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Introduction

We have seen, in Lecture 3A, that the combinatorics of finite root
systems is intricately related to the combinatorics of cluster
algebras of finite type. This insight led to Fomin and Zelevinsky’s
combinatorial model, organized around denominator vectors. It is
not immediately apparent how to extend this almost-positive roots
model to cluster algebras of infinite type.

Instead, we describe a different approach to combinatorial models.
This approach uses the combinatorics of the Coxeter group W in
an essential way, along with the geometry of the associated root
system and arrangement of reflecting hyperplanes.

Specifically, the combinatorics of reduced words is at play through
the sortable elements in W , and the geometry of the root system
enters the picture through the Cambrian fans. In the background,
the lattice theory of the weak order plays a fascinating, but still
mysterious role, through the Cambrian (semi)lattice.

Most of the results quoted here are joint with David Speyer.
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Review: From B to A to W

Given a B , we make A:

B =









0 0 −3 3
0 0 1 0
1 −2 0 1

−1 0 −1 0









7→









2 0 −3 −3
0 2 −1 0

−1 −2 2 −1
−1 0 −1 2









= A

Given A, we make a Dynkin diagram.

42 3

1

From there, a Coxeter diagram.

42 3

1

4

6 6
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From B to an oriented Coxeter diagram

There is still information left in B .

B =









0 0 −3 3
0 0 1 0
1 −2 0 1

−1 0 −1 0









We orient each edge of the diagram
i → j if bij < 0.

42 3

1

4

6 6

A Coxeter element c of W is an element represented by a word
s1s2 · · · sn where S = {s1, . . . , sn} and n = |S |.

If the oriented diagram is acyclic, then we say B is acyclic, and B

defines a Coxeter element. (Arrows in diagram point left in word).

In the example, c = s2s3s1s4.

Important: If A is of finite type, then B is acyclic.

Think: “B = A+ c .”
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Sorting words

For the rest of the lecture, we will assume B is acyclic and take c

to be the Coxeter element defined by B .

Fix some reduced word s1 · · · sn for c . Form an infinite word

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

The c-sorting word for w is the lexicographically first (i.e.
leftmost) subword of c∞ which is a reduced word for w .

Example: W = B4

s s s s
1 2 3 4

4

For c = s1s2s4s3,

c∞ = s1s2s4s3|s1s2s4s3|s1s2s4s3| · · ·

The element w = s4s2s1s2s3s2s1s2s1 has c-sorting word

s1s2s4s3|s1s2s3|s1s2.
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
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Sorting words in Sn+1

Multiplying a permutation π on the left by an adjacent
transposition si := (i i+1) swaps the entries i and i + 1 in π.
Do this repeatedly, always putting entries into numerical order, and
record the sequence of si ’s. Result: a reduced word for π.
Fix an order on the adjacent transpositions, and write a reduced
word for π by trying the adjacent transpositions in that order,
cyclically. Result: a sorting word for π. (C.f. “bubble sort.”)

Example: W = S4, c = s1s2s3, π = 4231

Step si tried Sorting word Permutation

0 4231
1 s1 s1 4132
2 s2 s1s2 4123
3 s3 s1s2s3 3124
4 s1 s1s2s3| 3124
5 s2 s1s2s3|s2 2134
6 s3 s1s2s3|s2 2134
7 s1 s1s2s3|s2|s1 1234 6



Sortable elements of a Coxeter group W

In general, to find the c-sorting word for w ∈ W :
Try the generators cyclically according to c .
Place a divider “|” every time a pass through S is completed.

A c-sorting word can be interpreted as a sequence of sets
(sets of letters between dividers “ | ”).
If the sequence is nested then w is c-sortable.

Example: π = 4231 with c-sorting word s1s2s3|s2|s1
π is not c-sortable because {s1} 6⊆ {s2}.

