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Main points

Recall: Automorphisms of the weak order on a finite Coxeter group
are exactly diagram automorphisms.

Surjective lattice homomorphisms between different finite Coxeter
groups are diagram homomorphisms: A surjective homomorphism
exists from W to W ′ if and only if the diagram for W’ can be
obtained from the diagram for W by deleting vertices and/or
decreasing edge labels (and thus possibly erasing edges).

Such homomorphisms depend only on their restriction to rank-2
standard parabolic subgroups.

W ′ is (usually) the quotient of W modulo a homogeneous
congruence of degree 2 (or sometimes nonhomog. of degree 3).

From there: surjective hom.s between Cambrian lattices. . .
refinement relations among Cambrian fans. . . g-vector fans. . .
scattering diagrams. . . hom.s between cluster algebras. . .
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Section 1: Simion’s map



The story begins with Simion

At the time of Rodica Simion’s untimely death in 2000, she had
nearly completed her paper “A type-B associahedron.” (Reiner
finished preparing it for publication with help from Greene, Matsko,
and Devadoss.)

The paper constructs a type-B analog of the usual associahedron,
based on centrally symmetric triangulations of a polygon.

(At about the same time, the operads/homotopy theory people
were doing the same thing, calling this the cyclohedron. Simion’s
work was independent and initiated the combinatorial study of this
polytope.)

In the paper, Simion defined a map from signed permutations to
permutations. That map is the beginning of the story (not just the
story of this talk, but the story of this research).
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Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725
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Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. 68134725
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Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725
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Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725

Extended one-line notation: π−n · · · π−2π−1π1π2 · · · πn.

Example. (−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725

Lattice homomorphisms between weak orders Simion’s map 2



Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725

Extended one-line notation: π−n · · · π−2π−1π1π2 · · · πn.

Example. (−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725

Consider signed permutations whose (short) one-line notation
avoids 12 and 21. That is, negative entries (if any) must come first
and then positive entries (if any).

Example. (−6)(−3)(−4)81725
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Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725

Extended one-line notation: π−n · · · π−2π−1π1π2 · · · πn.

Example. (−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725

Consider signed permutations whose (short) one-line notation
avoids 12 and 21. That is, negative entries (if any) must come first
and then positive entries (if any).

Example. (−6)(−3)(−4)81725

How many permutations in Bn avoid 12 and 21?
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Some pattern-avoiding signed permutations

Signed permutations: Permutations π of ±[n] with π−i = −πi ∀ i .
The Coxeter group Bn is the group of signed permutations.

(Short) one-line notation: π1π2 · · · πn.

Example. (−6)81(−3)(−4)725

Extended one-line notation: π−n · · · π−2π−1π1π2 · · · πn.

Example. (−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725

Consider signed permutations whose (short) one-line notation
avoids 12 and 21. That is, negative entries (if any) must come first
and then positive entries (if any).

Example. (−6)(−3)(−4)81725

How many permutations in Bn avoid 12 and 21? (n + 1)!
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Example. (−6)(−3)(−4)81725
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Place 0 between the right and left sides of the extended one-line
notation.

Example. (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 | (−6)(−3)(−4)81725
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Place 0 between the right and left sides of the extended one-line
notation.

Example. (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 | (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 0 (−6)(−3)(−4)81725
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Place 0 between the right and left sides of the extended one-line
notation.

Restrict to nonnegative entries

Example. (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 | (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 0 (−6)(−3)(−4)81725

436 0 81725
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Place 0 between the right and left sides of the extended one-line
notation.

Restrict to nonnegative entries

Example. (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 | (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 0 (−6)(−3)(−4)81725

436 0 81725

436081725
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Some pattern-avoiding signed permutations (continued)

How many permutations in Bn avoid 12 and 21? (n + 1)!

A bijection:

Place 0 between the right and left sides of the extended one-line
notation.

Restrict to nonnegative entries

Add 1 to every entry.

Example. (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 | (−6)(−3)(−4)81725

(−5)(−2)(−7)(−1)(−8)436 0 (−6)(−3)(−4)81725

436 0 81725

436081725

547192836
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Variations

What about signed permutations avoiding 12 and 21? That is,
positive entries (if any) first and then negative entries (if any).

Example. 81725(−6)(−3)(−4)
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Variations

What about signed permutations avoiding 12 and 21? That is,
positive entries (if any) first and then negative entries (if any).

