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Counting chains in noncrossing partition lattices

Classical noncrossing partitions

Coxeter groups and noncrossing partitions

Counting maximal chains
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Classical noncrossing partitions (Kreweras, 1972)

Identify the numbers 1, 2, . . . n with n distinct points in cyclic order
on a circle. For each block B of a partition π, draw the convex
polygon whose vertices are the points in B . If |B | is 1 or 2, this
“polygon” is a point or a line segment.

The partition π is noncrossing if and only if in its planar diagram,
the blocks are disjoint (i.e. don’t cross).

Example

Crossing and noncrossing:
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The classical noncrossing partition lattice

Ordered by refinement of partitions. 1

2

3

4
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Enumeration

Noncrossing partitions

Noncrossing partitions of [n] are counted by the famous Catalan
numbers

Cn :=
1

n + 1

(2n
n

)

.

Chains
Detailed enumeration formulas exist counting chains (totally
ordered subsets) in the noncrossing partition lattice according to
the set of ranks visited. (Edelman, 1980).

Maximal chains
There are nn−2 maximal chains. There is a nice bijection with
parking functions (Stanley, 1997).
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Example

44−2 = 16 maximal chains for n = 4.
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Finite reflection groups

Finite groups W generated by (Euclidean) orthogonal reflections.
Examples: symmetry groups of regular polytopes, Weyl groups.
Coxeter arrangement A = {All reflecting hyperplanes for W }.
Simple reflections: Fix a connected component R of the
complement of

⋃

A. Let S be the set of reflections in the
facet-hyperplanes of R .

W = S4:
(3 4) (1 2)

(2 3)

R
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Coxeter groups

Coxeter group: a group with a presentation of the form

〈S | s2 = 1, (st)m(s,t) = 1〉.

Finite Coxeter groups ↔ finite reflection groups.

Coxeter diagram: encodes the presentation.
• Vertex set: S

• Edges: s—t when m(s, t) > 2, labeled by m(s, t) when
m(s, t) > 3.

Irreducible Coxeter group: a Coxeter group having a connected
diagram.
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Classification of irreducible finite Coxeter groups

An (n ≥ 1) r r r r r r r r

Bn (n ≥ 2) r r r r r r r r
4

Dn (n ≥ 4)
H

H

�
�

r r r r r r r

r

r

E6

r

r r r r r

E7

r

r r r r r r

E8

r

r r r r r r r

F4 r r r r
4

H3 r r r
5

H4 r r r r
5

I2(m) (m ≥ 5) r r
m
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Types A, B and D

• An−1 = Sn: Reflecting hyperplanes are xi = xj for i 6= j .

• Bn (the symmetry group of the n-cube or n-octohedron):
Reflecting hyperplanes are xi = 0 and xi = ±xj for i 6= j .

• Dn: Reflecting hyperplanes are xi = ±xj for i 6= j .
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Intersection lattices

Intersection lattice of the Coxeter arrangement: intersections of
sets of hyperplanes, ordered by reverse inclusion.
Key point: The intersection lattice for Sn is the lattice of partitions.

S9 example:

⋂

{x1 = x2, x2 = x8, x3 = x7, x3 = x9, x5 = x6}
l

{1, 2, 8}, {3, 7, 9}, {4}, {5, 6}.

Bn intersection lattice: partitions of ±[n] fixed by i 7→ −i , at most
one block containing a pair (i ,−i).

B9 example:

⋂

{x1 = 0, x2 = 0, x2 = −x7,
x4 = −x9, x5 = x7, x6 = x8}

l
{±1,±2,±5,±7}, {3}, {−3},

{4,−9}, {−4, 9}, {6, 8}, {−6,−6}.
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Coxeter element

Coxeter element: c := s1s2 · · · sn for a permutation s1, s2, . . . , sn
of S .
Coxeter number: h := the order of c in W .
Exponents: positive integers ej such that exp(2πiej/h) is an
eigenvalue of c .

Example (An = Sn+1):

• Coxeter elements are (n + 1) cycles.

• h = n + 1.

• Exponents: 1, 2, . . . n.
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NC partition lattices for any finite reflection group.

(Athanasiadis, Biane, Bessis, Brady, Reiner, Watt, 1997–2003)

Let T be the set of reflections in W . For w ∈ W , write
w = t1t2 · · · tk for ti ∈ T , minimizing k. Set

l(w) := k.

(This is not the usual “length function.”)

Set u � uv if and only if l(uv) = l(u) + l(v).

The noncrossing partition lattice for W is the interval [1, c]�.
(Different choices of c give isomorphic lattices.)

Given x = t1t2 · · · tk ∈ [1, c]�, define a “type-W partition:”

Ux := Ht1 ∩ Ht2 ∩ · · · ∩ Htk .
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Example: A3 = S4 with c := (1234)

Cycles ↔ blocks.

(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (1)(23)(4) (14)(2)(3) (1)(24)(3) (1)(2)(34)

(123)(4) (14)(23) (124)(3) (134)(2) (12)(34) (1)(234)

(1234)
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Example: B3 with c = (1 2 3−1−2−3)

1
2

3

-1

-2

-3
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Garside structure

The lattice [1, c], with a certain edge labeling is a Garside
structure. From this, one obtains:

• A presentation of W as a group generated by the whole set T

of reflections.

