
This week’s lectures

1. A tale of two matrices

2. Cluster complexes and their parametrizations

3A. Generalized associahedra

3B. Generalized Cartan matrices and Kac-moody root systems

4A. Combinatorial frameworks for cluster algebras

4B. Coxeter groups

5. Cambrian frameworks for cluster algebras

1



Lecture 1: A tale of two matrices
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Introduction

Exchange matrices and cluster algebras

Cartan matrices and root systems
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Introduction

The heart of a cluster algebra: an exchange matrix B

◮ Integer entries

◮ 0’s on diagonal

◮ Strictly sign-skew-symmetric

◮ Skew-symmetrizable

(A“normalized” cluster algebra with “skew-symmetrizable” B)

The heart of a root system: a Cartan matrix A

◮ Integer entries

◮ 2’s on diagonal

◮ Strictly sign-symmetric, negative entries off-diagonal

◮ Symmetrizable

(A Kac-Moody root system with “symmetrizable” Cartan matrix.)
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Introduction (continued)

Our starting point: Strong superficial resemblance between
exchange matrices B and Cartan matrices A.

More precisely:
Given a B , we easily recover an A:
Put 2’s on diagonal; make all nonzero off-diagonal entries negative.









0 0 −3 3
0 0 1 0
1 −2 0 1
−1 0 −1 0









7→









2 0 −3 −3
0 2 −1 0
−1 −2 2 −1
−1 0 −1 2









This is a many-to-one map.
Think: B is A plus additional data (an “orientation.”).

We will call A the Cartan companion of B .
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Introduction (concluded)

Is the resemblance coincidental?

5



Introduction (concluded)

Is the resemblance coincidental?

No! It appears to be essential, and it is also useful:

◮ generalized associahedra and cluster algebras of finite type.

◮ Cambrian combinatorics.

◮ double Bruhat cells.

◮ quiver representations (via Gabriel’s Theorem and
generalizations).

◮ . . .

This week, we’ll talk about the first two of these.
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Cluster algebras, in the vaguest sense

Setting: A field F of rational functions in n variables.

Start with elements x1, . . . xn of F and some “combinatorial data.”

This ({Data}, x1, . . . xn) is called the initial seed.
The rational functions x1, . . . xn are the cluster variables.

Mutation: an operation that takes a seed and gives a new seed.

◮ There are n “directions” for mutation.

◮ Mutation does two things:
◮ switches out one cluster variable, replaces it with a new one;
◮ alters the combinatorial data.

The result is a new seed.

◮ The combinatorial data tells you how to do mutations.

◮ Mutation is involutive.

6



Cluster algebras, in the vaguest sense (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.
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The cluster algebra for the given initial seed is the subalgebra of F
generated by all cluster variables. (subalgebra: we get to multiply
and add/subtract arbitrarily, but no division.)
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Cluster algebras, in the vaguest sense (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.

x1, x2, x3

�



�
	

x ′1, x2, x3

�



�
	

�
�
�

@
@

@

x1, x2, x
′

3

�



�
	x1, x

′

2, x3

�



�
	

@@��

@@��

The cluster algebra for the given initial seed is the subalgebra of F
generated by all cluster variables. (subalgebra: we get to multiply
and add/subtract arbitrarily, but no division.)
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Exchange matrices

A skew-symmetrizable exchange matrix is
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Exchange matrices

An exchange matrix is a skew-symmetrizable n× n matrix
B = (bij) with integer entries.

Skew-symmetrizable means that there exist positive, real
δ1, . . . , δn such that

δibij = −bjiδj for all i , j ∈ [n].

That is, if D = diag(δ1, . . . , δn), then DB is skew-symmetric:

DB = −BTD.

This implies strict sign-skew symmetry, which implies 0’s on
diagonal.
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The coefficient semifield

A semifield P = (P,⊕, ·):

(P, ·) is an abelian (“multiplicative”) group.
⊕ is an “auxiliary” addition:

commutative
associative
multiplication distributes over ⊕.

Informally: You can always divide, but you can’t subtract.

Group rings over (the multiplicative group of) P:

ZP is the set of formal linear combinations of elements of P,
with coefficients in Z. (Similarly, QP.) Addition is by the obvious
definition, multiplication is by linearly extending the group product.

The following exercise implies that ZP and QP are domains.

Exercise 1a
Show that P is torsion-free as a multiplicative group. Why doesn’t
your argument prove a similar result about fields?
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The ambient field

Let F be (a field isomorphic to) the field of rational functions in n
independent variables, with coefficients in QP.

What does this mean?

Elements are p
q
, where p and q are both finite sums of terms

ryxe11 · · · xenn

where r ∈ Q and y ∈ P and ei ’s are nonnegative integers.