Example: W = B2, c = s1s2
c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2
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Sortable elements of Sn+1

W = Sn+1, c = snsn−1 · · · s1

The c-sortable elements are the 231-avoiding or stack-sortable
permutations.

1 1234 s3s2s1|s2 4213
s3 1243 s3s2|s3 1432
s3s2 1423 s3s1 2143
s3s2s1 4123 s2 1324
s3s2s1|s3 4132 s2s1 3124
s3s2s1|s3s2 4312 s2s1|s2 3214
s3s2s1|s3s2|s3 4321 s1 2134

For c = s1s2 · · · sn, the c-sortable elements are the 312-avoiding
permutations.

For other Coxeter elements, the condition is more complicated,
blending the two avoidance conditions.
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Results on sortable elements for finite W

1. For finite W , any c , bijection to W -noncrossing partitions:
w 7→ cov(w). (SORT)

2. For finite W , any c , bijection to vertices of the generalized
associahedron. (SORT)

3. Deep connection to the lattice theory of the weak order
on W , via Cambrian lattices. (SC)

4. The Hasse diagram of the c-Cambrian lattice is isomorphic to
the exchange graph. (CAMB), (FANS)

(The c-Cambrian lattice is the restriction of the weak order to
c-sortable elements. More later.)
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Standard parabolic subgroups

Given a subset J ⊆ S , the standard parabolic subgroup WJ is the
subgroup of W generated by J. The subgroup WJ is in particular a
Coxeter group with simple generators J.

An important case will be when J = S \ {s} for some s ∈ S .
We use the notation 〈s〉 = S \ {s}.

Example: W = B2.
The only non-trivial proper standard parabolic subgroups are the
two-element groups generated, respectively, by s1 and by s2.

Example: W = Sn+1.
The maximal proper standard parabolic subgroups are as follows:

For each i from 1 to n, the subgroup W〈si 〉 is the set of
permutations fixing {1, . . . , i} as a set (and therefore fixing
{i + 1, . . . , n + 1} as a set).
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Initial and final elements

A given Coxeter element c may have several reduced words. They
are all equivalent by transpositions of commuting elements of S .

A generator s ∈ S is initial in c if there is a reduced word for c
having s as its first letter. Similiarly, s is final in c if it is the last
letter of some reduced word for c . In either case, the element scs
is another Coxeter element.

Example: W = S4
If c = s1s3s2 = s3s1s2 then s1 and s3 are initial and s2 is final.
If c = s1s2s3 then s1 is initial and s3 is final.

When we encode Coxeter elements as
diagrams, initial generators are sinks
and final generators are sources.

42 3

1

4

6 6

Recall that the diagram above encodes c = s2s3s1s4.

Passing from c ↔ scs, for s initial or final, is a source-sink move or
BGP reflection functor. 11



A recursive characterization of sortable elements

Lemma 5.1

Let s be initial in c and suppose w 6≥ s. Then w is c-sortable if

and only if it is an sc-sortable element of W〈s〉.

Lemma 5.2

Let s be initial in c and suppose w ≥ s. Then w is c-sortable if

and only if sw is scs-sortable.

Both become obvious on inspection of the definition, and staring
at:

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

Since the identity element is c-sortable for any c , the lemmas are a
recursive characterization of c-sortability, by induction on the
length ℓ(w) and on the rank of W (the cardinality of S).
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A recursive characterization of sortable elements

Lemma 5.1

Let s be initial in c and suppose w 6≥ s. Then w is c-sortable if

and only if it is an sc-sortable element of W〈s〉.

Lemma 5.2

Let s be initial in c and suppose w ≥ s. Then w is c-sortable if

and only if sw is scs-sortable.

Both become obvious on inspection of the definition, and staring
at:

c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

Since the identity element is c-sortable for any c , the lemmas are a
recursive characterization of c-sortability, by induction on the
length ℓ(w) and on the rank of W (the cardinality of S).