Example. 81725(−6)(−3)(−4)

Again, there are (n + 1)! of these. The map is the same.

Example. 81725(−6)(−3)(−4)
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Variations

What about signed permutations avoiding 12 and 21? That is,
positive entries (if any) first and then negative entries (if any).

Example. 81725(−6)(−3)(−4)

Again, there are (n + 1)! of these. The map is the same.

Example. 81725(−6)(−3)(−4)

436(−5)(−2)(−7)(−1)(−8) | 81725(−6)(−3)(−4)
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Variations

What about signed permutations avoiding 12 and 21? That is,
positive entries (if any) first and then negative entries (if any).

Example. 81725(−6)(−3)(−4)
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Variations

What about signed permutations avoiding 12 and 21? That is,
positive entries (if any) first and then negative entries (if any).

Example. 81725(−6)(−3)(−4)

Again, there are (n + 1)! of these. The map is the same.

Example. 81725(−6)(−3)(−4)
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A map from signed permutations to permutations

We extend the map to all signed permutation.

Example. (−6)81(−3)(−4)725 7→ 547192836

Lattice homomorphisms between weak orders Simion’s map 5



A map from signed permutations to permutations

We extend the map to all signed permutation.

Example. (−6)81(−3)(−4)725 7→ 547192836

Surjective.
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A map from signed permutations to permutations

We extend the map to all signed permutation.

Example. (−6)81(−3)(−4)725 7→ 547192836

Surjective.

Fiber (i.e. preimage) of a permutation is an interval in weak order
on Bn. (Bottom and top of interval are the two types of avoiders.)

Example. Fiber of 547192836 is

[(−6)(−3)(−4)81725, 81725(−6)(−3)(−4)].

Reminder: The weak order on Bn is containment of inversion sets
of the extended one-line notation.
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A map from signed permutations to permutations

We extend the map to all signed permutation.

Example. (−6)81(−3)(−4)725 7→ 547192836

Surjective.

Fiber (i.e. preimage) of a permutation is an interval in weak order
on Bn. (Bottom and top of interval are the two types of avoiders.)

Example. Fiber of 547192836 is

[(−6)(−3)(−4)81725, 81725(−6)(−3)(−4)].

Reminder: The weak order on Bn is containment of inversion sets
of the extended one-line notation.

Always when we have a map from a lattice and the fibers are
intervals, we should ask ourselves if the fibers are a lattice
congruence and if the map is a lattice homomorphism.
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Congruences and homomorphisms, combinatorially

Congruence: equivalence relation respecting meet and join.

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.
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Congruences and homomorphisms, combinatorially

Congruence: equivalence relation respecting meet and join.

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Homomorphism: Map respecting meet and join.

A surjective map η : L→ L′ (finite lattices) is a lattice
homomorphism if and only if the following two conditions hold:

(i) η is order-preserving.

(ii) For every interval [x , y ] in L′, the set η−1([x , y ]) is an interval.
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A surjective homomorphism from Bn to Sn+1

A surjective map η : L→ L′ (finite lattices) is a lattice
homomorphism if and only if the following two conditions hold:

(i) η is order-preserving.

(ii) For every interval [x , y ] in L′, the set η−1([x , y ]) is an interval.

We can pretty easily convince ourselves that our map from signed
permutations to permutations satisfies these conditions.
(Aside: Simion had most of this and could have done all of it.)
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A surjective homomorphism from Bn to Sn+1

A surjective map η : L→ L′ (finite lattices) is a lattice
homomorphism if and only if the following two conditions hold:

(i) η is order-preserving.

(ii) For every interval [x , y ] in L′, the set η−1([x , y ]) is an interval.

We can pretty easily convince ourselves that our map from signed
permutations to permutations satisfies these conditions.
(Aside: Simion had most of this and could have done all of it.)

Conclusion: We have a surjective lattice homomorphism from the
weak order on Bn to the weak order on Sn+1. In other words, Sn+1

is a lattice quotient of Bn.
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A surjective homomorphism from Bn to Sn+1

A surjective map η : L→ L′ (finite lattices) is a lattice
homomorphism if and only if the following two conditions hold:

(i) η is order-preserving.

(ii) For every interval [x , y ] in L′, the set η−1([x , y ]) is an interval.

We can pretty easily convince ourselves that our map from signed
permutations to permutations satisfies these conditions.
(Aside: Simion had most of this and could have done all of it.)

