
Outline for the class

Part I. Lattice congruences for combinatorialists

The lattice-theoretic “facts of life,” emphasizing ideas
most relevant to the weak order.

Part II. Lattice congruences of the weak order

We apply our knowledge to the weak order, motivated
by examples, and develop the combinatorics of congru-
ences/quotients, in general and in specific.

Part III. The geometry of lattice congruences on posets of regions

We place the lattice theory in the geometric setting of
hyperplane arrangements and “shards.”
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Polygonal, congruence uniform lattices in nature



Section I.a: Lattice congruences and quotients



Lattices

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

for all x , y , z ∈ L.
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Lattices

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

for all x , y , z ∈ L.

An example of a lattice:

∨ 0 a b c 1

0 0 a b c 1
a a a 1 1 1
b b 1 b c 1
c c 1 c c 1
1 1 1 1 1 1

∧ 0 a b c 1

0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b b b
c 0 0 b c c
1 0 a b c 0
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Lattices

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .
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Lattices

An example of a lattice:

0

a b

c

1

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .
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Lattices

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

(Universal) algebra

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .

Combinatorics
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Lattices

A lattice is a set L with two
binary operations ∧ (“meet”)
and ∨ (“join”) satisfying the
axioms:

x ∨ y = y ∨ x

x ∧ y = y ∧ x

x ∨ (y ∨ z) = (x ∨ y) ∨ z

x ∧ (y ∧ z) = (x ∧ y) ∧ z

x ∨ (x ∧ y) = x

x ∧ (x ∨ y) = x

(Universal) algebra

x ≤ y iff x∨y = y iff x∧y = x

A lattice is a set L with a
partial order “≤” such that:

For all finite S ⊆ L,

There exists a unique
minimal upper bound for
S is L, written

∨

S .

There exists a unique
maximal lower bound for
S is L, written

∧

S .

Combinatorics

x ∨ y =
∨

{x , y}

x ∧ y =
∧

{x , y}
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Homomorphisms, congruences, quotients

(Lattice) homomorphism: a map η : L1 → L2 such that

η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y).

Congruence: an equivalence relation ≡ on L such that

(x1 ≡ x2 and y1 ≡ y2) =⇒ (x1∧y1 ≡ x2∧y2 and x1∨y1 ≡ x2∨y2).

Quotient: The set L/ ≡ of congruence classes with meet and join

[x ] ∨ [y ] = [x ∨ y ] and [x ] ∧ [y ] = [x ∧ y ].
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Homomorphisms, congruences, quotients

(Lattice) homomorphism: a map η : L1 → L2 such that

η(x ∧ y) = η(x) ∧ η(y) and η(x ∨ y) = η(x) ∨ η(y).

Congruence: an equivalence relation ≡ on L such that

(x1 ≡ x2 and y1 ≡ y2) =⇒ (x1∧y1 ≡ x2∧y2 and x1∨y1 ≡ x2∨y2).

Quotient: The set L/ ≡ of congruence classes with meet and join

[x ] ∨ [y ] = [x ∨ y ] and [x ] ∧ [y ] = [x ∧ y ].

What do these mean in the order-theoretic definition of lattices?
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Some ideas for the proof:
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Some ideas for the proof:

x ≡ y =⇒ (x ∧ x) ≡ (x ∧ y), i.e. x ≡ x ∧ y (and dually).
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Some ideas for the proof:

x ≡ y =⇒ (x ∧ x) ≡ (x ∧ y), i.e. x ≡ x ∧ y (and dually).

(x ≤ y ≤ z and x ≡ z) =⇒ (x ∨ y) ≡ (z ∨ y), i.e. y ≡ z .
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Order-theoretic characterization of a lattice congruence

An equivalence relation ≡ on a finite lattice L is a lattice
congruence if and only if the following three conditions hold:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Some ideas for the proof:

x ≡ y =⇒ (x ∧ x) ≡ (x ∧ y), i.e. x ≡ x ∧ y (and dually).

(x ≤ y ≤ z and x ≡ z) =⇒ (x ∨ y) ≡ (z ∨ y), i.e. y ≡ z .

That’s “congruence =⇒ (i).” The rest is similar in spirit.