This form of induction is the most important proof technique for
sortable elements. 12



A geometric characterization of sortable elements

The form ωc has a special relation with the reflection sequences of
c-sortable elements.

Recall that when a1 · · · ak is a reduced word for some w ∈ W , the
reflection sequence associated to a1 · · · ak is t1, . . . , tk , where
ti = a1a2 · · · ai · · · a2a1.

Proposition 5.3 (INF)

Let a1 · · · ak be a reduced word for some w ∈ W with reflection

sequence t1, . . . , tk . Then the following are equivalent:

(i) ωc(βti , βtj ) ≥ 0 for all i ≤ j with strict inequality holding

unless ti and tj commute.

(ii) w is c-sortable and a1 · · · ak can be converted to a c-sorting

word for w by a sequence of transpositions of adjacent

commuting letters.
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A geometric characterization of sortable elements (continued)

Proposition 5.3 can be proved by induction on the length k of w
and the rank |S | of W , using the following three facts:

Exercise 5a

If s is initial or final in c, then ωc(β, β
′) = ωscs(sβ, sβ

′) for all
roots β and β′.

Exercise 5b

Let s be initial in c and let t be a reflection in W . Then

ωc(αs , βt) ≥ 0, with equality only if s and t commute.

Exercise 5c

Let J ⊆ S and let c ′ be the Coxeter element of WJ obtained by

deleting all the letters in S \ J from a reduced word for c. Let VJ

be the subspace of V spanned by simple roots corresponding to

elements of J. Then ωc restricted to VJ is ωc′ .
14



Skips

v : a c-sortable element of W
a1 · · · ak : its c-sorting word.
Recall: c∞ = s1 · · · sn|s1 · · · sn|s1 · · · sn| . . .

For each si ∈ S , there is a leftmost instance of si in c∞ which is
not in the subword of c∞ corresponding to a1 · · · ak .

Let a1 · · · aj be the initial segment of a1 · · · ak consisting of those
letters that occur in c∞ before the omission of si .

Say a1 · · · ak skips si after a1 · · · aj .

If a1 · · · ajsi is a reduced word, then this is an unforced skip.
Otherwise it is a forced skip. Define

C si
c (v) = a1 · · · aj · αi .

This is a positive root if and only if the skip is unforced.

Write Cc(v) for {C
si
c (v) : si ∈ S}.

15



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1
s2

s1 s1
s2

s1s2 s1
s2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2
s1 s1

s2
s1s2 s1

s2
s1s2s1 s1

s2
s1s2s1s2 s1

s2
s2 s1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1
s2

s1s2 s1
s2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2
s1s2 s1

s2
s1s2s1 s1

s2
s1s2s1s2 s1

s2
s2 s1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1
s2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2
s1s2s1 s1

s2
s1s2s1s2 s1

s2
s2 s1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2
s1s2s1s2 s1

s2
s2 s1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2 unforced (s1s2s1s2 reduced) α2

s1s2s1s2 s1
s2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2 unforced (s1s2s1s2 reduced) α2

s1s2s1s2 s1 forced (s1s2s1s2s1 not reduced) −α1

s2
s2 s1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2
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s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2 unforced (s1s2s1s2 reduced) α2

s1s2s1s2 s1 forced (s1s2s1s2s1 not reduced) −α1

s2 forced (s1s2s1s2s2 not reduced) −α2

s2 s1
s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
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s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2
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s2 forced (s1s2s1s2s2 not reduced) −α2

s2 s1 unforced (s1 reduced) α1

s2 16



Skips example: W = B2, c = s1s2

c∞ = s1s2s1s2s1s2s1s2 · · ·

c-sortable: 1, s1, s1s2, s1s2|s1, s1s2|s1s2, s2
not c-sortable: s2|s1, s2|s1s2

α1

α2 2α1 + α2α1 + α2

v si skip C si
c (v)

