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Introduction

A (Kac-Moody) root system Φ defines a group W of
transformations, generated by the reflections orthogonal (in the
sense of the symmetric bilinear form K ) to the simple roots. This
naturally gives W the structure of a Coxeter group.

Coxeter groups are defined abstractly within the framework of
combinatorial group theory. That is, we are given a presentation of
a group by generators and relations.

The abstract algebra encodes the geometry surprisingly well: Not
only does each root system define a Coxeter group, but also each
Coxeter group can be represented geometrically by specifying a
root system.
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Introduction

A (Kac-Moody) root system Φ defines a group W of
transformations, generated by the reflections orthogonal (in the
sense of the symmetric bilinear form K ) to the simple roots. This
naturally gives W the structure of a Coxeter group.

Coxeter groups are defined abstractly within the framework of
combinatorial group theory. That is, we are given a presentation of
a group by generators and relations.

The abstract algebra encodes the geometry surprisingly well: Not
only does each root system define a Coxeter group, but also each
Coxeter group can be represented geometrically by specifying a
root system.

But we need a root system given by a “generalized” generalized
Cartan matrix for a “non-crystallographic” Coxeter group.
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Introduction (continued)

In this lecture, we’ll provide some basic background on Coxeter
groups that will be useful for understanding Cambrian lattices and
sortable elements.

Standard references include (BB), (B), and (H).

A summary, written specifically for use with sortable elements and
Cambrian lattices, can be found in Section 2 of (INF).
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Coxeter groups

A Coxeter group is a group with a certain presentation. Choose a

finite generating set S = {s1, . . . , sn} and for every i < j , choose

an integer m(i , j) ≥ 2, or m(i , j) = ∞. Define:

W =
〈

S | s2i = 1, ∀ i and (sisj)
m(i ,j) = 1, ∀ i < j

〉

.
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Coxeter groups

A Coxeter group is a group with a certain presentation. Choose a

finite generating set S = {s1, . . . , sn} and for every i < j , choose

an integer m(i , j) ≥ 2, or m(i , j) = ∞. Define:

W =
〈

S | s2i = 1, ∀ i and (sisj)
m(i ,j) = 1, ∀ i < j

〉

.

Why would anyone write this down?

Exercise 4Ba

Let Φ be a Kac-Moody root system with simple roots
Π = {α1, . . . , αn} and define S = {s1, . . . , sn} for si as in
Lecture 3B. Define m(i , j) to be 2π

π−angle(αi ,αj )
. Show that the

group W ′ generated by S satisfies the relations given above.

The exercise shows that W ′ is a homomorphic image of the
abstract Coxeter group W . In fact, the two are isomorphic. Thus
all of our root systems examples yield Coxeter group examples. 4



Coxeter group examples

We’ll focus on two examples:

◮ The dihedral group of order 8:

B2 =
〈

{s1, s2} | s21 = s22 = (s1s2)
4 = 1

〉

.

This is the Coxeter group associated to the root system B2.
Its elements are

1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2 = s2s1s2s1.
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Coxeter group examples

We’ll focus on two examples:

◮ The dihedral group of order 8:

B2 =
〈

{s1, s2} | s21 = s22 = (s1s2)
4 = 1

〉

.

This is the Coxeter group associated to the root system B2.
Its elements are

1, s1, s2, s1s2, s2s1, s1s2s1, s2s1s2, s1s2s1s2 = s2s1s2s1.

◮ The symmetric group Sn+1 (AKA An):
This is the group of permutations of [n + 1]. Writing
si = (i i+1), the symmetric group is a Coxeter group with

m(i , j) =

{

3 if j = i + 1, or
2 if j > i + 1.

This is the Coxeter group associated to the root system An,
constructed explicitly as {ej − ei : i , j ∈ [n + 1], i 6= j} in
Exercise 1k.1. This construction leads to a representation of
Sn+1 as permutations of the coordinates. 5



Coxeter diagrams

The Coxeter diagram of a Coxeter system (W ,S) is a graph with

◮ Vertex set: {1, . . . , n}.

