cambrian lattice.

231\

3214

2314

N

2134 1324 1243

N7

1234
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Cambrian congruences

An orientation of the diagram for W specifies
certain edges in the weak order which are to

be contracted.

abab

a|ba\ bcb cdc
N \ /SN |

ba bc cb cd

\ NV /
\\//

The Cambrian congruence for this orientation
IS the smallest congruence contracting the spec-

ified edges.
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Cambrian lattices

e [ he Cambrian lattice for an orientation is
the weak order on W mod the Cambrian
congruence for the orientation.

e \We have seen the Cambrian lattices for the
orientations

and
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Tamari lattices

The (usual, type A) Tamari lattice is the Cam-
brian lattice for the orientation
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In type B, there are two anti-isomorphic analogs.
Each can be characterized by signed pattern

avoidance.
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The B3 Tamari lattice
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Cambrian fans

Any congruence of the weak order defines a
complete fan.

One takes the complete fan arising from the
Coxeter arrangement for W and glues together
its maximal faces according to the congruence.

For example, in As:

The fan arising from the Cambrian congruence

is the Cambrian fan.
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Type A,_1
Define a convex polygon Q:

Vertices 0,1,...,n+ 1, with O and n+ 1 on a
horizontal line.

Make horizontal positions of the other vertices
consistent with numerical order.

For example, with n = 8:
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Permutations to
Triangulations

From an iterated fiber polytope construction
(Billera, Sturmfels). Given a permutation « €
Sn, define a triangulations of ) as follows:

e Start with a path along the bottom of @.
e Read a permutation « from left to right.

e For each symbol encountered, add/delete
the corresponding vertex to/from the path.

e T he union of the paths is a triangulation.
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Example:

Start:

End:

™= 42783165




Orientations to polygons

Each choice of direction of an edge of the di-
agram corresponds to choosing a vertex to be
on top of  or on bottom.

Only the vertices 2 through n—1 really matter.

For example, the @) of the previous diagram
corresponds to this orientation of the diagram
of A7:
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Exam ple (continued)
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Flips and Slopes

In both of these examples, and in general, the
Cambrian lattice can be realized as follows:

e Fix a polygon () for the orientation as de-
scribed previously.

e Covers are diagonal flips.

e Going "up” means increasing the slope of
the diagonal.

The type-B Cambrian lattices have a similar
realization using centrally-symmetric polygons.
(Uses an equivariant fiber polytope contruction
due to Reiner).
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Pattern avoidance

The Cambrian lattices of type A can also be
realized in terms of pattern avoidance.

e One “colors” the symbols in [n] using two
colors “up” and ‘“down.”

e [ he Cambrian lattice is the subposet con-
sisting of permutations avoiding certain ‘col-
ored patterns.”

e For the Tamari lattice, every symbol is the
same color, so we get ordinary pattern avoid-
ance.

A similar characterization exists for type B.
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