Conclusion: We have a surjective lattice homomorphism from the
weak order on Bn to the weak order on Sn+1. In other words, Sn+1

is a lattice quotient of Bn.

Note: It is much easier to get a surjective lattice homomorphism
from the weak order on Bn to the weak order on Sn. That is a
parabolic congruence (discussed last week and again soon).
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In general?

The simple combinatorics of this map might hide how surprising it
is that Sn+1 is a lattice quotient of Bn.

Are there other examples?

Can we characterize surjective lattice homomorphisms between
weak orders?

Equivalently, can we characterize congruences on W such that the
quotient is the weak order on some W ′?

First we’ll need more background.
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Section 2: A lattice-theoretic approach



Order-theoretic characterization of a lattice quotient

We saw that congruence classes of a lattice congruence are
intervals.

Lattice quotient: The natural lattice structure on the set of
congruence classes.

Order-theoretically: The lattice quotient is isomorphic to the
subposet induced by the bottom elements of intervals.
Example.

0

1
2 3

4

5

∼
=

0

1
2 3

4

5
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Contracting edges

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.

Because congruence classes are intervals, a congruence is
completely determined by the edges it contracts.

As one might expect, edges cannot be contracted independently.

Say a ⋖ b forces c ⋖ d if every congruence contracting a ⋖ b also
contracts c ⋖ d .
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒
x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0

x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y

x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y

i.e. 1 ≡ y

x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y

i.e. 1 ≡ y

=⇒ a ∧ 1 ≡ a ∧ y
x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y

i.e. 1 ≡ y

=⇒ a ∧ 1 ≡ a ∧ y

i.e. a ≡ 0x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in the weak order

A polygon in the weak order is an interval whose Hasse diagram is
a cycle.

Proposition. The forcing relation in the weak order is the
transitive closure of the forcing relation in each polygon.

That relation was: bottom edge forces opposite top edge and all
side edges (and dually, top edge forces...)

As a result, we can compute examples easily by hand.

Terminology: We’ll compute the congruence generated by
contracting a set of edges.
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Example of forcing in the weak order

The congruence generated by contracting the red and blue edges.
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Example of forcing in the weak order

The congruence generated by contracting the red and blue edges.

Lattice homomorphisms between weak orders A lattice-theoretic approach 13



Example of forcing in the weak order

The congruence generated by contracting the red and blue edges.
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Example of forcing in the weak order

The congruence generated by contracting the red and blue edges.

Lattice homomorphisms between weak orders A lattice-theoretic approach 13



Homogeneous congruences

Each edge in the weak order has a degree: The rank of the
smallest standard parabolic subgroup containing that edge.

Caveat: This definition has some problems, but it’s good enough
for this talk. If you want to think more about this, use the
definition I gave in the school last week.

A homogeneous congruence of degree d is a congruence generated
by contracting a set of edges of degree d .

For example, a homogenous congruence of degree 1 is generated
by contracting edges that look like 1⋖ s.

Important examples of congruences of degree 2 include Cambrian
congruences, which make permutohedra into (generalized)
associahedra.
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Looking for congruences

The weak order contains, at the bottom, the Coxeter diagram:
Vertices are atoms and edges are polygons:

If I want to “turn this into” the weak order on A4, somehow the
octagon needs to turn into a hexagon.

I can do it by contracting edges.
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Looking for congruences

The weak order contains, at the bottom, the Coxeter diagram:
Vertices are atoms and edges are polygons:
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octagon needs to turn into a hexagon.
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Looking for congruences

The weak order contains, at the bottom, the Coxeter diagram:
Vertices are atoms and edges are polygons:

If I want to “turn this into” the weak order on A4, somehow the
octagon needs to turn into a hexagon.

I can do it by contracting edges.

Let’s try it (in lower rank).
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Looking for congruences in rank 3
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Looking for congruences in rank 3
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Looking for congruences in rank 3
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Looking for congruences in rank 3

Quotient is indeed A3.
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Looking for congruences in rank 3—Time out

Let’s stop and think about this:

We looked at the polygons at the bottom of weak order that
encode the Coxeter diagram of B3.

We contracted two side edges to turn the octagon (label 4) into a
hexagon (label 3).

Näıvely contracting these edges generates a congruence whose
quotient is A3.

On the one hand, this is surprising. Why should this näıve
approach work.

