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Introduction

In Lecture 1, we defined cluster algebras, based on a special kind
of recursion called a cluster pattern. This recursion is very hard to
solve in general (and even in particular!).

In fact, it’s so hard, that we have been willing to settle for
“solutions” that merely write down the “vital statistics” of cluster
variables (height, weight, Soc. Sec. #, etc.) so we can at least
uniquely identify them.

These kinds of solutions are not completely satisfactory, but they
do allow us to prove some important properties of cluster algebras.
Equally important (and possibly even more fun), the vital statistics
display fascinating combinatorics, which connects them to other
areas of math (e.g. root systems/reflection groups).

2



Introduction (continued)

Some of the vital statistics of cluster variables that we will talk
about:

◮ denominator vectors,

◮ principal coefficients,

◮ g-vectors, and

◮ F -polynomials.

In fact, the previous slide maligns two of these statistics: Two of
them (g-vectors and F -polynomials) together actually determine
the cluster variable.

Besides vital statistics, we also explore the extent to which the
recursion “collapses,” in the sense that the underlying
combinatorial structure is smaller than the n-regular tree.

3



Example (repeated)

Recall the example with B =

[
0 2
−1 0

]
and P = {1}.

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x21+(x2+1)2

x21 x2

]

l µ2 l µ1

[
0 −2
1 0

]

[
x1

x21+1
x2

]
µ1←→

[
0 2
−1 0

]

[
x21+x2+1

x1x2

x21+1
x2

]
µ2←→

[
0 −2
1 0

]

[
x21+x2+1

x1x2

x21+(x2+1)2

x21x2

]

Cluster variables: x1, x2,
x2+1
x1

,
x21+(x2+1)2

x21 x2
,

x21+x2+1
x1x2

,
x21+1
x2
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Introduction (concluded)

In the example, the cluster algebra is supposed to “live” on the
infinite path Tn. But the real combinatorial backbone is a cycle
with 6 vertices (i.e. 6 seeds) and 6 edges (i.e. 6 mutations). This is
the exchange graph of the cluster pattern.

Another (dual) way to organize the combinatorics is to view the
cluster variables as vertices of a simplicial complex, whose maximal
simplices are the clusters. This is the cluster complex. In the
example, there are 6 vertices (i.e. 6 cluster variables) and 6
maximal simplices (i.e. 6 clusters).

The fact that the exchange graph and the cluster complex are the
same is just an artifact of low dimension. In general, the exchange
graph is 1-dimensional, and the cluster complex is
(n − 1)-dimensional.
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Review of the basic setup

The initial exchange matrix is a skew-symmetrizable n × n matrix
B = (bij) with integer entries.

The coefficient semifield is P = (P,⊕, ·) such that (P, ·) is an
abelian group, and ⊕ is an auxiliary addition. (÷ yes, − no.)

The ambient field F is (isomorphic to) the field of rational
functions in n variables, with coefficients in the group ring QP.

A labeled seed is a triple (x, y,B), where
◮ B is an n × n exchange matrix,
◮ y = (y1, . . . , yn) is a tuple of elements of P called coefficients,
◮ x = (x1, . . . , xn) is a tuple (or “cluster”) of algebraically

independent elements of F called cluster variables.

By repeated seed mutations, we get a labeled seed for each vertex
of the n-ary tree Tn.

The cluster algebra A(x, y,B) is the algebra generated by the set
of all cluster variables in all seeds.
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Unlabeled seeds

Two labeled seeds are equivalent if they can be made identical by
simultaneously re-indexing the rows and columns of B and the
entries of the tuples x and y.

That is, Σ = (x, y,B) is equivalent to Σ′ = (x′, y′,B ′) if there
exists a permutation π of [n] such that

x ′i = xπ(i), y ′i = yπ(i), b′ij = bπ(i)π(j)

for all i , j ∈ [n].

An unlabeled seed (or usually just a seed) is an equivalence class of
labeled seeds.

The point is, we don’t really care how the matrix is indexed. All we
need to know, to do mutation, is the correspondence between
entries in x, entries in y, and rows/columns of B .
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The exchange graph

Given the initial (labeled) seed (x, y,B), the exchange graph
Ex(x, y,B) is obtained from Tn by identifying vertices that map to
the same (unlabeled) seed. We think of this as a graph whose
vertices are seeds, and whose edges are mutations.