Part I: Lattice congruences for combinatorialists Lattice congruences and quotients 3



Order-theoretic characterization of congruence (continued)

On finite L, an equivalence relation ≡ is a lattice congruence iff:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.
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Order-theoretic characterization of congruence (continued)

On finite L, an equivalence relation ≡ is a lattice congruence iff:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ taking each element to the bottom element of
its equivalence class is order-preserving.

(iii) The map π↑ taking each element to the top element of its
equivalence class is order-preserving.

Aside: If you encounter a surjective set map η : L→ S (a set):

Check if the fibers (preimages of el’ts of S) are intervals in L.

If so, check (ii) and (iii) on the fibers.

If these hold, then the fibers of η are a congruence ≡, and η
induces a lattice structure on S , isomorphic to L/ ≡.
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

1

2

3 4

5

6
7

8

90
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

4

1

2

3 4

5

6
7

8

90
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

427
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

4278
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783

1

2

3 4

5

6
7

8

90

Part I: Lattice congruences for combinatorialists Lattice congruences and quotients 5



Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

427831
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

4278316
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783165
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Example: Permutations-to-triangulations map

Arrange the numbers from 0 to n+ 1 on a polygon such that
numbers strictly increase left to right. Begin with a path along the
bottom. Modify the path by removing/adding vertices in the order
given by π. The triangulation is the union of the paths.

Example. π = 42783165

42783165
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3 4
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7
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90
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

4321
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

43210

1
2 3

4

5
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S4 to triangulations

0

1
2 3

4

5
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S4 to triangulations
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S4 to triangulations
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S4 to triangulations
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S4 to triangulations (Quotient is the Tamari lattice)
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1
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S4 to triangulations (for a different polygon)

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

43210
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5
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S4 to triangulations (for a different polygon)
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S4 to triangulations (for a different polygon)
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S4 to triangulations (for a different polygon)
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S4 to triangulations (Quotient is a Cambrian lattice)
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Order-theoretic characterization of congruence (concluded)

Recap of the example: We encountered a surjective map η from
the weak order on permutations to the set of triangulations. One
can check in general (using iterated fiber polytopes):

Its fibers are intervals in the weak order.

(ii) and (iii) hold for the fibers.

Conclude: Fibers of η are a congruence ≡, and η induces a
lattice structure on S , isomorphic to L/ ≡.

In general, these lattices are “Cambrian lattices of type A.” Covers
are diagonal flips, and “going up” means increasing the slope of the
diagonal. For a special choice of polygon, this is a Tamari lattice.

On finite L, an equivalence relation ≡ is a lattice congruence iff:

(i) Each equivalence class is an interval in L.

(ii) The map π↓ is order-preserving.

(iii) The map π↑ is order-preserving.
Part I: Lattice congruences for combinatorialists Lattice congruences and quotients 8



Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then

π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.

The map π↓ is a lattice homomorphism from L to π↓L.
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Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then

π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.

The map π↓ is a lattice homomorphism from L to π↓L.

Example.

0

1
2 3

4

5

∼=

0

1
2 3

4

5
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Order-theoretic characterization of a lattice quotient

If L is a finite lattice and ≡ is a congruence on L then

π↓L is a lattice, isomorphic to the quotient lattice L/ ≡.

The map π↓ is a lattice homomorphism from L to π↓L.

Exercise. π↓L is a join-sublattice of L but can fail to be a
sublattice.
(That is, if x , y ∈ π↓L, then x ∨ y ∈ π↓L, but possibly
x ∧ y 6∈ π↓L.)

The exercise points out an important caveat:

“The map π↓ is a lattice homomorphism from L to π↓L.”
means
π↓(x ∨L y) = π↓(x)∨π↓L π↓(y) and π↓(x ∧L y) = π↓(x) ∧π↓L π↓(y)

The exercise says we can replace ∨π↓L with ∨L but usually, we
can’t replace ∧π↓L with ∧L.

Part I: Lattice congruences for combinatorialists Lattice congruences and quotients 9



Recap of Section I.a: Lattice congruences and quotients

Lattice: an algebraic object that we can understand
combinatorially (order-theoretically).

Homomorphisms, congruences, and quotients are defined as for
any (universal) algebraic object. But we can understand them
order-theoretically.