On the other hand, this is consistent with our expectation that
constructions in Coxeter groups are determined in rank 2.
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Looking for congruences in rank 3

Lattice homomorphisms between weak orders A lattice-theoretic approach 16



Looking for congruences in rank 3
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Looking for congruences in rank 3

Let’s look at the other examples.
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Looking for congruences in rank 3
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Looking for congruences in rank 3

Again, quotient is A3.
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Looking for congruences in rank 3
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Looking for congruences in rank 3

And again.
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Looking for congruences in rank 3
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Looking for congruences in rank 3

And not again.

Lattice homomorphisms between weak orders A lattice-theoretic approach 16



Looking for congruences in rank 3

But we can fix this

by contracting 4 more edges.

Lattice homomorphisms between weak orders A lattice-theoretic approach 16



Summary of the B3-to-A3 examples

All of these are theorems for general Bn-to-An.

There are 4 ways to contract side edges of the octagon to get a
hexagon.

In 3 of 4 cases, contracting those edges generates a congruence
whose quotient is A3. Thus these are homogeneous congruences of
degree 2.

In the remaining case, there are 4 additional edges to contract, but
then we still get A3. This is a non-homogeneous congruence of
degree 3. For larger n, the congruence is generated by contracting
these edges in the B3 standard parabolic subgroup of Bn.
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Example. (−6)81(−3)(−4)725
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
43(−1) 6 81 725
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
43(−1) 6 81 725

43(−1)681725
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Change −1 to 0.

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
43(−1) 6 81 725

43(−1)681725

430681725
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Change −1 to 0.

Add 1 to each entry

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
43(−1) 6 81 725

43(−1)681725

430681725

541792836
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Explicit homomorphisms

Simion’s map (insert 0, take nonnegative entries, add 1 to each)
←→ one of the homogeneous congruences. The homomorphism
for the non-homogeneous congruence also has nice combinatorics:

Extract the subsequence of the extended one-line notation
consiting of entries ≥ −1.

Change −1 to 0.

Add 1 to each entry

Example. (−6)81(−3)(−4)725

(−5)(−2)(−7)43(−1)(−8)6 | (−6)81(−3)(−4)725
43(−1) 6 81 725

43(−1)681725

430681725

541792836

The other two homomorphisms are “hybrids.”
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Section 3: General theorems



Deleting vertices

Parabolic homomorphism:
Given J ⊆ S , let ηJ map w to wJ , where w factors as wJ ·

Jw .
(If you like: wJ is the largest element of WJ below w .)

Given Coxeter systems (W ,S) and (W ′,S ′),

Theorem. Let η : W →W ′ be a surjective lattice homomorphism
and let J ⊆ S be {s ∈ S : η(s) 6= 1′}. Then η factors as η|WJ

◦ ηJ ,
where η|WJ

(the restriction of η to WJ) restricts to a bijection
from J to S ′.

That is: η “deletes” vertices from the diagram and then . . .
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Deleting vertices

Parabolic homomorphism:
Given J ⊆ S , let ηJ map w to wJ , where w factors as wJ ·

Jw .
(If you like: wJ is the largest element of WJ below w .)

Given Coxeter systems (W ,S) and (W ′,S ′),

Theorem. Let η : W →W ′ be a surjective lattice homomorphism
and let J ⊆ S be {s ∈ S : η(s) 6= 1′}. Then η factors as η|WJ

◦ ηJ ,
where η|WJ

(the restriction of η to WJ) restricts to a bijection
from J to S ′.

That is: η “deletes” vertices from the diagram and then . . . does
something else.

Proof idea: E.g. for J = S \ {s}, the congruence associated to ηJ

is the smallest congruence with identity ≡ s.
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Deleting vertices

Parabolic homomorphism:
Given J ⊆ S , let ηJ map w to wJ , where w factors as wJ ·

Jw .
(If you like: wJ is the largest element of WJ below w .)

Given Coxeter systems (W ,S) and (W ′,S ′),

Theorem. Let η : W →W ′ be a surjective lattice homomorphism
and let J ⊆ S be {s ∈ S : η(s) 6= 1′}. Then η factors as η|WJ

◦ ηJ ,
where η|WJ

(the restriction of η to WJ) restricts to a bijection
from J to S ′.

That is: η “deletes” vertices from the diagram and then . . . does
something else.

