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To dispense with the obligatory running jokes:

• I did an email search to remember why I wasn’t at the INI CAR.
Not very funny: “Omicron variant” was part of the reason.

• My talk is about posets, which can be thought of as quivers, so I
am using slides rather than drawing any posets on the board.

• I’m embarrassed to say that the paper is already on the arXiv.
(arXiv:2311.06033)

It’s better to speak earlier in the week! I could have saved 1 minute
of talk time, and maybe could have started the running jokes.
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Section 1: Background



The Fundamental Theorem of Finite Distributive Lattices

Suppose L is a distributive lattice.
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Philosophy

If you see a distributive lattice, you must use FTFDL.
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Our cluster algebras conventions

In six words: Cluster algebras IV with principal coefficients.

Specifically:

Initial cluster variables x1, . . . , xn

Tropical variables/initial coefficients y1, . . . , yn

Monomials ŷ1, . . . , ŷn with ŷj = yj
∏

i x
bij
i

g-vectors and F -polynomials: Each cluster variable is xg · F (ŷ).
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Main question

In a marked surface (S,M) and triangulation T , choose a lambda
length xγ for each arc γ in T .

There is a unique way to put a hyperbolic metric

∗

and horocycles
on S so that each arc γ ∈ T is a geodesic with lambda length xγ .

Cluster variables are lambda lengths

∗∗

of tagged arcs.

∗∗∗

Question: Find a formula for the lambda length of a tagged arc α
in terms of the lambda lengths xγ for γ ∈ T .

The fine print:
∗ Unique constant curvature −1 metric with marked points at infinity
with boundary segments being geodesics with lambda length 1.

∗∗ α is isotopic to a unique (tagged) geodesic. Take the lambda length of
that geodesic.

∗∗∗ Actually, coefficient free cluster variables (i.e. setting all yi = 1) are
lambda lengths. For principal coefficients, use laminated lambda lengths.
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Example
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Find the lambda length of this tagged arc.
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The previous state of the art

Surfaces model: Fomin, Shapiro, Thurston (FST 2006, FT 2012).

Other main work on main question: Musiker, Schiffler, Williams
(MS 2008, MSW 2009, MW 2011, MSW 2011).

MSW give a formula for cluster variables as a weighted sum of
perfect matchings on snake graphs, in the case where α has no
notches, with Laurent monomials as weights.

When α has notches, there is an extra symmetry condition on
matchings or a pair of “compatible” matchings.

Our starting point is an insight about the simpler case, already in
the MSW work: There is a distributive lattice structure on the set
of perfect matchings of a graph (Propp 2002).

FTFDL!
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Section 2: The theorem



If you see a distributive lattice, you must use FTFDL

By the MSW work, each cluster variable is a sum of Laurent
monomials indexed by the elements of a finite distributive lattice,
at least in the plain-tagged case.

A finite distributive lattice is the set of downsets in a finite poset.

Q: What is the nicest possible way to get monomials from
downsets in a finite poset?

A: Give a monomial weight to each element of the poset. The
weight of a downset is the product of the weights of its elements.

Main result (with Pilaud and Schroll): A simple, combinatorial way
to construct a weighted poset Pα for any tagged arc α so that the
weighted sum of downsets is F -polynomial. (There is already a
known formula for the g-vector using shear coordinates). We give a
conceptually simple proof (for F and g) using hyperbolic geometry.
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Example (how to use the poset Pα, not yet how to make it)
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9

Cluster variable associated to α (i.e. lambda length of α):

xα =
x5
x4

(1 + ŷ4 + ŷ7 + ŷ1ŷ4 + ŷ4ŷ7 + ŷ1ŷ4ŷ7 + ŷ4ŷ5ŷ7 + ŷ1ŷ4ŷ8

+ ŷ1ŷ4ŷ5ŷ7 + ŷ1ŷ4ŷ7ŷ8 + ŷ1ŷ4ŷ5ŷ7ŷ8 + ŷ1ŷ4ŷ5ŷ7ŷ8ŷ9)

g-vector has

nonzero entries

g4 = −1 and

g5 = 1
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The weighted poset Pα (“non-degenerate” case)

Non-degenerate case: α is not (a tagged version of) an arc in T .

Follow α through T . Each time α crosses an arc γ of T , we get an
element of Pα that is labeled (usually) with ŷγ .

When γ is the interior edge of a self-folded triangle, the label is
ŷγ/ŷβ, where β is the exterior edge.

Each new element covers or is covered by the one before.
When we turn right in a triangle, we are going down in the poset.
When we turn left, we are going up.