We did an example where recognizing a lattice congruence on the
weak order allowed us to define a lattice structure on
triangulations.

Questions?
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Section I.b. Join-irreducible congruences



The lattice of congruences

Con L: the set of congruences of L, partially ordered as a subposet
of the partition lattice. (Refinement order.)

This is in fact a sublattice of the partition lattice.
(Proof: straightforward check.)

Furthermore, it is distributive (and finite if L is).

FTFDL: A finite lattice L is distributive if and only if there exists a
poset P such that L is isomorphic to the containment order on
order ideals in P . If so, then P ∼= Irr(L).

Irr(L): The subposet of L induced by join-irreducible elements.
Join-irreducible: x is join-irreducible (“j.i.”) if and only if it covers
exactly one element. Equivalently, if x =

∨

S then x ∈ S .
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The lattice of congruences

Con L: the set of congruences of L, partially ordered as a subposet
of the partition lattice. (Refinement order.)

This is in fact a sublattice of the partition lattice.
(Proof: straightforward check.)

Furthermore, it is distributive (and finite if L is).

FTFDL: A finite lattice L is distributive if and only if there exists a
poset P such that L is isomorphic to the containment order on
order ideals in P . If so, then P ∼= Irr(L).

Irr(L): The subposet of L induced by join-irreducible elements.
Join-irreducible: x is join-irreducible (“j.i.”) if and only if it covers
exactly one element. Equivalently, if x =

∨

S then x ∈ S .

Upshot: To understand Con L, we want to understand
join-irreducible congruences.
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Join-irreducible congruences

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i)
(ii)
(iii)

Proof.
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Join-irreducible congruences

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.
(ii)
(iii)

Proof.
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Join-irreducible congruences

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.
(ii) Θ = con(a ⋖ b) for some covering pair a ⋖ b.
(iii)

Proof.
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Join-irreducible congruences

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.
(ii) Θ = con(a ⋖ b) for some covering pair a ⋖ b.
(iii)

Proof. (i) =⇒ (ii): We can write any congruence as a join of
congruences con(a ⋖ b). How? Take every cover relation that is in
a congruence class.

(Think about it: Congruence classes are intervals. Join in partition
lattice is transitive closure of union.)
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Join-irreducible congruences

Write a ⋖ b for a cover relation.

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.
(ii) Θ = con(a ⋖ b) for some covering pair a ⋖ b.
(iii)

We interrupt this proposition for an example.

Proof. (i) =⇒ (ii): We can write any congruence as a join of
congruences con(a ⋖ b). How? Take every cover relation that is in
a congruence class.

(Think about it: Congruence classes are intervals. Join in partition
lattice is transitive closure of union.)
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Example: Con

( )

We know every join-irreducible congruence
is some con(a ⋖ b).

con

( )

= ?

con

( )

= ?
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Example: Con
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We know every join-irreducible congruence
is some con(a ⋖ b).

con
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=

con
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= ?
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Example: Con
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We know every join-irreducible congruence
is some con(a ⋖ b).

con
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=

con
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Example: Con
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We know every join-irreducible congruence
is some con(a ⋖ b).

con
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=
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Example: Con

( )

We know every join-irreducible congruence
is some con(a ⋖ b).

con

( )

=

con

( )

=

con

( )

=

con

( )

=

con

( )

=
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( )

=
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Example: Con

( )

We know every join-irreducible congruence
is some con(a ⋖ b).

con

( )

=

con

( )

=

con

( )

=

con

( )

=

con

( )

=

con

( )

=

Irr

(

Con

( ))

=
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Example: Con

( )

We know every join-irreducible congruence
is some con(a ⋖ b).

con

( )

=

con

( )

=

con

( )

=

con

( )

=

con

( )

=

con

( )

=

Irr

(

Con
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Join-irreducible congruences

We now return to our regularly scheduled proposition.
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Join-irreducible congruences

A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.

(ii) Θ = con(a ⋖ b) for some covering pair a⋖ b.
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A congruence Θ contracts the edge a ⋖ b if a ≡ b modulo Θ.
con(a ⋖ b): the smallest congruence contracting a ⋖ b
(Equivalently, the meet of all congruences contracting a ⋖ b.)