Again, the example with B =

[
0 2
−1 0

]
and P = {1}.

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x21+(x2+1)2

x21 x2

]

l µ2 l µ1

[
0 −2
1 0

]

[
x1

x21+1
x2

]
µ1←→

[
0 2
−1 0

]

[
x21+x2+1

x1x2

x21+1
x2

]
µ2←→

[
0 −2
1 0

]

[
x21+x2+1

x1x2

x21+(x2+1)2

x21x2

]
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The exchange graph (continued)

The hexagon example works just as well with only labeled seeds.
Here’s an example that shows the need for unlabeled seeds.

[
0 1
−1 0

]

[x1 x2]

µ1←→

[
0 −1
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 1
−1 0

]

[
x2+1
x1

x1+x2+1
x1x2

]

l µ2

[
0 −1
1 0

]

[
x1

x1+1
x2

]
µ1←→

[
0 1
−1 0

]

[
x1+x2+1

x1x2

x1+1
x2

]
µ2←→

[
0 −1
1 0

]

[
x1+x2+1

x1x2

x2+1
x1

]
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The exchange graph (continued)

The hexagon example works just as well with only labeled seeds.
Here’s an example that shows the need for unlabeled seeds.

[
0 1
−1 0

]

[x1 x2]

µ1←→

[
0 −1
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 1
−1 0

]

[
x2+1
x1

x1+x2+1
x1x2

]

l µ2

[
0 −1
1 0

]

[
x1

x1+1
x2

]
µ1←→

[
0 1
−1 0

]

[
x1+x2+1

x1x2

x1+1
x2

]
µ2←→

[
0 −1
1 0

]

[
x1+x2+1

x1x2

x2+1
x1

]

←−

identify
these

←−
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The exchange graph (continued)

The hexagon example works just as well with only labeled seeds.
Here’s an example that shows the need for unlabeled seeds.

[
0 1
−1 0

]

[x1 x2]

µ1←→

[
0 −1
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 1
−1 0

]

[
x2+1
x1

x1+x2+1
x1x2

]

l µ2

[
0 −1
1 0

]

[
x1

x1+1
x2

]
µ1←→

[
0 1
−1 0

]

[
x1+x2+1

x1x2

x1+1
x2

]
µ2←→

[
0 −1
1 0

]

[
x1+x2+1

x1x2

x2+1
x1

]

←−

identify
these

←−

Here, the exchange graph is a cycle with 5 vertices.
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The exchange graph: Dependence on initial data

The cluster algebra A(x, y,B) depends on B .

Up to strong isomorphism, A(x, y,B) does not depend on x.
(Given two choices x and x′, there is an algebra isomorphism of F
mapping seeds to seeds, and thus inducing a isomorphism of
cluster algebras.)

In particular, Ex(x, y,B) depends only on (y,B).

Conjecture 2.1 (Fomin and Zelevinsky, CDM Conj. 14(1))

The exchange graph Ex(x, y,B) depends only on B.

That is, if two labeled seeds are equivalent in the cluster pattern
given by (x, y,B), then the corresponding labeled seeds are
equivalent in any cluster pattern (x′, y,B).

You verified a case of this in an exercise.
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The exchange graph (concluded)

When we form the exchange graph from Tn, we lose the labeling of
edges by 1, . . . , n.

But we retain the information of which cluster variable in each
seed is exchanged along each edge.

This leads to two insights:

◮ Given a seed in the exchange graph, we can index the cluster,
coefficient tuple and exchange matrix in that seed by the set
of edges incident to that seed in the exchange graph.

◮ The exchange graph is equipped with a connection. This
means that every edge µ connecting two vertices Σ and Σ′ is
equipped with a canonical bijection between the n edges
incident to Σ and the n edges incident to Σ′, fixing µ.
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Exchange graphs and simplicial complexes

An n-regular graph with connection defines a simplicial complex:

For each vertex Σ of the graph, think of the set of n edges incident
to Σ as an abstract (n − 1)-simplex ∆Σ.

(Get it straight: Vertices of the simplex are edges of the graph.)

For each edge µ connecting two vertices Σ and Σ′, identify the
vertices of ∆Σ and ∆Σ′ (except µ) according to the connection.

u

u

uu p p p

p
p
p

ppp

p
p
p

p p p
ppp

�
�
��

@
@

@@

@
@@

�
��

a

b c

d

e

f

g

hi
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The cluster complex

Conjecture 2.2

The simplicial complex defined by the exchange graph has vertices
specified by the cluster variables.