1 s1 unforced (s1 reduced) α1

s2 unforced (s2 reduced) α2

s1 s1 forced (s1s1 not reduced) −α1

s2 unforced (s1s2 reduced) 2α1 + α2

s1s2 s1 unforced (s1s2s1 reduced) α1 + α2

s2 forced (s1s2s2 not reduced) −2α1 − α2

s1s2s1 s1 forced (s1s2s1s1 not reduced) −α1 − α2

s2 unforced (s1s2s1s2 reduced) α2

s1s2s1s2 s1 forced (s1s2s1s2s1 not reduced) −α1

s2 forced (s1s2s1s2s2 not reduced) −α2

s2 s1 unforced (s1 reduced) α1

s2 forced (s2s2 not reduced) −α2 16



Two facts about skips

Proposition 5.4 (INF)

For s initial in c,

Cc (v) =

{

Csc(v) ∪ {αs} if v 6≥ s

sCscs(sv) if v ≥ s

The sets Csc(v) and Cscs(sv) are defined by induction on the rank
of W or on the length of v .
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Two facts about skips

Proposition 5.4 (INF)

For s initial in c,

Cc (v) =

{

Csc(v) ∪ {αs} if v 6≥ s

sCscs(sv) if v ≥ s

The sets Csc(v) and Cscs(sv) are defined by induction on the rank
of W or on the length of v .

Recall: A cover reflection of w ∈ W is an inversion t of w such
that tw = ws for some s ∈ S .

Proposition 5.5 (INF)

Let v be a c-sortable element. The set of negative roots in Cc(v)
is {−βt : t ∈ cov(v)}.
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The Cambrian (semi)lattice

The c-Cambrian semilattice Cambc is the subposet of the weak
order on W induced by the c-sortable elements. We will also use
the symbol Cambc to denote the undirected Hasse diagram of
Cambc .

1

s2
s1

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

1

s2
s1

s1s2

s1s2s1

s1s2s1s2

When W is finite, this is the c-Cambrian lattice.

In the case W = Sn+1 and c = s1 · · · sn, the c-Cambrian lattice is
the weak order restricted to 231-avoiding permutations, AKA the
Tamari lattice.

18



Cambrian lattices in S4

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Cambrian lattices in S4

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2314 2143 1423

3214 2413 1432

2431 4213

4231

4321
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The Cambrian framework, finite type

Recall: A (weak) reflection framework is a pair (G ,C ) such that

◮ G is a connected n-regular quasi-graph, and
◮ C is a labeling of each incident pair by a vector C (v , e) in V

satisfying
◮ the Base condition,
◮ the Root condition,
◮ the Reflection condition, and
◮ the Euler conditions.

The (undirected) Hasse diagram Cambc of the c-Cambrian lattice
is an n-regular graph. (That takes some checking.)

We want to say that the pair (Cambc ,Cc) is a reflection
framework.

Base condition: vb is the identity element.
Root condition: by definition.
Reflection condition and Euler conditions: Need some difficult
results about sortable elements.
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The Cambrian framework, finite type (continued)

Even with the Base, Root, Reflection and Euler conditions, we still
don’t have a framework.

The problem: We have n-labels for each vertex, but we don’t yet
know how to assign a label to each incident pair.

Lemma 5.6

If v ′ <· v in the c-Cambrian semilattice, then there exists a unique

positive root β such that β ∈ Cc (v
′) and −β ∈ Cc(v).

Lemma 5.6 lets us label each incident pair in Cambc :

Suppose v ′ <· v in Cambc with v ′ = πc
↓(tv) and write e for the

edge v—v ′. We label the incident pair the incident pair (v ′, e) by
the positive root β from Lemma 5.6 and label (v , e) by −β.

We re-use the symbol Cc for this labeling of incident pairs.
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The Cambrian framework, finite type (continued)

Theorem 5.7 (FRM)

If A is of finite type, then (Cambc ,Cc ) is a complete, exact,

well-connected polyhedral reflection framework for B.