Proposition. If L is a finite lattice and Θ ∈ Con L, TFAE:

(i) Θ is join-irreducible in Con L.

(ii) Θ = con(a ⋖ b) for some covering pair a⋖ b.

(iii) Θ = con(j) for some join-irreducible element j of L.

Here con(j) means con(j∗ ⋖ j) for j∗ the element covered by j .

The map j 7→ con(j) may not be one-to-one. If it is (and if the
dual condition holds), then L is called congruence uniform.
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Example: A very not-congruence-uniform lattice

The proposition said j 7→ con(j) is a surjective map from
join-irreducible elements of L to join-irreducible congruences
(join-irreducible elements of Con(L)).

If it is one-to-one (and if the dual condition holds), then L is called
congruence uniform.
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Example: A very not-congruence-uniform lattice

The proposition said j 7→ con(j) is a surjective map from
join-irreducible elements of L to join-irreducible congruences
(join-irreducible elements of Con(L)).

If it is one-to-one (and if the dual condition holds), then L is called
congruence uniform.

Example. Con

( )

con

( )

=

By symmetry, con(j) is the same congruence for all j . This is the
unique join-irreducible congruence.

Thus Con

( )

is the two element lattice.
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Recap of Section I.b: Join-irreducible congruences

Con L is a distributive lattice, sublattice of the partition lattice.

Every join-irreducible congruence is con(a⋖ b) for some edge a⋖ b.

Every join-irreducible congruence is con(j) for some join-irreducible
element j .

Congruence uniform means j 7→ con(j) is one-to-one (and the dual
condition holds).

Questions?
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Section I.c. Forcing and polygonal lattices



Forcing among edges

As one might expect, edges cannot be contracted independently.

Say a ⋖ b forces c ⋖ d and write (a ⋖ b)→ (c ⋖ d) if
con(c ⋖ d) ≤ con(a ⋖ b).

That is, every congruence contracting a ⋖ b also contracts c ⋖ d .

Examples:

↔ ↔ ↔ ↔ ↔

↔ ← → ← →

↔ ← → ← →
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Forcing among edges (continued)

Forcing (a ⋖ b)→ (c ⋖ d) is not acyclic (unless L is a chain!).

It is a reflexive, transitive relation (a “pre-order” or “quasi-order.”)

We can make it into a partial order on strongly connected
components in the usual way. The result is ∼= Irr(Con(L)), so
Con(L) is isomorphic to the containment order on order ideals this
partial order.

When L is congruence uniform, the forcing preorder, restricted to
edges j∗ ⋖ j , is already a partial order, not a pre-order.

This lets us write Con(L) as containment order on order ideals in a
certain partial order on join-irreducible elements.
Example.

L =
j1 j2

j3 j4
Con(L) ∼=

j3 j4

j1 j2
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Polygonal lattices

A polygon in a lattice: an interval like etc.

L may have many polygons or none.
It is called polygonal if it has as many
polygons as possible. That is:

(i) If distinct elements y1 and y2
both cover an element x , then
[x , y1 ∨ y2] is a polygon.

(ii) If an element y covers distinct
elements x1 and x2, then
[x1 ∧ x2, y ] is a polygon.

Example.
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Forcing in a polygon

Recall: a⋖ b forces c ⋖ d if every congruence contracting a⋖ b
also contracts c ⋖ d .

If L is itself a polygon [x , y ], forcing is entirely straightforward.

Each edge is a “bottom edge,” “top edge,” or “side edge.”

Each bottom edge forces the opposite top edge and all side edges.

Each top edge forces the opposite bottom edge and all side edges.

Side edges force nothing.

Up to symmetry, this is the only forcing:

=⇒
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Forcing in a polygon (rephrased)

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon (rephrased)

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒
x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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x y
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Forcing in a polygon (rephrased)

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y
i.e. 1 ≡ y
=⇒ a ∧ 1 ≡ a ∧ y

x y

a

1

0

x y

a

1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in a polygon (rephrased)

A “side” edge can be contracted independently. E.g.:

A “bottom” edge forces all side edges and the opposite “top” edge.