Easy: label the vertices of the complex by cluster variables:
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The conjecture is that every vertex of the complex is labeled by a
distinct cluster variable.

When Conjecture 2.2 holds, call this complex the cluster complex.
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The cluster complex (continued)

Failure of the conjecture might look like this:

Suppose a rank-2 cluster algebra has distinct cluster variables a, b,
c , d , and x . Suppose also that the exchange graph is a 6-cycle,
and that the clusters in the 6 seeds are

{a, b}, {b, x}, {x , c}, {c , d}, {d , x}, {x , a}.

Conjecture 2.3 (Fomin and Zelevinsky, CDM Conj. 14(3))

For every cluster variable x, the seeds whose clusters contain x
induce a connected subgraph of Ex(x, y,B).

Exercise 2a
Assuming Conjecture 2.3, prove the following: If x is a cluster
variable, then any two seeds containing x are related by a sequence
of mutations that fix x. Conclude that Conjecture 2.3 implies
Conjecture 2.2.

You will want to use Exercises 1g and 1h.
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Zn-gradings

The ring R[x ] of real polynomials in x is a N-graded algebra.

First of all, this means that R[x ] is an N-graded vector space⊕
n∈N Vn, where each Vn is a vector space. (Take Vn = Rxn.)

Also, this means that, if x ∈ Vp and y ∈ Vq, then xy ∈ Vp+q.

The Laurent polynomial ring R[x , x−1] is an Z-graded algebra in
the same way.

A Zn-graded algebra is the same thing, except that the graded
pieces are indexed by integer vectors, and “p + q” is interpreted as
vector addition.
For example, the Laurent polynomial ring R[x1, x

−1
1 , . . . , xn, x

−1
n ] is

Zn-graded with Vi1···in = Rx i11 · · · x
in
n .

We will discuss two important Zn-gradings of a cluster algebra,
given by denominator vectors and g-vectors.
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The Laurent phenomenon

Once again, take B =

[
0 2
−1 0

]
and P = {1}.

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x21+(x2+1)2

x21 x2

]
µ1←→

[
0 −2
1 0

]

[
v

x21+(x2+1)2

x21 x2

]

We calculated v =
x21+x2+1

x1x2
. This is a Laurent polynomial in x1

and x2. A priori, it need only have been a rational function.

v =
1 +

x21+(x2+1)2

x21x2

x2+1
x1

=
x1

x2 + 1
·
x21x2 + x21 + (x2 + 1)2

x21x2

=
x1

x2 + 1
·
(x2 + 1)(x21 + x2 + 1)

x21 x2
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The Laurent phenomenon (continued)

The Laurent phenomenon is the assertion that this kind of
cancellation always happens.

Theorem 2.4 (Fomin and Zelevinsky, CA I, CA II)

Every cluster variable in A(x, y,B) is a Laurent polynomial in x,
whose coefficients are integer polynomials y.

Conjecture 2.5 (Fomin and Zelevinsky, CA I)

Every cluster variable in A(x, y,B) is a Laurent polynomial in x,
whose coefficients are polynomials y with nonnegative integer
coefficients.

Why is this hard? After all, the coefficients in the exchange
relations have nonnegative coefficients.

x ′k =
yk

∏
x
[bik ]+
i +

∏
x
[−bik ]+
i

(yk ⊕ 1)xk
.
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The Laurent phenomenon (continued)

The Laurent phenomenon is the assertion that this kind of
cancellation always happens.

Theorem 2.4 (Fomin and Zelevinsky, CA I, CA II)

Every cluster variable in A(x, y,B) is a Laurent polynomial in x,
whose coefficients are integer polynomials y.

Conjecture 2.5 (Fomin and Zelevinsky, CA I)

Every cluster variable in A(x, y,B) is a Laurent polynomial in x,
whose coefficients are polynomials y with nonnegative integer
coefficients.

Why is this hard? After all, the coefficients in the exchange
relations have nonnegative coefficients.

x ′k =
yk

∏
x
[bik ]+
i +

∏
x
[−bik ]+
i

(yk ⊕ 1)xk
.

A priori, something like this could happen: x3+1
x+1 = x2 − x + 1.

