Counting chains in noncrossing partition lattices

Nathan Reading

NC State University

NCSU Algebra Seminar, November 16, 2007

Classical noncrossing partitions

Coxeter groups and noncrossing partitions

Counting maximal chains

Classical noncrossing partitions (Kreweras, 1972)

Identify the numbers 1, 2, ..., n with n distinct points in cyclic order on a circle. For each block B of a partition π , draw the convex polygon whose vertices are the points in B. If |B| is 1 or 2, this "polygon" is a point or a line segment.

The partition π is noncrossing if and only if in its planar diagram, the blocks are disjoint (i.e. don't cross).

Example

Crossing and noncrossing:

The classical noncrossing partition lattice

Noncrossing partitions

Noncrossing partitions of [n] are counted by the famous Catalan numbers

$$C_n:=\frac{1}{n+1}\binom{2n}{n}.$$

Chains

Detailed enumeration formulas exist counting chains (totally ordered subsets) in the noncrossing partition lattice according to the set of ranks visited. (Edelman, 1980).

Maximal chains

There are n^{n-2} maximal chains. There is a nice bijection with parking functions (Stanley, 1997).

Example

Finite reflection groups

Finite groups W generated by (Euclidean) orthogonal reflections. Examples: symmetry groups of regular polytopes, Weyl groups. Coxeter arrangement $\mathcal{A} = \{\text{All reflecting hyperplanes for } W\}$. Simple reflections: Fix a connected component R of the complement of $\bigcup \mathcal{A}$. Let S be the set of reflections in the facet-hyperplanes of R.

Coxeter group: a group with a presentation of the form

$$\langle S \mid s^2 = 1, (st)^{m(s,t)} = 1 \rangle.$$

Finite Coxeter groups \leftrightarrow finite reflection groups.

Coxeter diagram: encodes the presentation.

- Vertex set: S
- Edges: s t when m(s, t) > 2, labeled by m(s, t) when m(s, t) > 3.

Irreducible Coxeter group: a Coxeter group having a connected diagram.

Classification of irreducible finite Coxeter groups

Types A, B and D

- $A_{n-1} = S_n$: Reflecting hyperplanes are $x_i = x_j$ for $i \neq j$.
- B_n (the symmetry group of the n-cube or n-octohedron): Reflecting hyperplanes are x_i = 0 and x_i = ±x_i for i ≠ j.

• D_n : Reflecting hyperplanes are $x_i = \pm x_j$ for $i \neq j$.

Intersection lattices

Intersection lattice of the Coxeter arrangement: intersections of sets of hyperplanes, ordered by reverse inclusion.

Key point: The intersection lattice for S_n is the lattice of partitions.

 S_9 example:

 B_{0} example:

$$\bigcap \{x_1 = x_2, x_2 = x_8, x_3 = x_7, x_3 = x_9, x_5 = x_6\}$$

$$\downarrow \\ \{1, 2, 8\}, \{3, 7, 9\}, \{4\}, \{5, 6\}.$$

 B_n intersection lattice: partitions of $\pm [n]$ fixed by $i \mapsto -i$, at most one block containing a pair (i, -i).

$$\bigcap \{x_1 = 0, x_2 = 0, x_2 = -x_7, \\ x_4 = -x_9, x_5 = x_7, x_6 = x_8\}$$

$$\uparrow$$

$$\{\pm 1, \pm 2, \pm 5, \pm 7\}, \{3\}, \{-3\}, \\ \{4, -9\}, \{-4, 9\}, \{6, 8\}, \{-6, -6\}.$$

Coxeter element: $c := s_1 s_2 \cdots s_n$ for a permutation s_1, s_2, \ldots, s_n of S. Coxeter number: h := the order of c in W. Exponents: positive integers e_j such that $\exp(2\pi i e_j/h)$ is an eigenvalue of c.

Example $(A_n = S_{n+1})$:

- Coxeter elements are (n + 1) cycles.
- h = n + 1.
- Exponents: 1, 2, . . . *n*.

NC partition lattices for any finite reflection group. (Athanasiadis, Biane, Bessis, Brady, Reiner, Watt, 1997–2003)

Let T be the set of reflections in W. For $w \in W$, write $w = t_1 t_2 \cdots t_k$ for $t_i \in T$, minimizing k. Set

$$l(w) := k$$

(This is not the usual "length function.")

Set
$$u \leq uv$$
 if and only if $l(uv) = l(u) + l(v)$.

The noncrossing partition lattice for W is the interval $[1, c]_{\leq}$. (Different choices of c give isomorphic lattices.)

Given $x = t_1 t_2 \cdots t_k \in [1, c]_{\prec}$, define a "type-W partition:"

$$U_x := H_{t_1} \cap H_{t_2} \cap \cdots \cap H_{t_k}.$$

Example: $A_3 = S_4$ with c := (1234)

Example: B_3 with c = (123 - 1 - 2 - 3)

The lattice [1, c], with a certain edge labeling is a Garside structure. From this, one obtains:

- A presentation of *W* as a group generated by the whole set *T* of reflections.
- A monoid structure for the associated Artin group.
- A finite Eilenberg-Maclane (*K*(*π*, 1)) space for the Artin group.