=⇒

x ≡ 0
=⇒ x ∨ y ≡ 0 ∨ y
i.e. 1 ≡ y
=⇒ a ∧ 1 ≡ a ∧ y
i.e. a ≡ 0x y
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1

0

x y
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1

0

Dually, a “top” edge forces all side edges and the opposite
“bottom” edge.
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Forcing in polygonal lattices

The forcing relation in a polygonal lattice is simple and local:

Proposition. The forcing relation in a polygonal lattice L is the
transitive closure of the forcing relation in each polygon of L.

Proof idea: Every relation in the transitive closure is a forcing
relation in L: easy (forcing is transitive).
Every forcing relation in L is in the transitive closure: Show that
every set of edges that is closed under forcing in polygons defines a
congruence (using order-theoretic characterization of congruence).

As a result, we can compute examples easily by hand.

Terminology: We’ll compute the congruence generated by
contracting a set of edges.
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Example of forcing in a polygonal lattice

The congruence generated by contracting the red and blue edges.
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Examples for you of forcing in a polygonal lattice

Find the congruence generated by the red edges. Find the quotient.
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Recap of Section I.c: Forcing and polygonal lattices

If a congruence contracts a given edge, it may be “forced” to
contract others.

Forcing is a pre-order on edges. It restricts to a pre-order on
join-irreducible elements (or to an order if L is congruence
uniform).

Forcing in a polygon is easy.

A polygonal lattice contains as many polygons as possible. In a
polygonal lattice, all forcing can be understood locally, by forcing
in polygons.

Questions?

Part I: Lattice congruences for combinatorialists Forcing and polygonal lattices 25



Section I.d. Canonical join representations



Canonical join representations

The canonical join representation of x ∈ L is the lowest way of
writing x as a join. More precisely:

A join representation for x ∈ L: an expression x =
∨

U.
It is irredundant if ∄U ′ ( U with x =

∨

U ′. (∴ U is an antichain.)

For antichains U and V of L, write U ≪ V if the order ideal
generated by U is contained in the order ideal generated by V .
This is a partial order on antichains.

The canonical join representation (CJR) of x , if it exists, is the
unique minimal antichain U in this order, among antichains joining
to x . Elements of U are canonical joinands of x .

Exercise. Canonical joinands are join-irreducible.

Exercise. x is join-irreducible if and only if its CJR is {x}.
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Examples of canonical join representations

Find the canonical join representation of the blue element.
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Semi-distributive lattices

L is join-semidistributive if

x ∨ y = x ∨ z =⇒ x ∨ (y ∧ z) = x ∨ y .

It is meet-semidistributive if the dual condition holds and
semidistributive if both conditions hold.

Theorem. A finite lattice L is join-semidistributive if and only if
every element of L has a canonical join representation.

Example. Distributivity x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) implies
semidistributivity. FTFDL says a finite distributive lattice L is
containment on order ideals in Irr(L). CJR of an element is the set
of maximal elements of the corresponding ideal.
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Canonical join reps in congruence uniform lattices

Exercise. Suppose L is a finite lattice and a ⋖ b is a cover relation
in L. Each minimal element of {x ∈ L : x ≤ b, x 6≤ a} is a
join-irreducible element j and has con(a ⋖ b) = con(j∗ ⋖ j).

Exercise. Suppose L is a finite congruence uniform lattice and
a ⋖ b is a cover relation. The unique join-irreducible element of L
with con(a ⋖ b) = con(j∗ ⋖ j) is j =

∧

{x ∈ L : x ≤ b, x 6≤ a}.
Furthermore, j ≤ b but j 6≤ a.

Write ja⋖b for
∧

{x ∈ L : x ≤ b, x 6≤ a}.

Exercise. Suppose L is a finite congruence uniform lattice. The
canonical join representation of an element x is

∨

{ja⋖x : a ⋖ x}.

These exercises (and their duals) say that a finite congruence
uniform lattice is semidistributive.
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Examples of CJRs in congruence uniform lattices

For L a finite congruence uniform lattice, the CJR of x ∈ L is
∨

{ja⋖x : a ⋖ x}, where ja⋖b =
∧

{x ∈ L : x ≤ b, x 6≤ a}.
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The canonical join complex

Exercise. If x ∈ L has CJR x =
∨

S and S ′ ⊆ S , then there exists
x ′ ∈ L with CJR x ′ =

∨

S ′.