Recall what this means:

Complete: n-regular graph (not quasi-graph).

Exact: Implies Cambc ∼= Ex•(B).

Well-connected polyhedral:

Cone(v) =
⋂

e∈I (v) {x ∈ V ∗ : 〈x ,C∨(v , e)〉 ≥ 0}.
Polyhedral means the collection of all these cones, and their faces,
is a fan. Well-connected is a local connectivity condition.

We call this fan the c-Cambrian fan.

22



The Cambrian framework & fan for our favorite example

B =
[

0 2
−1 0

]

, A =
[

2 −2
−1 2

]

, m(s1, s2) = 4, c = s1s2

Recall: We orient each edge of the diagram i → j if bij < 0. To
define c , arrows in diagram point left in the word for c .

α2α1

−α1

2α1 + α2

−2α1 − α2

α1 + α2

−α1 − α2

α2

−α2

−α2

α1

−α1

23
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The Cambrian framework & fan for our favorite example

B =
[

0 2
−1 0

]

, A =
[

2 −2
−1 2

]

, m(s1, s2) = 4, c = s1s2

Recall: We orient each edge of the diagram i → j if bij < 0. To
define c , arrows in diagram point left in the word for c .

α2α1

−α1

2α1 + α2

−2α1 − α2

α1 + α2

−α1 − α2

α2

−α2

−α2

α1

−α1

1

s1

s1s2

s1s2s1

s1s2s1s2

s2

Cone(1)Cone(s1)

Cone(s1s2)

Cone(s1s2s1)

Cone(s1s2s1s2)

Cone(s2)

23



Example: A3, c = s1s2s3
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Example: A3, c = s1s2s3
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Example: B3, c = s1s2s3
4
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The Cambrian framework, infinite type

When A is of infinite type (so W is infinite), Cambc is not
n-regular, but no vertex has degree > n.

We do, however, have n labels for each vertex, some attached to
edges in Cambc and some not. We augment Cambc to be an
n-regular quasi-graph, by adding the right number of half-edges to
each vertex. The new incident pairs get the remaining labels. We
re-use the symbols Cambc and Cc for this quasi-graph and labels.

Theorem 5.8 (FRM)

The pair (Cambc ,Cc) is an exact, well-connected polyhedral

reflection framework for the exchange matrix B. It is complete if

and only if A is of finite type.

Essential reason for incompleteness in the infinite case: Each
Cone(v) contains vD, and so intersects the Tits cone. Typically,
there are g-vector cones that don’t intersect the Tits cone.
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An infinite Cambrian fan
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Cambrian frameworks of affine Cartan type

A Cartan matrix is of affine type if Tits(A) is a halfspace.

Let B be an acyclic exchange matrix defining a Cartan matrix A of
affine type, a Coxeter group W , and a Coxeter element c .

Write DFc for the union of the collection of the faces of the
Cambrian fan Fc and the faces of −Fc−1 (the image of the
Cambrian fan Fc−1 under negation).

Theorem 5.9 (INF)

The collection DFc of cones is a simplicial fan.

We call DFc the doubled Cambrian fan. Theorem 5.9 lets us
“glue” Cambc to “−Cambc−1” to get a framework (DCambc ,Cc ).

Theorem 5.10 (INF)

If B is acyclic and of affine Cartan type, then (DCambc ,Cc ) is a
complete, exact, well-built reflection framework.
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An affine Cambrian fan
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An non-affine doubled Cambrian fan
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Consequences for structural conjectures

Corollary 5.11

If B is of finite or affine Cartan type, then Conjectures 2.12–2.17

hold for B.

Most of these are proven in finite type, but this seems to be the
first proof of Conjecture 2.16 in finite type. These all seem to be
new in general affine type.

2.12: Each F -polynomial has constant term 1.

2.13: Each F -polynomial has a unique max.-degree monomial.

2.14: For each cluster, the g-vectors are a Z-basis for Zn.