◮ Edges: i — j if m(i , j) ≥ 3.

◮ Edge labels: m(i , j). By convention, we omit edge labels “3.”

The dihedral group of order 8 has a diagram with two vertices
connected by an edge labeled 4.

The diagram for An is

Obs: Non-edges ↔ m(i , j) = 2 ↔ si and sj commute.
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Reflections

The set S is called the simple reflections. The set

T =
{

wsw−1 : w ∈ W , s ∈ S
}

is called the set of reflections in W . Why?

Exercise 4Bb

Suppose that W is the (Coxeter) group defined (under the name
W ′) in Exercise 4Ba. Show that

1. For every reflection t ∈ T, there is a unique positive root
β ∈ Φ+ such that t is the reflection orthogonal to t (in the
sense of K).

2. For every root β, the reflection orthogonal to t (in the sense
of K) is an element of T .

Thus, reflections are in bijection with positive roots! We’ll write βt
for the positive root associated with t ∈ T . Furthermore, T is the
complete set of elements of W that act as reflections.

7



Reflections in B2 and An

B2:

S = {s1, s2}
T = {s1, s2, s1s2s1, s2s1s2}

There are 4 positive roots.

An = Sn+1:

S = {adjacent transpositions (i i+1)}
T = {all transpositions (i j)}
The positive roots are {ej − ei : i , j ∈ [n + 1], i < j}
(Exercise 1m.1).
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Reduced words and the word problem

Since W is generated by S , each element w of W can be written
(in many ways!) as a word in the “alphabet” S .

A word of minimal length, among words for w , is called a reduced
word for w .

The length ℓ(w) of w is the length of a reduced word for w .

Solution to the word problem for W (J. Tits):

Any word for w can be converted to a reduced word for w by a
sequence of

◮ braid moves: sisjsi · · · ↔ sjsisj · · · (m(i , j) letters)
◮ nil moves: delete si si .

Any two reduced words for w are related by a sequence of braid
moves.

Exercise 4Bc

Find all reduced words for 4321 ∈ S4. 9



Inversions

An inversion of w ∈ W is a reflection t ∈ T such that
ℓ(tw) < ℓ(w). The notation inv(w) means {inversions of w}.

If a1 · · · ak is a reduced word for w , then write ti = a1 · · · ai · · · a1.

inv(w) = {ti : 1 ≤ i ≤ k}.

The sequence t1, . . . , tk is the reflection sequence for the reduced
word a1 · · · ak .
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Weak order

The weak order on a Coxeter group W sets u ≤ w if and only if a
reduced word for u occurs as a prefix of some reduced word for w .

The covers are w <· ws for w ∈ W and s ∈ S with ℓ(w) < ℓ(ws).

Equivalently, u ≤ w if and only if inv(u) ⊆ inv(w).

Example:

B2 =
〈

{s1, s2} | s21 = s22 = (s1s2)
4 = 1

〉

1

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

The weak order is ranked by the length function ℓ.

It is a meet semilattice in general, and a lattice when W is finite.
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Weak order (Right weak order)

The weak order on a Coxeter group W sets u ≤ w if and only if a
reduced word for u occurs as a prefix of some reduced word for w .

The covers are w <· ws for w ∈ W and s ∈ S with ℓ(w) < ℓ(ws).

Equivalently, u ≤ w if and only if inv(u) ⊆ inv(w).

Example:

B2 =
〈

{s1, s2} | s21 = s22 = (s1s2)
4 = 1

〉

1

s1 s2

s1s2 s2s1

s1s2s1 s2s1s2

s1s2s1s2

The weak order is ranked by the length function ℓ.

It is a meet semilattice in general, and a lattice when W is finite.

Alert: This is “right” weak order. There is also a “left” weak order.
11



Inversions and weak order in Sn+1

We will write a permutation π in one-line notation π1 · · · πn+1.
Then the cover relations in the weak order are transpositions of
adjacent entries. Going “up” means putting the entries out of
numerical order.

