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Main points

A: simplicial hyperplane arrangement (e.g., Coxeter arrangement).
F : the fan defined by A.
The poset of regions P(A,B) is a polygonal lattice.
A congruence Θ on P(A,B) defines a coarsening FΘ of F .

When A is a Coxeter arrangement (so P(A,B) is the weak order)
and Θ is a Cambrian congruence Θc , FΘ is the Cambrian fan Fc .
It is the normal fan of a realization of the W -associahedron
(Hohweg-Lange-Thomas) and contains information about
g-vectors and c-vectors (R.-Speyer).

A simple geometric condition cuts hyperplanes of A into shards,
which form a geometric model for join-irreducible elements,
forcing, and canonical join complex.

The geometry of congruences



Section III.a: Lattice congruences and fans



The poset of regions (Edelman, 1985)

A: a (central) hyperplane arrangement in a real vector space.
Regions: connected components of the complement of A.
B : a distinguished “base” region.
Separating set of a region R :

S(R) = {hyperplanes of A separating R from B}

Poset of regions P(A,B) is the set of regions with

Q ≤ R if and only if S(Q) ≤ S(R).

Alternately, take the zonotope dual to A and direct its 1-skeleton
by a linear functional.

Proposition. If A is a Coxeter arrangement for W , then w 7→ wB

is an isomorphism from the weak order on W to P(A,B).
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Fans

V : a real vector space.
Closed cone C ⊆ V : closed under nonnegative scaling, addition.
Fan F : A collection of closed cones such that:

If C ∈ F then all faces of C are in F .
If C ,D ∈ F then C ∩ D is a face of C and of D.

F is complete if ∪F = V .

Example. The normal fan of a polytope P in V .

Define an equivence relation on function-
als in the dual space to V with f ≡ f ′ if
and only if f and f ′ are maximized on the
same face of P . Cones in F are closures
of equivalent classes.

For example, a polygon and its normal fan:
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Coarsening fans by lattice congruences

Every central hyperplane arrangement defines a fan.
(Cones are the regions, together with all their faces.)
This is the normal fan of the corresponding zonotope.
Simplicial fan: all cones are simplicial.
Simplicial hyperplane arrangement: cuts space into a simplicial fan.

Theorem (Bjorner, Edelman, Ziegler, 1987). If A is simplicial then
P(A,B) is a lattice for any base region B .

Theorem. If A is simplicial then P(A,B) is a polygonal lattice.

For any lattice congruence Θ on P(A,B), define a collection FΘ

of cones, closed under passing to faces.

Maximal cones of FΘ are unions, over congruence classes of Θ, of
maximal cones of the fan defined by A.

Theorem (R., 2004). FΘ is a fan.
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Example: FΘ for a congruence on the weak order on S4
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Example: FΘ for a congruence on the weak order on S4

FΘ = normal fan of associahedron. P(A,B)/Θ = Tamari lattice.
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Why FΘ is a fan

A complete fan F ′ coarsens a complete fan F if each face of F ′ is
a union of faces of F .

Adjacency graph G of F :
Vertices are the full-dimensional cones of F
Edges are the pairs of adjacent full-dimensional cones

A fan F ′ coarsening F is determined by its edge set: the set of
edges connecting adjacent full-dimensional cones of F that are
contained in the same face of F ′.

One can show that FΘ is a fan as a special case of a
characterization of which edge sets correspond to fan coarsenings.

The characterization is very general (coarsenings of polytopal
complexes), but we’ll phrase it for fans coming from hyperplane
arrangements.
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Why FΘ is a fan (continued)

When F comes from a hyperplane arrangement, G is the
vertex-edge graph of the zonotope Z dual to F .

The polygon property of a set E of edges of G:

For every 2k-gonal face P of Z, whenever E contains any k − 1
consecutive edges of P , then E also contains the opposite k − 1
consecutive edges of P .

Theorem (R., 2010). Let Z be a zonotope and let F be the
normal fan of Z. Then a set E of edges of Z is the edge set of a
fan coarsening F if and only if E has the polygon property.

The special case where Z is the permutohedron is due to Morton,
Pachter, Shiu, Sturmfels, and Wienand.
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Why FΘ is a fan (continued)

Polygon property: For every 2k-gonal face P of Z, whenever E
contains any k − 1 consecutive edges of P , then E also contains
the opposite k − 1 consecutive edges of P .

