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Cambrian Lattices

For any finite Coxeter group W , we define a

family of Cambrian lattices.

• Defined as certain lattice quotients of the

weak order.

• Each orientation of the diagram for W gives

a Cambrian lattice and a related complete

Cambrian fan.
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Orientations

An orientation of the B6 diagram.

4

A bipartite orientation of the D7 diagram. The

white vertices are sinks and the black vertices

are sources.
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Conjectures
(Theorems for An and Bn):

• When W is crystallographic, each Cam-

brian fan is combinatorially isomorphic to

the normal fan of Fomin and Zelevinsky’s

generalized associahedron for W .

• When the orientation is bipartite:

The Cambrian fan is linearly isomorphic to

this normal fan.

The Cambrian lattice is isomorphic to a

certain natural partial order on the clusters

(the vertices of the generalized associahe-

dron).

Proofs in types A and B follow from a(n) (equiv-

ariant) fiber-polytope construction.
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Other results

• One of the type-A Cambrian lattices is the

Tamari lattice.

• We identify two Cambrian lattices for Bn as

“type-B Tamari lattices” and characterize

them by signed pattern avoidance.

• Intervals in Cambrian lattices are either con-

tractible or homotopy-equivalent to spheres.

• In types A and B, and conjecturally in gen-

eral, Cambrian lattices are sublattices of

weak order. (Tamari lattice case: Björner

and Wachs).
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Non-crystallographic types

• Cambrian fans suggest a definition of gen-

eralized associahedra applicable to all (not

necessarily crystallographic) types.

• The I2(m)-associahedron is an (m+2)-gon.

The 1-skeleton of the H3-associahedron is

shown below (one vertex is at ∞).

These have the f-vectors one would expect.
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Associahedra

• Catalan numbers:

Cn+1 =#{triangulations of an (n+3)-gon}

• Associahedron: a simple n-polytope.

Vertices: triangulations of an (n+3)-gon.

Edges: “diagonal flips.”

• Tamari lattice: a partial order on trian-

gulations.

Hasse diagram isomorphic to the 1-skeleton

of the associahedron.

Isomorphic to weak order restricted to 312-

avoiding permutations. (Björner and Wachs).
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The 3-dimensional
associahedron
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Coxeter groups

• The symmetric group Sn:

Generators: si := (i i+1).

Relations: s2i = 1, (sisi+1)
3 = 1 and

(sisj)
2 = 1 for |i− j| > 1.

• Coxeter group W :

Generators: a set S of involutions called

simple generators.

Relations: (st)m = 1 for s, t ∈ S.
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Coxeter groups (continued)

• Coxeter diagram on vertex set S.

Edges: s — t for (st)m = 1 and m ≥ 3.

Labeled with m if m > 3.

• Classification of finite Coxeter groups.

Infinite families include An = Sn+1:

and the group Bn of signed permutations

(the “hyperoctahedral group”):

4
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The (right) weak order

• In general: The covers are w <· ws for ev-

ery w ∈ W and s ∈ S with l(w) < l(ws)

(using the usual length function).

• In the symmetric group Sn: Covers are

transpositions of adjacent entries.

Going “up” means putting the entries out

of numerical order.

The weak order on S3:

321

231312

213132

123
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The (usual) Catalan num-
bers are “type A.”

• They are known to count, for W = An,

various objects which can be defined for

general (crystallographic) W , including

antichains in the root poset,

positive regions of the Shi arrangement,

non-crossing partitions,

conjugacy classes of elements of finite

order in the associated compact Lie group.

• There is a well-known map from permuta-

tions to triangulations with nice properties.
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Generalized Associahedra

• W -Catalan numbers

A general-type formula involving the expo-

nents and Coxeter number of W .

• Bn-associahedron or cyclohedron (Bott

and Taubes, Simion). A simple n-polytope.

Vertices: centrally symmetric triangulations

of a (2n+2)-gon.

Edges: diameter flips or symmetric pairs of

diagonal flips.

• W -associahedron (for crystallographic W )

A simple polytope defined by Fomin and

Zelevinsky (and Chapoton).

Dimension: rank of W (i.e. |S|)

Vertices: counted by W -Catalan numbers
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The B3-associahedron
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Clusters

Fomin and Zelevinsky constructed complete

simplicial fans and conjectured they were poly-

topal. Later, with Chapoton, they proved this

conjecture.

• Description:

Rays: positive roots and negative simple

roots.

Cones: sets of “compatible” roots.

Maximal sets of compatible roots are called

clusters (cf. cluster algebras).

• Tools:

A bipartition of the diagram of W .

Piecewise-linear maps τ+ and τ− which gen-

erate a finite dihedral group of combinato-

rial symmetries of the associahedron.
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A type-B Tamari lattice?

Simion: asked for a “Bn Tamari lattice.”

Reiner: defined maps from Bn to vertices of

the Bn-associahedron, and asked if the maps

define a partial order.

Our approach was guided by this observation:

The map from weak order on Sn to the
Tamari lattice is a lattice homomorphism.

Surprisingly: Each of Reiner’s maps is a lat-

tice homomorphism and defines a “Tamari-

like” lattice. A similar family of Tamari-like lat-

tices exists in type A. This led to the general-

type definition of Cambrian lattices.

