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Classical noncrossing partitions (Kreweras, 1972)

Identify the numbers 1,2,... n with n distinct points in cyclic order
on a circle. For each block B of a partition 7, draw the convex
polygon whose vertices are the points in B. If |B| is 1 or 2, this
“polygon” is a point or a line segment.

The partition 7 is noncrossing if and only if in its planar diagram,
the blocks are disjoint (i.e. don't cross).

Example

Crossing and noncrossing:
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The classical noncrossing partition lattice

Order dbyfmtfptt 1

ANt
LWT
\\’\: /// A



Enumeration

Noncrossing partitions

Noncrossing partitions of [n] are counted by the famous Catalan
numbers

Chains

Detailed enumeration formulas exist counting chains (totally
ordered subsets) in the noncrossing partition lattice according to
the set of ranks visited. (Edelman, 1980).

Maximal chains
There are n"~2 maximal chains. There is a nice bijection with
parking functions (Stanley, 1997).
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Finite reflection groups

Finite groups W generated by (Euclidean) orthogonal reflections.
Examples: symmetry groups of regular polytopes, Weyl groups.
Coxeter arrangement A = {All reflecting hyperplanes for W}.
Simple reflections: Fix a connected component R of the
complement of | J.A. Let S be the set of reflections in the
facet-hyperplanes of R.
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Coxeter groups

Coxeter group: a group with a presentation of the form
(S]s?=1, (st)y"t) = 1),

Finite Coxeter groups « finite reflection groups.

Coxeter diagram: encodes the presentation.

o Vertex set: S

e Edges: s—t when m(s,t) > 2, labeled by m(s, t) when
m(s,t) > 3.

Irreducible Coxeter group: a Coxeter group having a connected
diagram.



Classification of irreducible finite Coxeter groups




Types A, B and D

o A,_1 = S, Reflecting hyperplanes are x; = x; for i # j.

e B, (the symmetry group of the n-cube or n-octohedron):
Reflecting hyperplanes are x; = 0 and x; = £x; for i # j.

e D,: Reflecting hyperplanes are x; = £x; for i # j.
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Intersection lattices

Intersection lattice of the Coxeter arrangement: intersections of
sets of hyperplanes, ordered by reverse inclusion.
Key point: The intersection lattice for S, is the lattice of partitions.

N{x1 =x,x = Xxg,X3 = X7,X3 = X9, X5 = Xg }
Sg example: ]

{1,2,8},{3,7,9}, {4}, {5,6}.

B, intersection lattice: partitions of +[n] fixed by / — —i, at most
one block containing a pair (i, —1i).

ﬂ{Xl = 0,X2 = 0,X2 = —X7,
X4 = —X9, X5 = X7,X6 = Xg}
By example: 1
{#+1,+2,+5,+7}, {3}, {3},
{4,-9},{—4,9},{6,8},{—6,—6}.
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Coxeter element

Coxeter element: ¢ := s15p-- - s, for a permutation sy, sy, ..., s,
of S.

Coxeter number: h := the order of c in W.

Exponents: positive integers e such that exp(2miej/h) is an
eigenvalue of c.

Example (Ap, = Spt1):

e Coxeter elements are (n+ 1) cycles.
e h=n+1.

e Exponents: 1,2,...n.
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NC partition lattices for any finite reflection group.

(Athanasiadis, Biane, Bessis, Brady, Reiner, Watt, 1997—2003)

Let T be the set of reflections in W. For w € W, write
w = tity-- -ty for t; € T, minimizing k. Set

I(w) == k.

(This is not the usual “length function.”)
Set u < uv if and only if [(uv) = I(u) + I(v).

The noncrossing partition lattice for W is the interval [1, c]<.
(Different choices of ¢ give isomorphic lattices.)

Given x = tito - - - t, € [1,¢]<, define a “type-W partition:”
UX = HtlﬂHtZQ---ﬂHtk.
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Example: A3 = S, with ¢ := (1234)

Cycles « blocks.

(123)(4) (14)(23) (124)(3) (134)(2) (12)(34) (1)(234)
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Garside structure

The lattice [1, c], with a certain edge labeling is a Garside
structure. From this, one obtains:

e A presentation of W as a group generated by the whole set T
of reflections.
e A monoid structure for the associated Artin group.

e A finite Eilenberg-Maclane (K(m,1)) space for the Artin
group.