=⇒

Theorem (repeated). A set E of edges of Z is the edge set of a
fan coarsening F if and only if E has the polygon property.

Forcing says:

=⇒

Conclude: If E is chosen by edge forcing, F ′ is a fan coarsening F .
That is, FΘ is a fan coarsening F .
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Recap of Section III.a: Lattice congruences and fans

When A is simplicial, P(A,B) is a polygonal lattice.

F is the simplicial fan defined by A (maximal cones are regions).

Given a congruence Θ, for each Θ-class, take the union of the
corresponding regions.

These unions are the maximal cones of a complete fan FΘ that
coarsens F .

Questions?
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Section III.b: Cambrian fans



Cambrian fan

The Cambrian fan Fc is FΘc
where Θc is the Cambrian

congruence. That is, maximal cones are unions (over Θc-classes)
of maximal cones of the Coxeter fan.

Theorem (R., Speyer, 2006).
The bijection clc : {c-sortables} → {clusters} induces a
combinatorial isomorphism between the Cambrian fan Fc and the
normal fan of the generalized associahedron.

Theorem (Hohlweg, Lange, Thomas, 2010). The Cambrian fan
Fc is the normal fan of a realization of the generalized
associahedron. (They gave an explicit construction.)
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Example (W = B2, c = s1s2)

α1α2

2α1 + α2

α1 + α2

1
s1

s1s2

s1s2s1

s1s2s1s2

s2

s2s1

s2s1s2

F

1
s1

s1s2

s1s2s1

s1s2s1s2

s2
Fc

−α1
−α2

α1α2

2α1 + α2α1 + α2

Normal
fan of
associa-
hedron

cl(1)

cl(s1)

cl(s1s2)

cl(s1s2s1)

cl(s2)

cl(s1s2s1s2)

The
bijection
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1234
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3412

2341 4123

3241 4132

2431 4213

4231

3421 4312

4321

Example:
The Coxeter
fan for S4
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A Cambrian
fan for S4

In this case,
sortable means
312-avoiding.
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Cambrian fans from the combinatorics of sortable elements

v : a c-sortable element of W with c-sorting word a1 · · · ak .

Recall: c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

For each si ∈ S , there is a leftmost instance of si in c∞ which is
not in the subword of c∞ corresponding to a1 · · · ak .

Let a1 · · · aj be the initial segment of a1 · · · ak consisting of those
letters that occur in c∞ before the omission of si . Say a1 · · · ak
skips si after a1 · · · aj .

Define: C si
c (v) = a1 · · · aj · αi .

Cc(v) = {C
si
c : si ∈ S}.

Conec(v) = {x ∈ (Rn)∗ : 〈x,C si
c (v)〉 ≥ 0∀si ∈ S}.

Theorem (R., Speyer, 2014). The maximal cones of the Cambrian
fan Fc are Conec(v) as v runs over all c-sortable elements.
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Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·
c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2 α1α2

2α1 + α2

α1 + α2

v si skip C si
c (v)

1 s1
s2

s1 s1
s2

s1s2 s1
s2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2
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The Cambrian fan by skips

W = B2, c = s1s2

Cc(v) shown in red.
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Recap of Section III.b: Cambrian fans

The Cambrian fan is Fc = FΘc
for Θc the c-Cambrian congruence.

It is the normal fan of a generalized associahedron.

Its geometry can be read off from the combinatorics of c-sortable
elements (skips in c-sorting words).

Questions?
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Section III.c: Shards



Recall: Combinatorial models

When we talked about noncrossing arc diagrams, we said we
wanted a combinatorial model for congruences. Specifically, we
wanted a set of objects

in bijection with join-irreducible elements of W .

with a compatibility relation modeling edges of the CJC (so
pairwise compatible sets of objects are in bijection with W ).

with forcing among j.i. elements read off combinatorially.

Part III: The geometry of lattice congruences on posets of regions Shards 16



Recall: Combinatorial or geometric models

When we talked about noncrossing arc diagrams, we said we
wanted a combinatorial model for congruences. Specifically, we
wanted a set of objects

in bijection with join-irreducible elements of W .

with a compatibility relation modeling edges of the CJC (so
pairwise compatible sets of objects are in bijection with W ).

with forcing among j.i. elements read off combinatorially.