17



Denominator vectors

Writing terms in a Laurent polynomial over a common
denominator, we get polynomial

monomial . The denominator vector of a
cluster variable is the degree sequence of its denominator.
Our favorite example:

[
0 2
−1 0

]

[x1 x2]

µ1←→

[
0 −2
1 0

]

[
x2+1
x1

x2

]
µ2←→

[
0 2
−1 0

]

[
x2+1
x1

x21+(x2+1)2

x21 x2

]

l µ2 l µ1

[
0 −2
1 0

]

[
x1

x21+1
x2

]
µ1←→

[
0 2
−1 0

]

[
x21+x2+1

x1x2

x21+1
x2

]
µ2←→

[
0 −2
1 0

]

[
x21+x2+1

x1x2

x21+(x2+1)2

x21x2

]

Clus. Var.: x1, x2,
x2+1
x1

,
x21+(x2+1)2

x21x2
,

x21+x2+1
x1x2

,
x21+1
x2

Denom. vec.: [−1, 0], [0,−1], [1, 0], [2, 1], [1, 1], [0, 1]
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Denominator vectors (continued)

Denominator vectors are a Zn-grading.

Indeed, A(x, y,B) is an Zn-graded subalgebra of the Laurent
polynomial ring ZP[x1, x

−1
1 , . . . , xn, x

−1
n ].

Conjecturally, denominator vectors distinguish cluster variables.

Conjecture 2.6

Different cluster variables have different denominator vectors.

If this conjecture is true, then we can model the cluster complex by
knowing the list of possible denominator vectors and knowing
which denominator vectors are in the same cluster.

In fact, much more than Conjecture 2.6 is probably true...
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Cluster monomials

A cluster monomial is a monomial in the cluster variables in some
single cluster (an ordinary monomial, not a Laurent monomial).

Conjecture 2.7

Different cluster monomials have different denominator vectors.

This would imply that denominator vectors form a fan. More
later... For now a picture, for our favorite example.

Clus. Var.: x1, x2,
x2+1
x1

,
x21+(x2+1)2

x21x2
,

x21+x2+1
x1x2

,
x21+1
x2

Denom. vec.: [−1, 0], [0,−1], [1, 0], [2, 1], [1, 1], [0, 1]
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Questions?

21



Stand and stretch.
(2 minutes)
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Tropical semifields

There is a particularly nice choice of coefficient semifield.

Let u1, . . . , um be formal symbols called tropical variables.

Trop(u1, . . . , um) is the free abelian group generated by u1, . . . , um.

Its elements are formal products of the form
∏m

i=1 u
ai
i with ai ∈ Z

and multiplication given by

m∏

i=1

uaii ·
m∏

i=1

ubii =

m∏

i=1

uai+bi
i .

We define an auxiliary addition ⊕ in Trop(u1, . . . , um) by

m∏

i=1

uaii ⊕
m∏

i=1

ubii =

m∏

i=1

u
min(ai ,bi )
i .

The triple (Trop(u1, . . . , um),⊕, · ) is a semifield.
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Cluster algebras of geometric type

Take P = Trop(u1, . . . , um).

Elements of P are Laurent monomials in u1, . . . , um.

Thus the group rings ZP and QP are just the rings of Laurent
polynomials in u1, . . . , um.

A cluster algebra of geometric type is a cluster algebra having
P = Trop(u1, . . . , um) for its coefficient semifield.
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Cluster algebras of geometric type (continued)

Geometric type simplifies the story considerably:

Each yt in the cluster pattern is a collection of Laurent monomials
in u1, . . . , um.

Recall that mutation for coefficients looks like

y ′

j =





y−1
k if j = k ;

yjy
[bkj ]+
k (yk ⊕ 1)−bkj if j 6= k .

But yk is
∏m

i=1 u
ai
i for some integers ai , so we can rewrite:

yk =

∏
u
[ai ]+
i∏

u
[−ai ]+
i

and (yk ⊕ 1)−1 =
∏

u
[−ai ]+
i .

Thus

y
[bkj ]+
k (yk ⊕ 1)−bkj =

{ ∏
u
bkj [ai ]+
i if bkj ≥ 0

∏
u
bkj [−ai ]+
i if bkj ≤ 0

=
∏

u
sgn(bkj )[aibkj ]+
i
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Extended exchange matrices

In geometric type, if yk is
∏m

i=1 u
ai
i , then coefficient mutation

replaces yj by yj
∏

u
sgn(bkj )[aibkj ]+
i . This looks like matrix mutation.