• A monoid structure for the associated Artin group.

• A finite Eilenberg-Maclane (K (π, 1)) space for the Artin
group.

The Artin group is the fundamental group of the complement of
the complexification of the Coxeter arrangement, with presentation

〈S | (st)m(s,t)〉.
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The W -Catalan number

Cat(W ) =

n
∏

i=1

ei + h + 1

ei + 1
.

For W = An = Sn+1, we have ei = i and h = n + 1, so
Cat(An−1) = Cn, the usual Catalan number.

For W = Bn, we have ei = 2i − 1 and h = 2n, so Cat(Bn) is
(2n

n

)

.

Dn E6 E7 E8 F4 H3 H4 I2(m)

3n−2
n

(

2n−2
n−1

)

833 4160 25080 105 32 280 m + 2
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W -Catalan numbers count:

• W -noncrossing partitions (Various researchers, 1997-2003).

• Conjugacy classes of elements of finite order in Lie groups
(Djoković, 1980).

• W -orbits in Q/(h + 1)Q, where Q is the root lattice
(Haiman, 1994).

• Antichains in the root poset (Postnikov, 1996).

• Positive regions of the Shi arrangement (Shi, 1997).

• The vertices of the W -associahedron (Fomin, Zelevinsky
2003).

• Coxeter-sortable elements of W (R., 2005).
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Counting maximal chains

Let M(W ) be the number of maximal chains in the noncrossing
partition lattice of W . This number is interesting because

• It is the number of top-dimensional cells in the
Eilenberg-Maclane space mentioned above.

• It is the number of “reduced words” for c in the alphabet of
reflections.

• It generalizes the number of parking functions.

Theorem (R., 2004.)

Let W be a finite irreducible Coxeter group with simple

generators S. Then

M(W ) =
h

2

∑

s∈S

M(W〈s〉).

W〈s〉 is the “standard parabolic” subgroup generated by S − {s}.
For reducible groups, use standard techniques for products.
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Example: W = A3 with c = (1 2 4 3)

Count maximal chains according to whether the element covering
the identity is in the orbit of (1 2), (2 3) or (3 4). 1

2

4

3
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Example: B3 with c = (1 3 2−1−3−2)

S = {(1 − 1), (1 2)(−2 − 1), (2 3)(−3 − 2)}.

1
3

2
-1

-3

-2
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The Coxeter plane (Steinberg, 1950)

For W irreducible, let S = S+ ∪ S− be a bipartition of the Coxeter
diagram. Define a bipartite Coxeter element: c := c−c+, where

c+ =

(

∏

s∈S+

s

)

and c− =

(

∏

t∈S
−

t

)

.

The Coxeter plane is a 2-dimensional plane P such that:

• P is fixed (as a set) by 〈c+, c−〉.

• 〈c+, c−〉 acts on P as a dihedral reflection group.

• c is a rotation through 1/h of a turn.

• P is spanned by lines L+ and L−.

• Ht contains Lǫ if and only if t = s ∈ Sǫ, for ǫ ∈ {+,−}.

(Note: this construction breaks down in the reducible case.)
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Example: W = H3 (h = 10)
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Example: W = H3 (h = 10)
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Example: W = H3 (h = 10)
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Example: W = H3 (h = 10)
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Example: W = H3 (h = 10)
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Orbits

Proposition (Steinberg, 1950)

For any t ∈ T, the orbit of t under conjugation by c either:

(i) has h/2 elements and intersects S in a single element, or

(ii) has h elements and intersects S in a two-element set.

Proof.
The previously-mentioned properties of the Coxeter plane.

A better-known consequence: W has
nh

2
reflections.

(n = |S | and h = Coxeter number.)
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Proof idea for M(W ) =
h

2

∑

s∈S

M(W〈s〉)

Count maximal chains by “rotating” (conjugating by the Coxeter
element) until the element covering the identity is in S .

Each c-conjugacy orbit under rotation has h/2 total reflections per
simple reflection.

The rest of the chain is identified with a maximal chain in W〈s〉.

Analogous to a method used by Fomin and Zelevinsky to prove
facts about clusters and generalized associahedra.

(Technical detail: In fact we act alternately by c− and c+ and
treat s differently depending on whether it is in S+ or S−.)
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The numbers M(W )

An Bn Dn I2(m)

(n + 1)n−1 nn 2(n − 1)n m

E6 E7 E8 F4 H3 H4

41472 1062882 37968750 432 50 1350

For An, Bn and Dn, the recursion is solved by Abel’s identity.

The numbers M(W ) are given by a simple formula, due to
Chapoton:

M(W ) =
n! hn

|W |
.

I don’t know how to solve my recursion in general to give this
formula. But the recursion is the best way to prove this formula
type-by-type, and (as far as I know) the only known way to prove
it without asking the computer to do brute-force counting.
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Broader results

The method of “rotation by c” can be applied more broadly. In
particular, we can give recursions for:

• The number of edges in the W -noncrossing partition lattice,
leading to a uniform formula:

E(W ) =
nh

h + 2
Cat(W ) =

nh

|W |

n
∏

i=2

(h + ei + 1).

• The number of reduced words in the alphabet of reflections.

The proofs also generalize to the setting of m-divisible
W -noncrossing partitions.
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