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Introduction

In Lecture 1, we saw how a (finite) root system can be encoded by
a Cartan matrix, which in turn can be encoded even more
compactly by a Dynkin diagram. The Cartan matrix encodes∗ the
relative lengths of simple roots the angles between them.

In this lecture, we will work both in the opposite direction and in
greater generality. We will start with a generalized Cartan
matrix A. This will be a matrix satisfying some mild rules that
make it look like a Cartan matrix; these rules will essentially
amount to requiring that A encodes∗ angles and relative lengths.

We can then pose the question of whether A is the Cartan matrix
of a root system. Of course, we already know the answer: Yes if
and only if the Dynkin diagram for A is in the Cartan-Killing
classification, because Cartan-Killing is telling you whether a given
specification of angles and relative lengths is realizable in Euclidean
space.
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Introduction (continued)

There is also another direction we can go with a generalized
Cartan matrix.

We might insist on our specification of angles and relative lengths:
Instead of asking if the specification is realizable in Euclidean
space, we can use the specification to define what length and angle
means, and then see what (possibly non-Euclidean) space we have
defined.

This turns out to be not-too-hard to do, once we decide to try.
The generalized Cartan matrix defines a (possibly infinite)
collection of vectors called a Kac-Moody root system, or simply a
root system. These turn out to be useful: An arbitrary exchange
matrix B defines a generalized Cartan matrix A and thus a root
system Φ. We will see that Φ has a lot to say about the cluster
combinatorics of B .
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Generalized Cartan matrices

A generalized Cartan matrix is an integer n× n matrix A = (aij)
such that:

(i) aii = 2 for every i ∈ [n];
(ii) aij ≤ 0 for i 6= j
(iii) aij = 0 if and only if aji = 0.
(iv) There exist positive, real δ1, . . . , δn such that

δiaij = ajiδj for all i , j ∈ [n].

Condition (iv) says that A is symmetrizable.

Generalized Cartan matrices are encoded by Dynkin diagrams (with
additional edge types allowed). Symmetrizability is a condition on
cycles in the Dynkin diagram. Which of these is symmetrizable?
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Simple roots and simple co-roots associated to A

Let V be a real vector space with a basis α1, . . . , αn.

The set Π := {αi : i ∈ [n]} is called the set of simple roots.

Define the simple co-roots to be α∨

i = δ−1
i αi .

Define a bilinear form K on V by K (α∨

i , αj) = aij .

K is symmetric:

K (αi , αj ) = δiK (α∨

i , αj ) = δiaij = ajiδj = K (α∨

j , αi )δj = K (αj , αi ).

Note also that 2 αi

K(αi ,αi )
=

K(α∨

i
,αi )αi

K(αi ,αi )
= δ−1

i αi = α∨

i .

That is, roots and co-roots are related as before, with K replacing
the standard Euclidean form.

A is “the Cartan matrix” for these simple roots/co-roots:

aij = K (α∨

i , αj).
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The root system

We can define the reflection si orthogonal (in the sense of K ) to
the simple roots αi :

si (x) = x − 2
K (αi , x)

K (αi , αi )
αi = x − K (α∨

i , x)αi

The root system Φ associated to A is the set of all vectors
obtained from simple roots by sequences of reflections orthogonal
to simple roots.

In some contexts, the roots in Φ and called “real” roots. There are
also “imaginary” roots, but not for us.

One can check that every root is either positive (in the
nonnegative span of Π) or negative (in the nonpositive span of Π).

To each root is associated a coroot: (Apply the same sequence of
reflections to a simple root and to its corresponding coroot. Or,
see Exercise 3Bb.)
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The root system (continued)

Exercise 3Ba

Show that the action of each si is an isometry (in the sense of K).
That is, K (si (x), si (y)) = K (x , y) for any x , y ∈ V .

Exercise 3Bb

Prove: If β is a root, then its associated co-root β∨ is 2 β
K(β,β) .

Note that we can’t define γ∨ for a general vector γ ∈ V , because
we don’t know that K (γ, γ) is positive.

The set Φ∨ of all co-roots is a root system in its own right. (The
dual root system.) The simple roots of Φ∨ are the simple co-roots
of Φ. The Cartan matrix of Φ∨ is AT .

Given a root β, there is a corresponding reflection t with
t(x) = x − K (β∨, x)βi . Each of these reflections permutes Φ.

7



Dual root system example

Let A =
[

2 −2
−1 2

]

. This is symmetrizable with δ1 = 1
2 and δ2 = 1.

(Other choices of δ1, δ2 work.)

The roots and co-roots are shown here. The non-simple positive
roots are β1 = 2α1 + α2 and β2 = α1 + α2. The non-simple
positive co-roots are β∨1 = α∨

1 + α∨
2 and β∨2 = α∨

1 + 2α∨
2.