Note that ⊕ is not a part of the algebraic structure of F .
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Labeled seeds

A labeled seed is a triple (x, y,B), where

◮ B is an n × n exchange matrix,

◮ y = (y1, . . . , yn) is a tuple of elements of P called coefficients,
and

◮ x = (x1, . . . , xn) is a tuple (or “cluster”) of algebraically
independent elements of F called cluster variables.

The pair (y,B) is the “combinatorial data” alluded to earlier,
called a Y-seed.

The most important definition is seed mutation, in which

Using B , we define a new exchange matrix.

Using B and y, we define a new coefficient tuple.

Using B , y and x, we define a new cluster.
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Matrix mutation

Let B = (bij ) be an exchange matrix. Write [a]+ for max(a, 0).
The mutation of B in direction k is the matrix B ′ = µk(B) with

b′ij =

{

−bij if k ∈ {i , j};
bij + sgn(bkj )[bikbkj ]+ otherwise.

Example:







0 0 3 1
0 0 −1 0
−1 2 0 1
−3 0 −1 0







µ3←→







0 6 −3 4
−1 0 1 0
1 −2 0 −1
−4 0 1 0







Exercise 1b
Show that µk(B) is an exchange matrix.

Exercise 1c
Show that matrix mutation can be equivalently defined by

b′ij =

{

−bij if k ∈ {i , j};
bij + [−bik ]+bkj + bik [bkj ]+ otherwise.
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Coefficient mutation

Let (y,B) be a Y-seed. The mutation of (y,B) in direction k is
the Y-seed (y′,B ′) = µk(y,B), where B ′ = µk(B) and y′ is the
tuple (y ′1, . . . , y

′
n) given by

y ′j =







y−1
k

if j = k ;

yjy
[bkj ]+
k

(yk ⊕ 1)−bkj if j 6= k .

Recall that [a]+ means max(a, 0).
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Mutation of clusters (Exchange relations)

Let (x, y,B) be a labeled seed. The mutation of (x, y,B) in
direction k is the labeled seed (x′, y′,B ′) = µk(x, y,B), where
(y′,B ′) is the mutation of (y,B) and where x′ is the cluster
(x ′1, . . . , x

′
n) with x ′j = xj for j 6= k , and

x ′k =
yk

∏

x
[bik ]+
i +

∏

x
[−bik ]+
i

(yk ⊕ 1)xk
.

These relations are called exchange relations.

Exercise 1d
Show that each mutation µk is an involution on labeled seeds.

Remark:

What do the signs in B really mean? All of the exponents in the
exchange relations are positive! The signs in B really only indicate
which term in the exchange relation xi belongs in.

(That’s not quite true in the coefficient mutation, but it becomes
true in the most important special case, as we’ll discuss tomorrow.) 14



The regular n-ary tree

In the vague description of cluster algebras, we said “collect all the
cluster variables which appear.” We need a more precise way to
“collect” them.

The n-regular tree Tn is the tree (graph with no cycles) with n
edges emanating from each vertex. Each edge is labeled 1, 2, . . . ,
or n, with each edge having exactly one edge with each label.

n = 1: •————• with label 1.

n = 2: Infinite path · · · ——•———•———•—— · · ·
with labels alternating 1 and 2.

n = 3: Infinite “fractal tree:”
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Patterns (Cluster patterns and Y-patterns)

Think of Tn as a way of keeping track of (and labeling) every
possible sequence of mutations, given that the mutations are
involutive.

Choose a vertex t0 of Tn. Given an initial labeled seed, we will
recursively define a map from vertices of Tn to labeled seeds. The
vertex t will map to the labeled seed Σt = (xt , yt ,Bt).

Send t0 to the initial labeled seed (x, y,B). If t
k

—— t ′, then we
require that Σt and Σt′ are related by the mutation µk .

This assignment is called
a cluster pattern.

The assignment t 7→ (yt ,Bt)
is called a Y-pattern.
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Some notation with a bit more detail

To specify individual cluster variables, coefficients, and matrix
entries in the seed Σt = (xt , yt ,Bt), we will write

xt = (xi ;t , . . . , xn;t), yt = (y1;t , . . . , yn;t), and Bt = (btij ).

Thus if t
k

—— t ′, the requirement is

bt
′

ij =

{

−btij if k ∈ {i , j};
btij + sgn(btkj)[b

t
ikb

t
kj ]+ otherwise.

yj ;t′ =







y−1
k;t if j = k ;

yj ;ty
[bt

kj
]+

k;t (yk;t ⊕ 1)−bt
kj if j 6= k .

xk;t′ =
yk;t

∏

x
[bt

ik
]+

i ;t +
∏

x
[−bt

ik
]+

i ;t

(yk;t ⊕ 1)xk;t
.
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The cluster algebra (Finally!)