When α is tagged notched at one or both endpoints, we add
chains at those endpoints.

This case also done by Oğuz–Yıldırım. (See also MSW, Wilson).
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Non-degenerate case (α tagged plain)
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Non-degenerate case (α tagged notched at one end)
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5 7
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6 5
1

8

11

Make the chain that would
correspond to an arc tracing
around the endpoint. The top
of the chain is above the last
arc crossed. The bottom of
the chain is below the last arc.

Here, the added
chain is labeled
4⋖ 1⋖ 8⋖ 11.

The last arc
crossed is
labeled 5.
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Non-degenerate case (α tagged notched at both ends)
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Degenerate case (α notched at one end)
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Degenerate means α coincides, up to tagging, with an arc in T .
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Degenerate case (α notched at both ends)
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Degenerate case (α notched at both ends, 2nd example)
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Degenerate case (α notched at both ends, 3rd example)
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g-Vectors

Proposition. The g-vector of xα is the negative of the shear
coordinate vector of κ(α).

(Labardini-Fragoso, 2010, Musiker–Schiffler–Williams 2011, R. 2014,

Felikson–Tumarkin 2017 + orbifolds, Pilaud–R.–Schroll 2023.)
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x5x6x8

x1x4x7x10
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Section 3: Proof idea and comments



Proof idea (coefficient-free case)

Want to show:
The cluster variable for a tagged arc α is the weighted sum of
downsets in Pα.

If we could show that these weighted sums of downsets satisfy the
exchange relations, we would be done.

In practice, it’s difficult to have control over exchange relations.
Why? Self-folded triangles, α may intersect the same arc in the
triangulation many times, etc.

Instead, use the fact that the cluster variable is a hyperbolic
length: Lift α to be a tagged arc α′ in a surface without these
complications, and lift the hyperbolic metric too. In the new
surface, there are uncomplicated exchange relations.

We can induct on the number of elements of P.

18
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Picture of the lifting
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Picture of the lifting
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Key point: Lift the hyperbolic
metric and the horocycles,
not just the combinatorics.

So the arc α and the lift α′

have the same lambda length.
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The exchange relation becomes simple combinatorics

Once we lift, ∃ many arcs γ ∈ T ′ such that exchanging α′ and γ is

F (Pα′) = F (Pblue) + ŷorange · F (Pred).

Specifically, if eγ is the element of Pα′ labeled ŷγ , then

• F (Pblue) is the weighted sum of downsets not containing eγ .
• ŷorange · F (Pred) is weighted sum of downsets containing eγ .

1 2

3
4

5

6

7
8

9
Arc 5 is γ

ŷorange = ŷ3ŷ4ŷ5ŷ6

3

2 4 6 8

1 5 7 9

3

2 4 6 8

1 7 9

2 8

1 7 9

Pα Pblue Pred
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Another exchange relation example

F (Pα′) = F (Pblue) + ŷorange · F (Pred).

• F (Pblue) is the weighted sum of downsets not containing eγ .
• ŷorange · F (Pred) is weighted sum of downsets containing eγ .

1
2

3
4

5
6 7

8

910

Arc 1 is γ

ŷorange = ŷ1ŷ2ŷ3ŷ4ŷ5ŷ10

5a

4 10

3
9

8

2
7

1 6

5b
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3
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2
7
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8

7

6

5

Pα Pblue Pred
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Comments

Coefficients: Everything I have explained here works for the
coefficient-free case (after you set all the yi to 1). To do principal
coefficients, we use laminated lambda lengths (FT 2012). Basically
the same proof, once one digests FT’s tropical hyperbolic geometry.

Relationship to other work: Insights from the MSW work are
very important. Downsets in posets, in puncture-free case, are
already in Musiker-Schiffler-Williams (2011) and Çanakçı-Schroll
(2021). The non-degenerate case is in Oğuz–Yıldırım (2022).
Similar posets are in work of Wilson (2020) and Weng (2023).
Exchange (skein) relations are in MSW and Çanakçı–Schiffler.

What’s new here:
• Make FTFDL the crucial idea.
• Treat all cases (all tagged arcs, no restrictions on S or M).
• Simple proof (poset combinatorics + FT’s hyperbolic geometry).
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Future/ongoing work

Are F -posets the right way to describe cluster variables for other
classes of cluster algebras?

• Orbifolds?
• Finite type?

Applications to adjacent areas?
Especially representation theory, where a special case of these
poset constructions was the initial motivation for this work.
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