Now we’ll consider a general geometric model based on shards.

(It’s not so un-combinatorial... In some sense noncrossing
diagrams are shards in type A.)
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What shards are

To make the fan FΘ for a congruence Θ on the weak order, we glue
cones of the Coxeter fan together according to congruence classes.

So: contracting an edge means removing the wall between two
adjacent cones.

A shard is (the union of) a maximal collections of walls which
must always be removed together in a lattice congruence. Each
shard turns out to consist of walls all in the same hyperplane.

Example.

1

We describe a congruence by specifying which shards are removed.
Edge-forcing also implies some forcing relations among shards.

Part III: The geometry of lattice congruences on posets of regions Shards 17
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To make the fan FΘ for a congruence Θ on the weak order, we glue
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So: contracting an edge means removing the wall between two
adjacent cones.

A shard is (the union of) a maximal collections of walls which
must always be removed together in a lattice congruence. Each
shard turns out to consist of walls all in the same hyperplane.

Example.

1

∗Hypotheses: Weak order

on a finite Coxeter group

or congruence uniform

poset of regions of a

simplicial arrangement.

∗

∗

We describe a congruence by specifying which shards are removed.
Edge-forcing also implies some forcing relations among shards.
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Shards, defined purely geometrically

Shards in a dihedral (or “rank 2”) Coxeter group: The two
hyperplanes bounding the “identity region” are not cut. The
remaining hyperplanes are cut in half.

1

Important technical point: all of the shards contain the origin. We
“cut” along the intersection of the hyperplanes, then take closures
of the pieces.
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hyperplanes bounding the “identity region” are not cut. The
remaining hyperplanes are cut in half.

1

Important technical point: all of the shards contain the origin. We
“cut” along the intersection of the hyperplanes, then take closures
of the pieces. Technical point about to disappear...
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Shards, defined purely geometrically

Shards in a dihedral (or “rank 2”) Coxeter group: The two
hyperplanes bounding the “identity region” are not cut. The
remaining hyperplanes are cut in half.

1

In higher ranks, we do this cutting in every rank-2 subarrangement.

Why is this the same as the definition by “maximal collections of
walls which must always be removed together?” Because the
lattice is polygonal!
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Shards, defined purely geometrically

Shards in a dihedral (or “rank 2”) Coxeter group: The two
hyperplanes bounding the “identity region” are not cut. The
remaining hyperplanes are cut in half.

1

In higher ranks, we do this cutting in every rank-2 subarrangement.

Why is this the same as the definition by “maximal collections of
walls which must always be removed together?” Because the
lattice is polygonal!

Again, need weak order or the congruence uniform simplicial case
for these two definitions to coincide.
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Shards in S4
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Shards, join-irreducible congruences, and j.i. elements

Shards are in bijection with join-irreducible congruences. (Maximal
collections of walls which must always be removed together are
maximal collections of edges that must be contracted together!)

Again, this is for weak order
or congruence uniform sim-
plicial posets of regions. So
also shards are in bijection
with j.i. elements.

In the non congruence uni-
form case, the bijection from
shards to j.i. elements still
works, taking the geometric
definition of shards.

In any case, the bijection
sends a shard to the lowest
region above that shard.
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Compatibility of shards

Two shards are compatible (i.e. form an edge in the canonical join
complex) if and only if their relative interiors intersect.

We know that the CJC is flag. Therefore, faces of the CJC are sets
of shards that pairwise intersect in their relative interiors.
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Forcing among shards

(i.e. removing one shard forces removal of others)

Facets of shards are maximal proper faces of the shards
(codimension 2 in the ambient space).

The shard digraph: Σ1 → Σ2 iff Σ1 has a codimension-2 (in the
ambient space) intersection with a facet of Σ2. This can only
happen if Σ1 is in a hyperplane that “cuts” Σ2 to create that facet.

A shard Σ forces another shard Σ′ if and only if there is a directed
path from Σ to Σ′ in the shard digraph. (Again, because the
lattice is polygonal!)
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Forcing among shards

(i.e. removing one shard forces removal of others)

Facets of shards are maximal proper faces of the shards
(codimension 2 in the ambient space).

The shard digraph: Σ1 → Σ2 iff Σ1 has a codimension-2 (in the
ambient space) intersection with a facet of Σ2. This can only
happen if Σ1 is in a hyperplane that “cuts” Σ2 to create that facet.