Suppose L is join-semidistributive (i.e. every element has a CJR).
The canonical join complex (CJC) of L is

Γ(L) =
{

S ⊆ L : ∃x ∈ L with CJR x =
∨

S
}

.

Exercise. Γ(L) is an abstract simplicial complex with vertex set
{join-irreducible elements of L}. Its faces are in bijection with the
elements of L.

Example. Γ

( )

=
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The canonical join complex (continued)

A simplicial complex is flag if each of its minimal non-faces has
exactly two elements. Equivalently, it is the set of cliques in its
1-skeleton.

Theorem (E. Barnard, 2016). Suppose L is join-semidistributive.
Then the canonical join complex Γ(L) is flag if and only if L is
semidistributive.

Upshot for us: If L is semidistributive (e.g. if it is congruence
uniform), then to understand its CJC, we only need to understand
which pairs of join-irreducible elements are “compatible” in the
sense of “can participate in a CJR together.”

Examples very soon...
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Recap of Section I.d: Canonical join representations

The canonical join representation (CJR) of an element x ∈ L is the
lowest way of writing x as a join.

The canonical join complex (CJR) is the collection of all canonical
join representations.

Join-semidistributive means (for us) that every element has a CJR.
In this case, the CJC is an abstact simplicial complex on the
join-irreducible elements of L.

Semidistributive means (for us) that the CJC is flag.

In the congruence uniform case, we gave an explicit formula for the
CJR of x with one canonical joinand for each element covered by x .

Questions?
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Section I.e. Polygonal, congruence uniform lattices
in nature



Weak order on a finite Coxeter group

Theorem. The weak order on a finite Coxeter group is a
congruence uniform (therefore semidistributive), polygonal lattice.

Semidistributivity: C. Le Conte de Poly-Barbut, 1994.

Congruence uniformity: N. Caspard, C. Le Conte de Poly-Barbut,
and M. Morvan, 2002. (Special case: Caspard, 2000.)

Polygonality (in different terminology): N. Caspard, C. Le Conte
de Poly-Barbut, and M. Morvan, 2002.

Examples soon (comprising much of Part II).
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The Tamari lattice

Recall the permutations-to-triangulations map from earlier.
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S4 to triangulations

1234

2134 1324 1243

2314 3124 1342 2143 1423

2341 3214 3142 2413 4123 1432

3241 3412 2431 4213 4132

3421 4231 4312

4321
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S4 to triangulations (Quotient is the Tamari lattice)
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S4 to triangulations (Quotient is the Tamari lattice)

1234

2134 1324 1243
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The Tamari lattice

In the permutations-to-triangulations map, if the polygon has all
vertices “on the bottom,” the quotient lattice is the Tamari lattice.

Bottom elements of congruence classes are exactly 312-avoiding
permutations, so we recover the fact that the Tamari lattice is the
weak order restricted to 312-avoiding permutations.
(A. Björner and M. Wachs, 1994. They had all the “combinatorial
lattice theory” ingredients without the lattice theory.)

Congruence uniformity and polygonality are inherited by quotients
of finite lattices. Thus:

Theorem. The Tamari lattice is a congruence uniform (therefore
semidistributive), polygonal lattice.

Congruence uniformity: W. Geyer, 1994.

Part I: Lattice congruences for combinatorialists Polygonal, congruence uniform lattices in nature 37



Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461

235879461 –move→ 235874961
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We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.
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Part I: Lattice congruences for combinatorialists Polygonal, congruence uniform lattices in nature 38



Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461

235879461 –move→ 235874961 –move→ 235847961

Part I: Lattice congruences for combinatorialists Polygonal, congruence uniform lattices in nature 38



Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461

235879461 –move→ 235874961 –move→ 235847961 –move→ 235487961
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461

235879461 –move→ 235874961 –move→ 235847961 –move→ 235487961

So 235487961 ⋖ 235879641 in the Tamari lattice.
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

Example. 235879641 –undo descent→ 235879461

235879461 –move→ 235874961 –move→ 235847961 –move→ 235487961

So 235487961 ⋖ 235879641 in the Tamari lattice.

Questions before the example goes away?
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

One can show that each cover you get this way is distinct.