A Y-seed (y,B) of geometric type (i.e. P = Trop(u1, . . . , um) can
be encoded by an extended exchange matrix B̃ = (bij)i∈[n+m], j∈[n].

The top square matrix (bij)i ,j∈[n] is B .

The bottom m × n matrix is given by yj =

m∏

i=1

u
b(n+i) j

i .

The punchline: If we encode every Y-seed in a Y-pattern of
geometric type by an extended exchange matrix, then mutation of
Y-seeds is given by matrix mutation. That is, in direction k :

b′ij =

{
−bij if k ∈ {i , j};

bij + sgn(bkj)[bikbkj ]+ otherwise.
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Exchange relations in geometric type

Exchange relations are also much simpler in geometric type:
Again, write a coefficient as yk =

∏m
i=1 u

ai
i , and define xn+i = ui

for i = 1, . . . ,m.

1

yk ⊕ 1
=

1
∏

u
−[−ai ]+
i

=
∏

u
[−ai ]+
i and

yk
yk ⊕ 1

=

∏
uaii∏

u
−[−ai ]+
i

=

m∏

i=1

u
[ai ]+
i .

Thus the exchange relation

x ′k =
yk

∏
x
[bjk ]+
j +

∏
x
[−bjk ]+
j

(yk ⊕ 1)xk

becomes x ′k =

∏
u
[ai ]+
i

∏
x
[bjk ]+
j +

∏
u
[−ai ]+
i

∏
x
[−bjk ]+
j

xk
.

Again encoding the Y-seed (y,B) by an extended exchange matrix
B̃, we have ai = bn+i ,k . So the exchange relation is

x ′k =

∏n+m
i=1 x

[bik ]+
i +

∏n+m
i=1 x

[−bik ]+
i

xk
.
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Principal coefficients

The cluster algebra with principal coefficients associated to an
exchange matrix B is the cluster algebra of geometric type with:

◮ Coefficient semifield: P = Trop(y1, . . . , yn); and

◮ Initial coordinate tuple: y = (y1, . . . , yn).

Up to isomorphism, this depends only on B , so we write A•(B).

The initial extended exchange matrix is B̃ =

[
B
I

]
.

This is important for at least the following reasons:

◮ The cluster pattern with principal coefficients has the
“largest” exchange graph.

◮ Cluster variables with principal coefficients determine cluster
variables with any other choice of initial coordinates.

We’ll explain in the next few slides. But first, an example.
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Example with principal coefficients

Take B =

[
0 2
−1 0

]
and P = Trop(y1, y2), so B̃ =




0 2
−1 0
1 0
0 1


.




0 2
−1 0
1 0
0 1




[x1 x2]

µ1←→




0 −2
1 0
−1 2
0 1




[
y1+x2
x1

x2

]

µ2←→




0 2
−1 0
1 −2
1 −1




[
y1+x2
x1

y2
1 y2x

2
1+(y1+x2)

2

x21 x2

]

l µ2 l µ1




0 −2
1 0
1 0
0 −1




[
x1

y2x
2
1+1
x2

]

µ1←→




0 2
−1 0
−1 0
0 −1




[
y1+y1y2x

2
1+x2

x1x2

y2x
2
1+1
x2

]

µ2←→




0 −2
1 0
−1 0
−1 1




[
y1+y1y2x

2
1+x2

x1x2

y2
1 y2x

2
1+(y1+x2)

2

x21 x2

]
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Coverings of exchange graphs

Let A(x, y,B) and A(x′, y′,B) be cluster algebras.
Notice: Same B in both. Coefficient semifields may differ.

We say Ex(x′, y′,B) covers Ex(x, y,B) if, for every pair t1, t2 of
vertices of Tn,

Σ′
t1
∼ Σ′

t2
=⇒ Σt1 ∼ Σt2 .

Theorem 2.8 (Fomin and Zelevinsky, CA IV)

The exchange graph Ex•(B) covers the exchange graph of any
other cluster pattern with initial exchange matrix B.

That is, the cluster pattern with principal coefficients has the
“largest” exchange graph among cluster patterns with initial
exchange matrix B . Incidentally, the “smallest” exchange graph for
B is obtained from taking P = {1}.