Proof idea: E.g. for J = S \ {s}, the congruence associated to ηJ

is the smallest congruence with identity ≡ s. Proof idea about to
disappear.
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Deleting vertices

Parabolic homomorphism:
Given J ⊆ S , let ηJ map w to wJ , where w factors as wJ ·

Jw .
(If you like: wJ is the largest element of WJ below w .)

Given Coxeter systems (W ,S) and (W ′,S ′),

Theorem. Let η : W →W ′ be a surjective lattice homomorphism
and let J ⊆ S be {s ∈ S : η(s) 6= 1′}. Then η factors as η|WJ

◦ ηJ ,
where η|WJ

(the restriction of η to WJ) restricts to a bijection
from J to S ′.

That is: η “deletes” vertices from the diagram and then . . . does
something else.

To see what “something else” is, we reduce to the case where
S = S ′ and η fixes S (for the rest of the talk).
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Surjective homomorphisms fixing S

Theorem. Suppose (W ,S) and (W ′,S) are finite Coxeter
systems. Then there exists a surjective lattice homomorphism from
W to W ′ (fixing S) if and only if m′(r , s) ≤ m(r , s) for each pair
r , s ∈ S . If so, then the homomorphism can be chosen so that the
associated congruence on W is homogeneous of degree 2.

Proof idea: The “only if” direction (easy): The map fixes S , and
so can’t make the rank-2 standard parabolics (polygons at the
bottom) larger, only smaller (by contracting their side edges).

The “if” direction: Choose side edges to contract and use forcing
(geometrized via “shards”) to generate congruences. Verify that
(possibly after contracting more edges), the quotient is W ′. Verify
that ∃ a choice of side edges to contract s.t. no additional edges
need be contracted (so the congruence is homog. of degree 2).

Uniform proof for “erasing edges,” then case-by-case, with
computations in the remaining exceptional types F4, H3, and H4.

Lattice homomorphisms between weak orders General theorems 20



Surjective homomorphisms fixing S (continued)

Theorem. Let W and W ′ be finite Coxeter groups. A surjective
homomorphism from the weak order on W to the weak order on
W ′ is determined entirely by its restrictions to rank-two standard
parabolic subgroups.

Proof idea: This is an extension of the previous proof. One checks
that, once one chooses which “side edges of polygons” to contract
in each rank-2 parabolic subgroup, if the congruence is not already
correct, there is at most one way to contract additional edges so
that the quotient is W ′.
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Surjective homomorphisms fixing S (continued)

Theorem. Let (W ,S) and (W ′,S) be finite
Coxeter systems with m′(r , s) ≤ m(r , s) for each pair r , s ∈ S . For
each r , s ∈ S , fix a surjective homomorphism ηr ,s from W{r ,s} to
W ′

{r ,s} with ηr ,s(r) = r and ηr ,s(s) = s. Then there is exactly one

diagram homomorphism η : W →W ′ such that the restriction of η
to W{r ,s} equals ηr ,s for each pair r , s ∈ S .
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Surjective homomorphisms fixing S (continued)

Almost Theorem. Let (W ,S) and (W ′,S) be finite
Coxeter systems with m′(r , s) ≤ m(r , s) for each pair r , s ∈ S . For
each r , s ∈ S , fix a surjective homomorphism ηr ,s from W{r ,s} to
W ′

{r ,s} with ηr ,s(r) = r and ηr ,s(s) = s. Then there is exactly one

diagram homomorphism η : W →W ′ such that the restriction of η
to W{r ,s} equals ηr ,s for each pair r , s ∈ S .

In fact, as stated, the theorem is false, but fails in essentially one
case: Going from type Hn to type Bn, one of the nine ways to
choose side edges produces a bad congruence. (No matter what
additional edges you contract, you can’t get the quotient to be Bn.)
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Surjective homomorphisms fixing S (continued)

Theorem. Let (W ,S) and (W ′,S) be finite crystallographic
Coxeter systems with m′(r , s) ≤ m(r , s) for each pair r , s ∈ S . For
each r , s ∈ S , fix a surjective homomorphism ηr ,s from W{r ,s} to
W ′

{r ,s} with ηr ,s(r) = r and ηr ,s(s) = s. Then there is exactly one

diagram homomorphism η : W →W ′ such that the restriction of η
to W{r ,s} equals ηr ,s for each pair r , s ∈ S .