This is a special case of a general fact: To go down by a cover in a
quotient π↓L, go down by a cover in L, then apply π↓.
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

One can show that each cover you get this way is distinct.

This is a special case of a general fact: To go down by a cover in a
quotient π↓L, go down by a cover in L, then apply π↓.

Conclusion: Join-irreducible elements of the Tamari lattice are
312-avoiding permutations with exactly one descent.
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Join-irreducible elements in the Tamari lattice

We’ll continue realizing the Tamari lattice as the weak order
restricted to 312-avoiding permutations.

How to go down by a cover from a 312-avoider: Undo a descent,
then do 312→ 132-moves until you hit another 312-avoider.

One can show that each cover you get this way is distinct.

This is a special case of a general fact: To go down by a cover in a
quotient π↓L, go down by a cover in L, then apply π↓.

Conclusion: Join-irreducible elements of the Tamari lattice are
312-avoiding permutations with exactly one descent.

For each pair 1 ≤ a < b ≤ n, there is exactly one 312-avoiding
permutation whose only descent is ba. Specifically:

1 2 · · · (a − 1)(a + 1)(a + 2) · · · (b − 1) b a (b + 1)(b + 2) · · · n
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Canonical join representations in the Tamari lattice

Since the Tamari lattice is congruence uniform, the CJR of x is
∨

{jw⋖x : w ⋖ x}, where jw⋖x =
∧

{u ∈ L : u ≤ x , u 6≤ w}.

x is a 312-avoiding permutation. We already say that covers w ⋖ x
come from descents of x . Suppose w ⋖ x is coming from a descent
ba in x . One can show that jw⋖x is the (unique!) join-irreducible
element with descent ba.

Conclusion: The canonical join representation of an element of the
Tamari lattice is essentially its set of descent-pairs.

Example. CJR(236759841) is {75, 98, 84, 41}, where, for
example, 84 represents 123567849.
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Canonical join representations in the Tamari lattice

Since the Tamari lattice is congruence uniform, the CJR of x is
∨

{jw⋖x : w ⋖ x}, where jw⋖x =
∧

{u ∈ L : u ≤ x , u 6≤ w}.

x is a 312-avoiding permutation. We already say that covers w ⋖ x
come from descents of x . Suppose w ⋖ x is coming from a descent
ba in x . One can show that jw⋖x is the (unique!) join-irreducible
element with descent ba.

Conclusion: The canonical join representation of an element of the
Tamari lattice is essentially its set of descent-pairs.

Example. CJR(236759841) is {75, 98, 84, 41}, where, for
example, 84 represents 123567849.

But we haven’t yet seen the point...
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CJRs in the Tamari lattice (continued)

The CJR of an element of the Tamari lattice is its set of
descent-pairs. Since the Tamari lattice is congruence uniform (and
therefore semi-distributive), its canonical join-complex is flag.

Easy: Two descent-pairs ba and dc can participate in the same
312-avoider if and only if

(i) Not a < c < b < d and not c < a < d < b, and

(ii) a 6= c and b 6= d .

Put 1, . . . , n on a horizontal line and represent a pair ba by an arc
above the line connecting a to b. A CJR is a collection of such
arcs that (pairwise) don’t cross, don’t share left endpoints and
don’t share right endpoints.
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CJRs in the Tamari lattice (continued)

The CJR of an element of the Tamari lattice is its set of
descent-pairs. Since the Tamari lattice is congruence uniform (and
therefore semi-distributive), its canonical join-complex is flag.

Easy: Two descent-pairs ba and dc can participate in the same
312-avoider if and only if

(i) Not a < c < b < d and not c < a < d < b, and

(ii) a 6= c and b 6= d .

Put 1, . . . , n on a horizontal line and represent a pair ba by an arc
above the line connecting a to b. A CJR is a collection of such
arcs that (pairwise) don’t cross, don’t share left endpoints and
don’t share right endpoints.

Example. x = 236759841
1 2 3 4 5 6 7 8 9
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CJRs in the Tamari lattice (continued)

The CJR of an element of the Tamari lattice is its set of
descent-pairs. Since the Tamari lattice is congruence uniform (and
therefore semi-distributive), its canonical join-complex is flag.