The Artin group is the fundamental group of the complement of the complexification of the Coxeter arrangement, with presentation

 $\langle S \mid (st)^{m(s,t)} \rangle.$

The W-Catalan number

$${\sf Cat}({\mathcal W})=\prod_{i=1}^n rac{e_i+h+1}{e_i+1}.$$

For $W = A_n = S_{n+1}$, we have $e_i = i$ and h = n + 1, so $Cat(A_{n-1}) = C_n$, the usual Catalan number.

For
$$W = B_n$$
, we have $e_i = 2i - 1$ and $h = 2n$, so $Cat(B_n)$ is $\binom{2n}{n}$.

D _n	E ₆	E ₇	E ₈	F ₄	H ₃	H ₄	$I_2(m)$
$\frac{3n-2}{n}\binom{2n-2}{n-1}$	833	4160	25080	105	32	280	<i>m</i> + 2

W-Catalan numbers count:

- W-noncrossing partitions (Various researchers, 1997-2003).
- Conjugacy classes of elements of finite order in Lie groups (Djoković, 1980).
- W-orbits in Q/(h+1)Q, where Q is the root lattice (Haiman, 1994).
- Antichains in the root poset (Postnikov, 1996).
- Positive regions of the Shi arrangement (Shi, 1997).
- The vertices of the *W*-associahedron (Fomin, Zelevinsky 2003).
- Coxeter-sortable elements of W (R., 2005).

Counting maximal chains

Let M(W) be the number of maximal chains in the noncrossing partition lattice of W. This number is interesting because

- It is the number of top-dimensional cells in the Eilenberg-Maclane space mentioned above.
- It is the number of "reduced words" for *c* in the alphabet of reflections.
- It generalizes the number of parking functions.

Theorem (R., 2004.)

Let W be a finite irreducible Coxeter group with simple generators S. Then

$$\mathsf{M}(W) = \frac{h}{2} \sum_{s \in S} \mathsf{M}(W_{\langle s \rangle}).$$

 $W_{\langle s \rangle}$ is the "standard parabolic" subgroup generated by $S - \{s\}$. For reducible groups, use standard techniques for products.

Example: $W = A_3$ with c = (1243)

Count maximal chains according to whether the element covering the identity is in the orbit of $(1 \ 2)$, $(2 \ 3)$ or $(3 \ 4)$.

Example: B_3 with c = (132 - 1 - 3 - 2)

The Coxeter plane (Steinberg, 1950)

For *W* **irreducible**, let $S = S_+ \cup S_-$ be a bipartition of the Coxeter diagram. Define a bipartite Coxeter element: $c := c_-c_+$, where

$$c_+ = \left(\prod_{s \in S_+} s\right)$$
 and $c_- = \left(\prod_{t \in S_-} t\right).$

The Coxeter plane is a 2-dimensional plane P such that:

- *P* is fixed (as a set) by $\langle c_+, c_- \rangle$.
- $\langle c_+, c_- \rangle$ acts on *P* as a dihedral reflection group.
- c is a rotation through 1/h of a turn.
- P is spanned by lines L_+ and L_- .
- H_t contains L_{ϵ} if and only if $t = s \in S_{\epsilon}$, for $\epsilon \in \{+, -\}$.

(Note: this construction breaks down in the reducible case.)

Proposition (Steinberg, 1950)

For any $t \in T$, the orbit of t under conjugation by c either: (i) has h/2 elements and intersects S in a single element, or

(ii) has h elements and intersects S in a two-element set.

Proof.

The previously-mentioned properties of the Coxeter plane.

A better-known consequence: W has $\frac{nh}{2}$ reflections.

$$(n = |S|$$
 and $h =$ Coxeter number.)

Proof idea for
$$M(W) = \frac{h}{2} \sum_{s \in S} M(W_{\langle s \rangle})$$

Count maximal chains by "rotating" (conjugating by the Coxeter element) until the element covering the identity is in S.

Each *c*-conjugacy orbit under rotation has h/2 total reflections per simple reflection.

The rest of the chain is identified with a maximal chain in $W_{\langle s \rangle}$.

Analogous to a method used by Fomin and Zelevinsky to prove facts about clusters and generalized associahedra.

(Technical detail: In fact we act alternately by c_{-} and c_{+} and treat *s* differently depending on whether it is in S_{+} or S_{-} .)

The numbers M(W)

$$\begin{array}{c|c} A_n & B_n & D_n & I_2(m) \\ \hline (n+1)^{n-1} & n^n & 2(n-1)^n & m \end{array}$$

E ₆	E ₇	E ₈	F_4	H_3	H_4
41472	1062882	37968750	432	50	1350

For A_n , B_n and D_n , the recursion is solved by Abel's identity.

The numbers M(W) are given by a simple formula, due to Chapoton:

$$\mathsf{M}(W) = \frac{n! h^n}{|W|}.$$

I don't know how to solve my recursion in general to give this formula. But the recursion is the best way to prove this formula type-by-type, and (as far as I know) the only known way to prove it without asking the computer to do brute-force counting.

The method of "rotation by c" can be applied more broadly. In particular, we can give recursions for:

• The number of edges in the *W*-noncrossing partition lattice, leading to a uniform formula:

$$\mathsf{E}(W) = \frac{nh}{h+2} \operatorname{Cat}(W) = \frac{nh}{|W|} \prod_{i=2}^{n} (h+e_i+1).$$

• The number of reduced words in the alphabet of reflections.

The proofs also generalize to the setting of m-divisible W-noncrossing partitions.