But recall that, conjecturally, these exchange graphs all coincide
(Conjecture 2.1).
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X ’s and F ’s

Recall that we wrote Σt = (xt , yt ,Bt) for the labeled seed
associated to a vertex t of Tn and xt = (xi ;t , . . . , xn;t),
In the principal coefficients case, each xi ;t is a rational function in
x1, . . . , xn, y1, . . . , yn. We write

Xi ;t(x1, . . . , xn, y1, . . . , yn)

for this rational function.

We also define Fi ;t to be the rational function

Fi ;t(y1, . . . , yn) = Xi ;t(1, . . . , 1, y1, . . . , yn)

The Laurent Phenomenon (Theorem 2.4) says that Xi ;t is a
Laurent polynomial in (x1, . . . , xn) whose coefficients are integer
polynomials in (y1, . . . , yn). This implies that Fi ;t is an integer
polynomial called an F -polynomial.
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X ’s and F ’s (continued)

Theorem 2.9 (Fomin and Zelevinsky, CA IV)

Consider a cluster pattern over coefficient semifield P with initial
seed (x, y,B). Then the cluster variables are

xi ;t =
Xi ;t |F (x1, . . . , xn, y1, . . . , yn)

Fi ;t |P(y1, . . . , yn)
.

This formula exhibits a separation of additions phenomenon:

◮ In the numerator, we evaluate Xi ;t as a rational function in F
(the field of rational functions in x with coefficients in QP).

◮ In the denominator, we evaluate Fi ;t as a polynomial in P,
using the auxiliary addition ⊕.
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X ’s and F ’s (continued)

xi ;t =
Xi ;t |F (x1, . . . , xn, y1, . . . , yn)

Fi ;t |P(y1, . . . , yn)
.

◮ In the numerator, we evaluate Xi ;t as a rational function in F .
◮ In the denominator, we evaluate Fi ;t as a polynomial in P.
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X ’s and F ’s (continued)

xi ;t =
Xi ;t |F (x1, . . . , xn, y1, . . . , yn)

Fi ;t |P(y1, . . . , yn)
.

◮ In the numerator, we evaluate Xi ;t as a rational function in F .
◮ In the denominator, we evaluate Fi ;t as a polynomial in P.
◮ Actually, to evaluate Fi ;t as a polynomial in P, we need

Conjecture 2.5, which says that Xi ;t is a Laurent polynomial
in (x1, . . . , xn) whose coefficients are nonnegative integer
polynomials in (y1, . . . , yn). This implies that Fi ;t is a
polynomial with nonnegative integer coefficients.
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X ’s and F ’s (continued)

xi ;t =
Xi ;t |F (x1, . . . , xn, y1, . . . , yn)

Fi ;t |P(y1, . . . , yn)
.

◮ In the numerator, we evaluate Xi ;t as a rational function in F .
◮ In the denominator, we evaluate Fi ;t as a polynomial in P.
◮ Actually, to evaluate Fi ;t as a polynomial in P, we need

Conjecture 2.5, which says that Xi ;t is a Laurent polynomial
in (x1, . . . , xn) whose coefficients are nonnegative integer
polynomials in (y1, . . . , yn). This implies that Fi ;t is a
polynomial with nonnegative integer coefficients.

◮ However, with Conjecture 2.5 unproven, the formula for xi ;t
still makes sense: The function Xi ;t is defined by iterating
exchange relations, each of which has positive coefficients. If
we never “cancel” common factors from numerator and
denominator, we obtain a subtraction-free expression for Xi ;t .
This leads to a subtraction-free (rational!) expression for F ,
which we can evaluate as a rational function in P. 33



g-vectors

Laurent phenomenon implies: Xi ;t lives in the ring of Laurent
polynomials in x, with coefficients integer polynomials in y.

We define a new Zn-grading of this ring:

deg(xi) = ei , deg(yj ) = −bj

where ei is the standard basis vector and bj is the j th column of B .

Proposition 2.10 (Fomin and Zelevinsky, CA IV)

Each Xi ;t is homogenous with respect to the new grading.

This is easy for t adjacent to t0 in Tn. E.g.:




0 0 3 1
0 0 −1 0
−1 2 0 1
−3 0 −1 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



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g-vectors (continued)

The degree of Xi ;t is the integer vector gi ;t , called the g-vector.
Together, the g-vector and the F -polynomial determine the cluster
variable (in arbitrary coefficients).

The following is a corollary of Theorem 2.9 (separation of
additions) and Proposition 2.10 (homogeneity of cluster variables).