Easy: Two descent-pairs ba and dc can participate in the same
312-avoider if and only if

(i) Not a < c < b < d and not c < a < d < b, and

(ii) a 6= c and b 6= d .

Put 1, . . . , n on a horizontal line and represent a pair ba by an arc
above the line connecting a to b. A CJR is a collection of such
arcs that (pairwise) don’t cross, don’t share left endpoints and
don’t share right endpoints.

Example. x = 236759841
1 2 3 4 5 6 7 8 9

CJRs of elements of the Tamari lattice are noncrossing partitions!
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The canonical join complex of the Tamari lattice

Put 1, . . . , n on a horizontal line (again).

Faces of canonical join-complex
of the Tamari lattice are collections
of arcs that (pairwise) don’t cross,
don’t share left endpoints and don’t
share right endpoints.

Example. n = 4

Theorem (E. Barnard, 2017). The CJC of the Tamari lattice is
shellable. It is contractible when n is even and homotopy
equivalent to a wedge of Catalan(r) many spheres, all of dimension
r − 1, when n = 2r + 1.
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Lattices of torsion classes

Context: Representation theory of finite-dimensional algebras.
I will just mention these as an indication that congruence uniform,
polygonal lattices show up in various contexts.

A: An associative, finite-dimensional algebra with identity.

modA: The category of finitely-generated left A-modules.

A torsion class of A is a full subcategory of modA that is closed
under factor modules, isomorphisms, and extensions.

Theorem. The set of all torsion classes of A, ordered by inclusion,
is a lattice. When finite, it is congruence uniform and polygonal.

Lattice: O. Iyama, I. Reiten, H. Thomas, G. Todorov, 2015.
Semidistributive: A. Garver and T, McConville, 2015.
Congruence uniform and polygonal: L. Demonet, 2017
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Examples from the work of McConville and Garver

Grid-Tamari orders. Santos, Stump, and Welker generalized
Tamari lattices to “Grassmann-Tamari orders” and conjectured
that they are lattices. McConville generalized and proved the
conjecture to show that “grid-Tamari orders” are congruence
uniform lattices. Technique: Constructed a larger congruence
uniform lattice (analogous to the weak order on permutations) and
constructed grid-Tamari order as a quotient (analogous to the
permutations-to-triangulations map).

McConville and Garver: Biclosed sets of acyclic paths in a graph
form a congruence uniform, polygonal lattice.

McConville and Garver: Oriented Flip Graphs and Noncrossing
Tree partitions ...
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Recap of Section I.e:

Polygonal, congruence uniform lattices in nature

Weak order on a finite Coxeter group is polygonal and congruence
uniform. (More coming in Part II.)

The Tamari lattice is polygonal and congruence uniform. Canonical
join representations are noncrossing partitions.

Finite lattices of torsion classes are polygonal and congruence
uniform.

Examples from McConville and Garver.

Questions?
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Exercises (gathered into one place)

Exercise. π↓L is a join-sublattice of L but can fail to be a sublattice.
(That is, if x , y ∈ π↓L, then x ∨ y ∈ π↓L, but possibly x ∧ y 6∈ π↓L.)

Exercise. Canonical joinands are join-irreducible.

Exercise. x is join-irreducible if and only if its CJR is {x}.

Exercise. Suppose L is a finite lattice and a ⋖ b is a cover relation in L. Each minimal
element of {x ∈ L : x ≤ b, x 6≤ a} is a join-irreducible element j and has
con(a ⋖ b) = con(j∗ ⋖ j).

Exercise. Suppose L is a finite congruence uniform lattice and a ⋖ b is a cover
relation. The unique join-irreducible element of L with con(a ⋖ b) = con(j∗ ⋖ j) is
j =

∧
{x ∈ L : x ≤ b, x 6≤ a}. Furthermore, j ≤ b but j 6≤ a.

Exercise. Suppose L is a finite congruence uniform lattice. The canonical join
representation of an element x is

∨
{ja⋖x : a ⋖ x}.

Exercise. If x ∈ L has CJR x =
∨

S and S ′ ⊆ S, then there exists x ′ ∈ L with CJR
x ′ =

∨
S ′.

Exercise. Γ(L) is an abstract simplicial complex with vertex set
{join-irreducible elements of L}. Its faces are in bijection with the elements of L.
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