(Hugh Thomas constructed a type-B Tamari

lattice at about the same time, using a differ-

ent approach.)
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Lattice congruences

• Definition: equivalence relations respect-

ing meet and join. (Analogous to congru-

ences on rings).

• They arise as the fibers of lattice homo-

morphisms.

• A congruence contracts an edge x <· y if

x ≡ y.

• Given a collection of edges, there is a well-

defined smallest lattice congruence contract-

ing those edges.
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Example

The smallest congruence of the weak order

with 1324 ≡ 3124 and 1243 ≡ 1423.

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Congruence classes

• Congruence classes in a finite lattice are

always intervals.

• The quotient mod the congruence is iso-

morphic to the subposet induced by the

bottoms of intervals.
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Example (continued)

In this example, the bottoms of congruence

classes are exactly the 312-avoiding permuta-

tions. Thus the quotient is the Tamari lattice.

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1342

2341 3214 1432

3241 2431

3421

4321
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Example

The quotient of the weak order mod the small-

est congruence with 1324 ≡ 3124 and 1324 ≡

1342. This is not the Tamari lattice, but its

Hasse diagram is still the 1-skeleton of the as-

sociahedron. This is a Cambrian lattice.

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1423

3214 2413 1432

2431 4213

4231

4321
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Cambrian congruences

An orientation of the diagram for W specifies

certain edges in the weak order which are to

be contracted.

a b c d

1

a

ab

aba

abab

b

ba

bab

bc

bcb

c

cb cd

cdc

d

dc

4

The Cambrian congruence for this orientation

is the smallest congruence contracting the spec-

ified edges.
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Cambrian lattices

• The Cambrian lattice for an orientation is

the weak order on W mod the Cambrian

congruence for the orientation.

• We have seen the Cambrian lattices for the

orientations

and
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Tamari lattices

The (usual, type A) Tamari lattice is the Cam-

brian lattice for the orientation

In type B, there are two anti-isomorphic analogs.

Each can be characterized by signed pattern

avoidance.

4

4
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The B3 Tamari lattice

123

-123 213 132

2-13 -213 -132 231 312

-2-13 23-1 1-23 3-12 -231 321 -312

-23-1 -1-23 32-1 13-2 -3-12 3-21 1-32 -321

3-2-1 -13-2 -32-1 31-2 -1-32 -3-21 12-3 2-31

3-1-2 -3-2-1 2-3-1 -31-2 -12-3 -2-31 21-3

-3-1-2 -2-3-1 1-3-2 2-1-3 -21-3

-1-3-2 -2-1-3 1-2-3

-1-2-3

123

-123 213 132

2-13 -132 231

-2-13 23-1 321

-23-1 -1-23 32-1

3-2-1

3-1-2 -3-2-1

-3-1-2 -2-3-1

-1-3-2

-1-2-3
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Cambrian fans

Any congruence of the weak order defines a

complete fan.

One takes the complete fan arising from the

Coxeter arrangement for W and glues together

its maximal faces according to the congruence.

For example, in A2:

The fan arising from the Cambrian congruence

is the Cambrian fan.
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Type An−1

Define a convex polygon Q:

Vertices 0,1, . . . , n+ 1, with 0 and n+ 1 on a

horizontal line.

Make horizontal positions of the other vertices

consistent with numerical order.

For example, with n = 8:

0

1

2

3 4

5

6
7

8

9
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Permutations to
Triangulations

From an iterated fiber polytope construction

(Billera, Sturmfels). Given a permutation π ∈

Sn, define a triangulations of Q as follows:

• Start with a path along the bottom of Q.

• Read a permutation π from left to right.

• For each symbol encountered, add/delete

the corresponding vertex to/from the path.

• The union of the paths is a triangulation.
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Example: π = 42783165

0

1

2

3 4

5

6 7

8

9Start:

0

1

2

3 4

5

6 7

8

9Add 4:

0

1

2

3 4

5

6 7

8

9Delete 2:

0

1

2

3 4

5

6 7

8

9Add 7:

0

1

2

3 4

5

6 7

8

9End:



Orientations to polygons

Each choice of direction of an edge of the di-

agram corresponds to choosing a vertex to be

on top of Q or on bottom.

Only the vertices 2 through n−1 really matter.

For example, the Q of the previous diagram

corresponds to this orientation of the diagram

of A7:

0

1

2

3 4

5

6 7

8
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Example

0

1
2 3

4

5
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Example

0

1
2

3

4

5
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Example (continued)

0

1
2

3

4

5
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Flips and Slopes

In both of these examples, and in general, the

Cambrian lattice can be realized as follows:

• Fix a polygon Q for the orientation as de-

scribed previously.

• Covers are diagonal flips.

• Going “up” means increasing the slope of

the diagonal.

The type-B Cambrian lattices have a similar

realization using centrally-symmetric polygons.

(Uses an equivariant fiber polytope contruction

due to Reiner).
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Pattern avoidance

The Cambrian lattices of type A can also be

realized in terms of pattern avoidance.

• One “colors” the symbols in [n] using two

colors “up” and “down.”

• The Cambrian lattice is the subposet con-

sisting of permutations avoiding certain “col-

ored patterns.”

• For the Tamari lattice, every symbol is the

same color, so we get ordinary pattern avoid-

ance.

A similar characterization exists for type B.
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