2.15: Different cluster monomials have different g-vectors.

2.16: In the principal-coefficients case, if seeds have equivalent
extended exchange matrices, then the seeds are equivalent.

2.17: The rows of the bottom half of principal-coeff extended
exchange matrices are sign-coherent.
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Denominator vectors in frameworks

Let v be c-sortable with c-sorting word a1a2 · · · ak .

Given si ∈ S , the last reflection for s in v is a1 · · · aj−1ajaj−1 · · · a1,
where ai is the rightmost occurrence of s in a1a2 · · · ak .

Define clsic (v) to be the positive root associated to this last
reflection. That is clsic (v) is a1 · · · aj−1αj .

If s doesn’t occur in a1a2 · · · ak , define clsic (v) = −αi .

Define cl(v) = {clsic (v) : i = 1, . . . , n}.

Example: W = B4, c = s1s2s4s3, quad v = s1s2s4s3|s1s2s3|s1s2

clc(v) =
{ } .
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Example: W = B4, c = s1s2s4s3, quad v = s1s2s4s3|s1s2s3|s1s2

clc(v) =
{s1s2s4s3s1s2s3α1 } .
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{s1s2s4s3s1s2s3α1, s1s2s4s3s1s2s3s1α2 } .
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clc(v) =
{s1s2s4s3s1s2s3α1, s1s2s4s3s1s2s3s1α2, s1s2s4s3s1s2α3 } .
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Denominator vectors in frameworks

Let v be c-sortable with c-sorting word a1a2 · · · ak .

Given si ∈ S , the last reflection for s in v is a1 · · · aj−1ajaj−1 · · · a1,
where ai is the rightmost occurrence of s in a1a2 · · · ak .

Define clsic (v) to be the positive root associated to this last
reflection. That is clsic (v) is a1 · · · aj−1αj .

If s doesn’t occur in a1a2 · · · ak , define clsic (v) = −αi .

Define cl(v) = {clsic (v) : i = 1, . . . , n}.

Example: W = B4, c = s1s2s4s3, quad v = s1s2s4s3|s1s2s3|s1s2

clc(v) =
{s1s2s4s3s1s2s3α1, s1s2s4s3s1s2s3s1α2, s1s2s4s3s1s2α3, s1s2α4} .
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Denominator vectors in frameworks

Let v be c-sortable with c-sorting word a1a2 · · · ak .

Given si ∈ S , the last reflection for s in v is a1 · · · aj−1ajaj−1 · · · a1,
where ai is the rightmost occurrence of s in a1a2 · · · ak .

Define clsic (v) to be the positive root associated to this last
reflection. That is clsic (v) is a1 · · · aj−1αj .

If s doesn’t occur in a1a2 · · · ak , define clsic (v) = −αi .

Define cl(v) = {clsic (v) : i = 1, . . . , n}.

Example: W = B4, c = s1s2s4s3, quad v = s1s2s4s3|s1s2s3|s1s2

clc(v) =
{s1s2s4s3s1s2s3α1, s1s2s4s3s1s2s3s1α2, s1s2s4s3s1s2α3, s1s2α4} .

Theorem 5.12 (SORT)

If B is of finite Cartan type, then clc(v) is the set of denominator

vectors in Seed(v).
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Denominators example: W = B2, c = s1s2

α1

α2 2α1 + α2α1 + α2

v si clsic (v)