α2 = α∨
2

β2

β∨
2

β1 = β∨
1

α1 α∨
1
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Finite type classification

The previous example is not new. It is a root system in the sense
of Lecture 1.

So how do we know whether A defines a root system in the sense
of Lecture 1?

One answer: See if A is in the Cartan-Killing classification.

Another answer: Check if K is positive definite. When K is
positive definite, it gives V the structure of a Euclidean vector
space, so all of the constructions in this lecture coincide with the
constructions in Lecture 1.

The second of these two answers is the key to actually determining
the Cartan-Killing classification.
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Another finite example

α1

α2

α3

α1

α2

α3
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An infinite example

What is the Cartan matrix?

α3

α2

α1
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An infinite example

What is the Cartan matrix?

A =





2 −3 0
−1 2 −1
0 −1 2





α3

α2

α1
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An infinite example

What is the Cartan matrix?

A =





2 −3 0
−1 2 −1
0 −1 2





α3

α2

α1

Or, swap the −1 and −3.
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Another infinite example

α1

α3

α2

A =





2 −3 0
−1 2 −3
0 −1 2




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Yet another infinite example

α1

α3

α2

A =





2 −3 −1
−1 2 −1
−1 −3 2




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One last infinite example

α1

α3

α2

A =





2 −1 0
−1 2 −2
0 −2 2





14



Dual vector spaces

The dual space to V is

V ∗ = {linear maps ϕ : V → R}.

This is a n-dimensional vector space where c ·ϕ is the map sending
x ∈ V to cϕ(x), and ϕ+ ψ is the map sending x to ϕ(x) + ϕ(y).

We often want to think of the maps in V ∗ as “elements of a vector
space,” not as “maps,” so we often write 〈ϕ, x〉 to denote ϕ(x).

Then we’ll usually use non-Greek letters for elements of V ∗ and
just think of V ∗ and V as two vector spaces with a pairing

〈 · , · 〉 : (V ∗ × V ) → R.
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Dual vector spaces (continued)

Given a basis x1, . . . , xn of V , the dual basis is the unique basis
x∗1 , . . . , x

∗
n of V ∗ such that 〈x∗i , xj〉 = δij .

Given a linear map f : V → W , there is a dual linear map
f ∗ : W ∗ → V ∗ given by f ∗(ϕ) = ϕ ◦ f . If f is written in matrix
form in terms of bases for V and W , then f ∗ is given by the
transpose of the matrix, in terms of the dual bases for W ∗ and V ∗.

Since V and V ∗ are both n-dimensional, they are isomorphic, so it
is useful sometimes to identify them. But there is no canonical
identification.

Instead, we identify a basis of x1, . . . , xn of V with the dual basis
x∗1 , . . . , x

∗
n of V ∗. This has the effect of making 〈 · , · 〉 into a

Euclidean form (“inner product”), such that the identified basis is
orthonormal. We won’t do this, except implicitly, to draw pictures.

Danger: Infinite-dimensional vector spaces are different!
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Fundamental weights

Write ρ1, . . . , ρn for the dual basis to the simple co-roots
α∨
1, . . . , α

∨
n. These are the fundamental weights.

V is often called the root space and V ∗ is called the weight space.

Each reflection t associated to a root β is linear map t : V → V ,
so there is a dual map t∗ : V ∗ → V ∗.

Exercise 3Bc

Show that the action of s∗i on the basis of fundamental weights is

s∗i (ρj) =

{

ρj −
∑n

k=1 K (α∨

k , αj)ρk if i = j , or
ρj if i 6= j .

Exercise 3Bd

Show that t∗ : V ∗ → V ∗ is a reflection (in the sense that it fixes a
hyperplane and has an eigenvector −1). Indeed, show that t∗ fixes
β⊥ = {x ∈ V ∗ : 〈x , β〉 = 0}.
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Root systems and hyperplane arrangements

The geometry of roots in V is manifested in the geometry of the
associated reflecting hyperplanes

{

β⊥ : β ∈ Φ
}

in V ∗.
(A hyperplane arrangement.)
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Root systems and hyperplane arrangements

The geometry of roots in V is manifested in the geometry of the
associated reflecting hyperplanes

{

β⊥ : β ∈ Φ
}

in V ∗.
(A hyperplane arrangement.)
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An infinite root system/hyperplane arrangement example
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An infinite root system/hyperplane arrangement example
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An infinite root system/hyperplane arrangement example
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An infinite root system/hyperplane arrangement example

19



An infinite root system/hyperplane arrangement example
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An infinite root system/hyperplane arrangement example

An affine root system
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Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example

20



Another infinite example
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Yet another infinite example
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One last infinite example
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Exercises, in order of priority

There are more exercises than you can be expected to complete in
a half day. Please work on them in the order listed. Exercises on
the first line constitute a minimum goal. It would be profitable to
work all of the exercises eventually.

3Ba, 3Bb,

3Bd, 3Bc.
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