(Without crystallography) the theorem fails in essentially one
case: Going from type Hn to type Bn, one of the nine ways to
choose side edges produces a bad congruence. (No matter what
additional edges you contract, you can’t get the quotient to be Bn.)

The theorem is true if we restrict W to be crystallographic. Given
that we prove the theorem case-by-case and don’t use
crystallography, this seems artificial, but does give a uniform
“existence and uniqueness” statement. ∃ a crystallographic proof?
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Coarsening the Coxeter fans

Each lattice congruence defines a complete fan that coarsens the
Coxeter fan. (Combine maximal cones of the Coxeter fan
according to congruence classes.)

The existence of surjective homomorphisms between different finite
Coxeter groups implies Coarsening relations among different
Coxeter fans.
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Example: Coarsening the Coxeter fan for B3 to get A3
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Example: Coarsening the Coxeter fan for B3 to get A3
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Section 4: Homomorphisms between Cambrian lattices



Cambrian lattices

A Cambrian congruence is generated by contracting all edges on
one side of each polygon at the bottom of weak order.

A Cambrian lattice is the quotient of the weak order on W modulo
a Cambrian congruence. Its Hasse diagram is the graph of a
generalized associahedron, AKA the exchange graph of a cluster
algebra of finite type.

Classification of surjective homomorphisms between weak orders
=⇒ classification of surjective hom.s between Cambrian lattices.
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B3 and A3

B3 A3
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B3 and A3
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Surjective homomorphisms between Cambrian lattices

The classification of surjective homomorphisms between Cambrian
lattices is more uniform.

When we pass from weak order to Cambrian lattice, each “polygon
at the bottom” only has side edges on one side.

To decrease m(r , s), we can contract these side edges arbitrarily.
These contractions generate the right congruence, with no
additional contractions needed (and no restriction to the
crystallographic case).
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Dominance and coarsening of Cambrian fans

A Cartan matrix A dominates A′ if corresponding entries of A′

have weakly smaller absolute value.

Example. B3 and A3.

Root system for A′ is a subset of root system for A.
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Dominance and coarsening of Cambrian fans

A Cartan matrix A dominates A′ if corresponding entries of A′

have weakly smaller absolute value.

Example. B3 and A3.

Root system for A′ is a subset of root system for A when you
identify the simple roots.
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Dominance and coarsening of Cambrian fans

A Cartan matrix A dominates A′ if corresponding entries of A′

have weakly smaller absolute value.

Example. B3 and A3.

Root system for A′ is a subset of root system for A when you
identify the simple roots.

Cambrian fan: Coarsen Coxeter fan according to a Cambrian
congruence.

Cambrian fan for (A′, c) is obtained from Cambrian fan for (A, c)
by removing walls orthogonal to A-roots that are not A′-roots.
This implies a relationship among g-vector fans, among scattering
diagrams, cluster algebras, etc. These relationships seem to be
more general than the context (“finite type”) where the lattice
theory makes sense.
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Dominance and coarsening of Cambrian fans

A Cartan matrix A dominates A′ if corresponding entries of A′

have weakly smaller absolute value.

Example. B3 and A3.

Root system for A′ is a subset of root system for A when you
identify the simple roots.

Cambrian fan: Coarsen Coxeter fan according to a Cambrian
congruence.

Cambrian fan for (A′, c) is obtained from Cambrian fan for (A, c)
by removing walls orthogonal to A-roots that are not A′-roots.
This implies a relationship among g-vector fans, among scattering
diagrams, cluster algebras, etc. These relationships seem to be
more general than the context (“finite type”) where the lattice
theory makes sense. Lattice congruences seem to “know” a lot of
combinatorics and algebra.
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Edge-erasing congruences in type An

Erasing the edge sk—sk+1 in Sn:

π1π2 · · · πn+1 maps to (σ, τ) ∈ Sk+1 × Sn−k+1.

σ is the restriction of π1π2 · · · πn+1 to values ≤ k + 1.

τ is obtained by restricting π1π2 · · · πn+1 to values ≥ k + 1 and
then subtracting k from each value.

Example. (n = 7 and k = 3): 58371426 7→ (3142, 25413).

Bottom elements of the congruence: Permutations in Sn+1 with no
descents ba such that b > k + 1 and a < k + 1. These are thus in
bijection with Sk+1 × Sn−k+1.

There is a similar description for type Bn.
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Edge-erasing congruences in type H3
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