A shard Σ forces another shard Σ′ if and only if there is a directed
path from Σ to Σ′ in the shard digraph. (Again, because the
lattice is polygonal!)

Some simplicial hyperplane arrangements have non congruence
uniform posets of regions: These are the cases where the shard
digraph has oriented cycles.

The proof that the weak order is congruence uniform consists of
showing that its shard digraph has no directed cycles.
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Shard removal, forcing and fans in S4
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Shard removal, forcing and fans in S4
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Shard removal, forcing and fans in S4 (A Cambrian fan)
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Recap of Section III.c: Shards

Shards are pieces of hyperplanes that constitute a model for
join-irreducible elements and forcing in simplicial hyperplane
arrangements.

Compatibility of shards means intersecting in their relative interiors.

Forcing is described in terms of incidence relations among shards.

Questions?
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Section III.d: The shard intersection order



The shard intersection order

Initial motivation: The lattice property for the noncrossing partition
lattice was first proved uniformly by Brady and Watt (2005), and
differently (for W crystallographic) Ingalls and Thomas (2006).

Shard intersections give a new proof that NC(W ) is a lattice:
Construct a lattice (W ,�) on the elements of W , and identify a
sublattice of (W ,�) isomorphic to NC(W ).

Beyond the initial motivation: (W ,�) turns out to have very
interesting properties, analogous to the properties of NC(W ).

Proofs are simple and natural in the Coxeter context. (More
broadly: in the context of simplicial hyperplane arrangements.)

This approach brings to light how NC(W ) arises naturally in the
context of semi-invariants of quivers.

There are intriguing connections to certain “pulling” triangulations
of associahedra and permutohedra.
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The shard intersection order

Let Ψ(W ) be the set of arbitrary intersections of shards.
We partially order this set by reverse containment.

Immediate: (Ψ(W ),⊇) is a join semilattice. (Join is intersection.)
It also has a unique minimal element (the empty intersection, i.e.
the ambient vector space), so it is a lattice. Also immediate:
(Ψ(W ),⊇) is atomic.

Less obvious: (Ψ(W ),⊇) is graded (ranked by codimension) and
coatomic.

Surprising: The elements of Ψ(W ) are in bijection with the
elements of W .

w ∈W ←→ a region R ←→
⋂

{shards below R}

In particular, (Ψ(W ),⊇) induces a partial order � on W .

Also surprising: Every lower interval in (Ψ(W ),⊇) is isomorphic to
(Ψ(WJ),⊇) for some standard parabolic subgroup WJ .
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Shard intersections in I2(5)

The poset (Ψ(I2(5)),⊇) has
R
2 as its unique minimal el-

ement and the origin as its
unique maximal element. The
8 (1-dimensional) shards are
pairwise incomparable under
containment, and live at rank 1
(i.e. codimension 1).

The poset (I2(5),�) has 1 as its
unique minimal element and w0

as its unique maximal element.
The other 8 elements of W are
pairwise incomparable and live at
at rank 1.
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Shard intersections in S4

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 29



The shard intersection lattice on S4

1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321
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Shard intersections and lattice congruences

Since shards are so central to lattice congruences on the weak
order, it is perhaps not surprising that lattice congruences “play
nicely” with the shard intersection order.

Specifically, let πΘ
↓ (W ) be the collection of “bottom elements” of

congruences classes of a congruence Θ. Then the restriction
(πΘ

↓ (W ),�) is a lattice and a join-sublattice of (W ,�)).

For Θc the c-Cambrian congruence, the lattice (πΘc

↓ ,�)—the
restriction to c-sortable elements—is isomorphic to NCc(W ).

As a consequence, NCc(W ) is a lattice. (In fact, NCc(W ) is a
sublattice of (W ,�).)

The earlier proof (by Brady and Watt) that NC(W ) is a lattice also
used the polyhedral geometry of cones. Their proof is “dual” to the
new proof (in the broadest outlines but not in any of the details).