The Artin group is the fundamental group of the complement of
the complexification of the Coxeter arrangement, with presentation

(S | (st)e),

16



The W-Catalan number

n

Cat(W) =]

i=1

e+h+1
e+1

For W = A, = 5,41, we have e, =iand h=n+1, so
Cat(Ap—1) = C,, the usual Catalan number.

For W = B,,, we have ¢, =2/ — 1 and h = 2n, so Cat(B,) is (2”).

n

D, Es E Eg Fs4 Hs H, /2(m)
3n—2(2n=2) | g33 | 4160 | 25080 | 105 | 32 | 280 | m + 2

n n—1
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W-Catalan numbers count:

e W-noncrossing partitions (Various researchers, 1997-2003).

e Conjugacy classes of elements of finite order in Lie groups
(Djokovi¢, 1980).

e W-orbits in Q/(h+ 1)Q, where Q is the root lattice
(Haiman, 1994).

e Antichains in the root poset (Postnikov, 1996).

e Positive regions of the Shi arrangement (Shi, 1997).

e The vertices of the W-associahedron (Fomin, Zelevinsky
2003).

e Coxeter-sortable elements of W (R., 2005).
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Counting maximal chains

Let M(W) be the number of maximal chains in the noncrossing
partition lattice of W. This number is interesting because
e |t is the number of top-dimensional cells in the
Eilenberg-Maclane space mentioned above.
e |t is the number of “reduced words” for ¢ in the alphabet of
reflections.
o It generalizes the number of parking functions.

Theorem (R., 2004.)

Let W be a finite irreducible Coxeter group with simple
generators S. Then

M(W) = gz M(W,g).
seS

W/ is the “standard parabolic” subgroup generated by S — {s}.

For reducible groups, use standard techniques for products.
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Example: W = A3 with

Count maximal chains according to whether the element covering
the identity is in the orbit of (1 2), (2 3) or (3 4).
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Example: B3 with

S={(1 -1),(12)(-2 —1),(23)(—-3 —2)}.




The Coxeter plane (Steinberg, 1950)

For W irreducible, let S = 5, US_ be a bipartition of the Coxeter
diagram. Define a bipartite Coxeter element: ¢ := c_c;, where

(1) w11

The Coxeter plane is a 2-dimensional plane P such that:
e P is fixed (as a set) by (¢}, c_).
e (cy,c_) acts on P as a dihedral reflection group.
e c is a rotation through 1/h of a turn.
e P is spanned by lines L, and L_.
e H; contains L. if and only if t =s € S, for e € {+,—}.

(Note: this construction breaks down in the reducible case.)
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Example: W = H; (h = 10)
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Proposition (Steinberg, 1950)
For any t € T, the orbit of t under conjugation by c either:
(i) has h/2 elements and intersects S in a single element, or

(ii) has h elements and intersects S in a two-element set.

Proof.

The previously-mentioned properties of the Coxeter plane. [l

h
A better-known consequence: W has % reflections.
(n =S| and h = Coxeter number.)
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Proof idea for M(W) = Z M(W,s))

seS

Count maximal chains by “rotating” (conjugating by the Coxeter
element) until the element covering the identity is in S.

Each c-conjugacy orbit under rotation has h/2 total reflections per
simple reflection.

The rest of the chain is identified with a maximal chain in W, .

Analogous to a method used by Fomin and Zelevinsky to prove
facts about clusters and generalized associahedra.

(Technical detail: In fact we act alternately by c_ and ¢, and
treat s differently depending on whether it is in S or S_.)
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The numbers M(W)
A, B,| D, | h(m)

(n+D) 1 a1 2h—1D"| m

E6 E7 E8 F4 H3 H4
41472 | 1062882 | 37968750 | 432 | 50 | 1350

For A,, B, and D,, the recursion is solved by Abel’s identity.

The numbers M(W) are given by a simple formula, due to

Chapoton:
n! h"
M(W) = ——.
(W) Wi

| don’t know how to solve my recursion in general to give this
formula. But the recursion is the best way to prove this formula
type-by-type, and (as far as | know) the only known way to prove

it without asking the computer to do brute-force counting.
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Broader results

The method of “rotation by ¢” can be applied more broadly. In
particular, we can give recursions for:
e The number of edges in the W-noncrossing partition lattice,
leading to a uniform formula:

h n
E(W) = Cat(W) = ‘”W‘ (h+ e +1).
i=2

e The number of reduced words in the alphabet of reflections.

The proofs also generalize to the setting of m-divisible
W-noncrossing partitions.
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