The weak order on S3: 321

231312

213132

123

Inversions are

inv(π) = {transpositions (i j) : i comes before j in π},

and this is the origin of the term “inversion.”
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The weak order on S4

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 2413 3142 4123 1432

3241 2431 4213 3412 4132

3421 4231 4312

4321
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Cover reflections

A cover reflection of w ∈ W is an inversion t of w such that
tw = ws for some s ∈ S .

The name “cover reflection” refers to the fact that w covers tw in
the weak order.

Indeed, for each cover ws <· w , there is a cover reflection wsw−1

of w .

The set of cover reflections of w is written cov(w).

In Sn+1:

cov(π) = {transpositions (i j) : i immediately before j in π}.
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Bringing geometry into the picture

Exercise 4Bd

Show that the diagram of a Coxeter system associated to a
Kac-Moody root system has the following properties.

1. Each edge is unlabeled or has label 4, 6 or ∞.

2. Any cycle has an even number of 4’s and an even number of
6’s.

Exercise 4Be

Given a Coxeter group W whose diagrams satisfy the conditions of
Exercise 4Bd, show that there is a Kac-Moody root system
associated to W .

In fact, there are many!

In general, we can make a “generalized” generalized Cartan matrix
and root system for any Coxeter group if we allow non-integer
entries and add an additional technical condition. 15



The Tits cone

Define
D =

⋂

αi∈Π

{x ∈ V ∗ : 〈x , αi 〉 ≥ 0}

This is an n-dimensional simplicial cone in the dual space V ∗.

The set F(A) of all cones wD and their faces is a fan in V ∗ which
we call the Coxeter fan. Its maximal cones are in bijection with
elements of W (i.e. the map w 7→ wD is injective).

The union of the cones of F(A) is a convex subset of V ∗ known as
the Tits cone and denoted Tits(A).

The cones wD are the regions in Tits(A) defined by the reflecting
hyperplanes

{

β⊥ : β ∈ Φ
}

.
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Tits cone example: B2

D =
⋂

αi∈Π

{x ∈ V ∗ : 〈x , αi 〉 ≥ 0}

In this case, Tits(A) is all of V ∗.
We’ll label each region wD by w .

α1

α2

1
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Tits cone example: B2

D =
⋂

αi∈Π

{x ∈ V ∗ : 〈x , αi 〉 ≥ 0}

In this case, Tits(A) is all of V ∗.
We’ll label each region wD by w .

α1

α2

1
s1

s2

s1s2

s2s1

s2s1s2

s1s2s1*

∗ = s1s2s1s2 = s2s1s2s1
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Tits cone example: S4

Blue region is D.

Again, Tits(A) is
all of V ∗

Largest circles:
hyperplanes for
s1, s2, and s3.
(s2 on top.)
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Tits cone example: an affine root system

1

s1

s2

s3
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Tits cone example: an affine root system

1

s1

s2

s3
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Tits cone example: a hyperbolic root system

20



Tits cone example: a hyperbolic root system
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Tits cone example: a hyperbolic root system
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How the combinatorics shows in the geometry

D

Words are paths from D.
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How the combinatorics shows in the geometry

D

Words are paths from D.

Reduced words: paths
that don’t cross any
hyperplane twice. “Walls”
are labeled by S . Crossing
a wall ↔ tacking a letter
on right.
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How the combinatorics shows in the geometry

D

Words are paths from D.

Reduced words: paths
that don’t cross any
hyperplane twice. “Walls”
are labeled by S . Crossing
a wall ↔ tacking a letter
on right.

inv(w): reflections whose
hyperplanes separate wD
from D.

cov(w): inversions whose
hyperplanes define facets
of wD
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The weak order, geometrically (S4)
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The weak order, geometrically (S4)
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The weak order, geometrically (S4)
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Exercises, in order of priority

There are more exercises than you can be expected to complete in
a half day. Please work on them in the order listed. Exercises on
the first line constitute a minimum goal. It would be profitable to
work all of the exercises eventually.

4Ba, 4Bc, 4Bd,

4Bb, 4Be.
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