1 s1
s2

s1 s1
s2

s1s2 s1
s2

s1s2s1 s1
s2

s1s2s1s2 s1
s2

s2 s1
s2

Clus. Var.: x1, x2,
x2+1
x1

,
x21+(x2+1)2

x21x2
,

x21+x2+1
x1x2

,
x21+1
x2

Denom. vec.: [−1, 0], [0,−1], [1, 0], [2, 1], [1, 1], [0, 1]
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Denominators example: W = B2, c = s1s2
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s2
s1 s1

s2
s1s2 s1

s2
s1s2s1 s1

s2
s1s2s1s2 s1

s2
s2 s1

s2
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Exercise

Exercise 5d

Let s be initial in c, let v be c-sortable and let r ∈ S. Show that

1. If v 6≥ s then

clrc(v) =

{

−αs if r = s, or

clrsc(v) if r 6= s

2. If v ≥ s then clrc(v) = σs(cl
r
scs(sv)).

The sets clrsc(v) and cl rscs(sv) are defined by induction on the rank
of W or on the length of v .
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A conjecture on denominator vectors and g-vectors

Recall that the Euler form E associated to B is

E (α∨
i , αj ) =

{

min(bij , 0) if i 6= j , or
1 if i = j .

We define a map ν : V → V ∗ by setting

ν(αj) = −
∑

i∈I

E (α∨
i , αj)ρi .

When B is acyclic, ν is given by the negative of an upper
uni-triangular matrix, and therefore it is invertible. The inverse
map, by a standard combinatorial trick, is η : V ∗ → V by

η(ρj ) = −
∑

i∈I

F (α∨
i , αj )αj ,

where

F (α∨
i , αj ) =

∑

(−E (α∨
i0
, αi1))(−E (α∨

i1
, αi2)) · · · (−E (α∨

ik−1
, αik )).

The sum is over all paths i = i0—i1—· · ·—ik = j in the complete
graph with vertices I . Since B is acyclic, this is a finite sum.
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A conjecture on denominator vectors and g-vectors (cont’d)

Conjecture 5.13

If B is acyclic and x is a cluster variable not contained in the initial

seed, then g(x) = ν(d(x)). Equivalently, d(x) = η(g(x)).

As written, the conjecture relates a vector in the weight lattice to a
vector in the root lattice. The conjecture is easily rewritten in
terms of the integer vectors.

Note that (modulo the condition “not contained in the initial
seed”), this is saying that the g-vectors are νc(clc(v)).
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A conjecture on denominator vectors and g-vectors (cont’d)

Conjecture 5.13

If B is acyclic and x is a cluster variable not contained in the initial

seed, then g(x) = ν(d(x)). Equivalently, d(x) = η(g(x)).

As written, the conjecture relates a vector in the weight lattice to a
vector in the root lattice. The conjecture is easily rewritten in
terms of the integer vectors.

Note that (modulo the condition “not contained in the initial
seed”), this is saying that the g-vectors are νc(clc(v)).

νc?
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A conjecture on denominator vectors and g-vectors (cont’d)

Conjecture 5.13

If B is acyclic and x is a cluster variable not contained in the initial

seed, then g(x) = ν(d(x)). Equivalently, d(x) = η(g(x)).

As written, the conjecture relates a vector in the weight lattice to a
vector in the root lattice. The conjecture is easily rewritten in
terms of the integer vectors.

Note that (modulo the condition “not contained in the initial
seed”), this is saying that the g-vectors are νc(clc(v)).

νc? To emphasize the dependence on c , and let us think about
source-sink moves c ↔ scs for s initial/final.
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A conjecture on denominator vectors and g-vectors (concl’d)

The Cambrian framework (or, work by one of you?) lets us prove
the conjecture when B is of finite Cartan type. Recall that
g-vectors are the dual basis to Cc . We know that Cc and clc can
be characterized by induction on length and rank. The map νc is
compatible with this induction, so we argue by this induction.

By the same argument, if Conjecture 5.13 is true, then cl maps
c-sortable elements to denominator vectors outside of finite type,
too, in the (not complete) Cambrian framework.
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Exercises, in order of priority

Although the lecture series is now over, and it’s hard to say when
these exercises could be “due,” I’ve still put them in order of
priority for you. The first line still constitutes a minimum
immediate goal. It would be profitable to work all of the exercises
eventually.

5a, 5b, 5d,

5c.
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