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 31



1234

2314 2134 2413 1324 1243 1423

3214 2431 4231 2143 4213 1432

4321

1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 32



1234

2314 2134 2413 1324 1243 1423

3214 2431 4231 2143 4213 1432

4321

1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 32



1234

2314 2134 2413 1324 1243 1423

3214 2431 4231 2143 4213 1432

4321

1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 32



1234

2314 2134 2413 1324 1243 1423

3214 2431 4231 2143 4213 1432

4321

1234

2341 2314 2134 1342 2413 3412 1324 3124 1243 1423 4123

3421 3241 3214 2431 3142 4231 2143 4213 1432 4132 4312

4321

Part III: The geometry of lattice congruences on posets of regions The shard intersection order 32



Part III: The geometry of lattice congruences on posets of regions The shard intersection order 33



Properties of (W ,�) and NC(W )

(W ,�) NC(W )

Lattice Lattice (sublattice of (W ,�))

Weaker than weak order Weaker than Cambrian lattice

Atomic and coatomic Atomic and coatomic

Graded (W -Eulerian numbers) Graded (W -Narayana)

Not self-dual Self-dual

Lower intervals ∼= (WJ ,�) Lower intervals ∼= NC(WJ)

Möbius number: ±number of
“positive” elements of W .

Möbius number: ±number of
“positive” elements of NC(W ).
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Details on the Möbius number

Theorem. The Möbius function of (W ,�) satisfies

µ(1,w0) =
∑

J⊆S

(−1)|J| |WJ | .

Proof. Since lower intervals [1,w ] are isomorphic to (WDes(w),�),
checking the defining recursion for µ becomes

∑

w∈W

∑

J⊆Des(w)

(−1)|J| |WJ | =
∑

J⊆S

(−1)|J| |WJ |
∑

w∈W s.t.

J⊆Des(w)

1.

The inner sum is |W |/ |WJ |, the number of maximal-length
representatives of cosets of WJ in W . Thus the double sum
reduces to zero.
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Properties of (W ,�) and NC(W ) (continued)

(W ,�) NC(W )

Recursion counting maximal
chains: sum over max’l proper
standard parabolic subgroups.
MC(W ) =

∑

s∈S

(

|W |
∣

∣W〈s〉

∣

∣

− 1

)

MC(W〈s〉)

Recursion counting maximal
chains: sum over max’l proper
standard parabolic subgroups.
(R., 2007.)

MC(W ) =
h

2

∑

s∈S

MC(W〈s〉).

These types of recursions are very natural in the context of Coxeter
groups/root systems. For example:

1. Recursions for the W -Catalan number.

2. Volume of W -permutohedron (weight polytope). This follows
from Postnikov’s formula in terms of Φ-trees.
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Properties of (W ,�) and NC(W ) (concluded)

(W ,�) NC(W )

Maximal chains ←→ maximal
simplices in a pulling triangula-
tion of the W -permutohedron.
(Sn case: Loday described the
triangulation, 2005.)

Maximal chains ←→ maximal
simplices in a pulling triangu-
lation of the W -associahedron.
(Sn case: Loday, 2005.)
(General case: R., 2008.)

k-Chains ←→ k-simplices in
the same triangulation of the
W -permutohedron.
(R., 2008.)

k-Chains ←→ k-simplices in
the same triangulation of the
W -associahedron.
(R., 2008.)

Loday: Noticed that maximal simplices in a certain pulling
triangulation of the Sn-associahedron biject with parking functions.
Constructed the analogous triangulation of the Sn-permutohedron
and asked what played the role of parking functions.
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Details on the triangulations

The bijection between intersections of shards and elements of W
extends to a bijection between k-chains in (W ,�) and k-simplices
in a pulling triangulation of the W -permutohedron.

In particular: The order complex of (W ,�) has f -vector equal to
the f -vector of a pulling triangulation of the W -permutohedron.

Key point: For any w ∈W , the lower interval [1,w ] in (W ,�) is
isomorphic to (WJ ,�) for some WJ . The elements of WJ are in
bijection with vertices of the face below w in the permutohedron.

All of this works for NC(W ) and the W -associahedron as well.
Maximal chains in NC(Sn) are in bijection with parking functions,
so we recover the Loday result as a special case.
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S3 Permutohedron example

123

321

213 132

231 312
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Recap of Section III.d: The shard intersection order

Elements of W are in bijection with intersections of shards.

Intersections of shards form a lattice, which can be interpreted as a
new lattice structure on W .

c-Sortable elements induce a sublattice isomorphic to the lattice of
noncrossing partitions.

NC partitions and the shard intersection order have analogous
structural and enumerative properties.

Questions?
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