Corollary 2.11 (Fomin and Zelevinsky, CA IV)

Consider a cluster pattern over coefficient semifield P with initial
seed (x, y,B). Then the cluster variables are

xi ;t =
Fi ;t |F (ŷ1, . . . , ŷn)

Fi ;t |P(y1, . . . , yn)
xgi ;t .

Each ŷj is the (degree-0 homogeneous) element yj
∏n

i=1 x
bij
i .

(These entries are not btij , but rather bij .)

The monomial xgi ;t is xg11 · · · x
gn
n , where gi ;t = (g1, . . . , gn).
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Exercises

Exercise 2b
Verify the principal coefficients example by hand (+ computer?).

Exercise 2c
In the principal coefficients example, compute g-vectors and
F -polynomials. Verify that Theorem 2.9 and Corollary 2.11 recover
the general coefficients that you computed in Exercise 1f.

Exercise 2d
Use the (principal coefficients case of the) exchange relations to

verify the following relations, which hold when t
k

—— t ′.

Fk;tFk;t′ =

n∏

j=1

y
[bt

n+j, k
]+

j

n∏

i=1

F
[bt

i, k
]+

i ;t +

n∏

j=1

y
[−bt

n+j, k
]+

j

n∏

i=1

F
[−bt

i, k
]+

i ;t

gk;t′ = −gk;t +
n∑

i=1

[btik ]+ gi ;t −
n∑

j=1

[btn+j , k ]+ bj

How do Fi ;t & Fi ;t′ relate if i 6= k? Same question for gi ;t & gi ;t′ .
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Some conjectures

Conjecture 2.12

Each F -polynomial has constant term 1.

Conjecture 2.13

Each F -polynomial has a unique monomial of maximal degree. It
has coefficient 1 and is divisible by all the other monomials.

Conjecture 2.14

For each t ∈ Tn, the vectors gi ;t : i ∈ [n] are a Z-basis for Zn.

Conjecture 2.15

Different cluster monomials have different g-vectors.

We can interpret this as the statement that g-vectors define a fan.
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Some conjectures (continued)

Conjecture 2.16

In a principal-coefficients cluster pattern, if seeds have equivalent
extended exchange matrices, then the seeds are equivalent.

A collection of integer vectors is called sign coherent if, for each
i ∈ [n], the i th components of the vectors all have weakly the same
sign.

Conjecture 2.17

Given a cluster pattern with principal coefficients, for each t ∈ Tn,
the rows of the bottom half of B̃t are sign-coherent.

Conjecture 2.18

For each t ∈ Tn, the g-vectors gi ;t : i ∈ [n] are sign-coherent.

Various of these conjectures are equivalent to each other.

Many of them are proved in special cases. Most, for example, are
known for skew-symmetric B by results of the paper (QP2)
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Cluster algebras of finite type

A cluster algebra is of finite type if it has only finitely many
distinct cluster variables. We have seen two examples. (The
exchange graph was a 5-cycle and a 6-cycle respectively.)

The obvious questions are:

Which initial data lead to cluster algebras of finite type?

Is the answer dependent on coefficients, or only on B?

The next lecture will be devoted to answering this question by
explaining results of (CA II).

As part of the answer, we will describe Fomin and Zelevinsky’s
combinatorial model for exchange graphs of finite type, in terms of
root systems. This model and another type of model, in terms of
(finite/infinite) reflection groups and (Kac-Moody) root systems,
are the subject of the remaining lectures.
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Combinatorial models for cluster complexes

What could/should we expect from a combinatorial model?

Ideally, we want a combinatorial model of the exchange graph
and/or cluster complex, with a combinatorial recipe for explicitly
writing down the seeds: exchange matrices, coefficients, and
cluster variables. (Even if we accomplish this, we’re not really
necessarily modeling the cluster algebra by doing this. We’re only
modeling the cluster pattern.)

Less ideally, we might settle for a model that got the exchange
graph right and explicitly gave us denominator vectors and/or
g-vectors and/or principal coefficients.

One might do the same thing replacing “combinatorial” by
“algebraic” or “geometric” throughout. This is an active area of
research.

In each case, the word “explicitly” is key.
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Exercises, in order of priority

There are more exercises than you can be expected to complete in
a day. Please work on them in the order listed. Exercises on the
first line constitute a minimum goal. It would be profitable to work
all of the exercises eventually.

2b, 2c, 2d,

2a.
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