Choose an initial seed (x, y,B). That is:

Choose x to be an algebraically independent n-tuple of elements
of F . Almost always: May as well choose x = (x1, . . . , xn).

Choose arbitrary initial coefficients y = (y1, . . . , yn).

Construct the cluster pattern with Σt = (x, y,B).

The cluster algebra A(x, y,B) associated to the initial labeled seed
(x, y,B) is the algebra generated by the set

{xi ;t : i = 1, . . . , n and t is a vertex of Tn}.
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Example

Let B =

[

0 2
−1 0

]

and take P = {1}, so that y = (1, 1).

[

0 2
−1 0

]

[x1 x2]

µ1←→

[

0 −2
1 0

]

[

x2+1
x1

x2

]

µ2←→

[

0 2
−1 0

]

[

x2+1
x1

x21+(x2+1)2

x21 x2

]

l µ2 l µ1

[

0 −2
1 0

]

[

x1
x21+1
x2

]

µ1←→

[

0 2
−1 0

]

[

x21+x2+1
x1x2

x21+1
x2

]

µ2←→

[

0 −2
1 0

]

[

x21+x2+1
x1x2

x21+(x2+1)2

x21x2

]

Cluster variables: x1, x2,
x2+1
x1

,
x21+(x2+1)2

x21 x2
,

x21+x2+1
x1x2

,
x21+1
x2

19



Exercises

Exercise 1e
Verify the previous example by hand.

Exercise 1f
Redo the example with P a general semifield, and initial coefficients
y = (y1, y2). Find all labeled seeds (xt , yt ,Bt) in the exchange
pattern. Are there still finitely many distinct labeled seeds?

Exercise 1g

Show that, for any cluster in a cluster pattern, no cluster variable
occurs twice. (Hint: prove something much, much stronger. In
fact, if you read the directions very strictly in a previous exercise,
you should have proved the stronger thing already.)

Exercise 1h
Suppose t

k
—— t ′. Let xk and x ′k be the cluster variables in xt and

xt′ that are related by the exchange relation. Show that xk 6= x ′k
(Hint: if you did the previous exercise the way I have in mind, this
becomes easy.) 20



Cluster algebras in the mathematical universe

• Defined by Fomin and Zelevinsky, 2000, motivated by the
study of total positivity of matrices (and more generally,
totally positive varieties).

• Primordial example (the pentagon recurrence) may have been
known to Abel, who studied the pentagonal identity for the
dilogarithm.

• Have since been discovered/applied in various areas, including
• algebraic and geometric combinatorics
• algebraic geometry (Grassmannians, tropical analogues)
• discrete dynamical systems (rational recurrences)
• higher Teichmüller theory
• PDE (KP solitons)
• Poisson geometry
• representation theory of quivers
• Y -systems in thermodynamic Bethe Ansatz

• Main tools currently being applied include representation
theory of quivers, triangulations of compact surfaces,
combinatorics of root systems/Coxeter groups, and more.

21



Questions?

22



Stand and stretch.
(2 minutes)
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Reflections

Given a nonzero vector α in Euclidean space, the reflection in the
hyperplane orthogonal to α is σα, given by

σα(x) = x − 2 ·
〈

α
√

〈α,α〉
, x

〉

· α
√

〈α,α〉
= x − 2

〈α, x〉
〈α,α〉α

β

α

σα(β)

−2 〈α,x〉
〈α,α〉α

Define α∨= 2 α
〈α,α〉 . Then σα(x) = x − 〈α∨, x〉α.

24



Root systems

A (finite crystallographic) root system is a collection Φ of nonzero
vectors (called roots) such that:

(i) For each root β, the reflection σβ permutes Φ.

(ii) Given a line L through the origin,
either L ∩ Φ is empty or L ∩Φ = {±β} for some β.

(iii) 〈α∨, β〉 ∈ Z, for each α, β ∈ Φ.

Recall α∨= 2 α
〈α,α〉 , and σα(x) = x − 〈α∨, x〉α.

So (iii) says that reflections defined by roots are described by
integral matrices in terms of any basis of roots.

If we don’t require (iii), we get a (not-necessarily
“crystallographic”) finite root system. These don’t seem to have
much to do with cluster algebras. We will require (iii) but we
won’t adopt the adjective “crystallographic.”

25



Root systems of rank 2

The rank of a root system is the dimension of its linear span.
These are the root systems of rank 2 (up to scaling and rotation):

A1 × A1 A2

B2 G2 26



Exercises

Exercise 1i
Verify that the collections of vectors shown on the previous slide
are indeed root systems.

It is acceptable to do Exercise 1i visually, without writing anything.
Condition (ii) is easy. To get (i) and (iii), you can just check that,
for any α, β ∈ Φ, the vector σα(β) is in Φ and differs from β by an
integer multiple of α.

Exercise 1j

Show that the four root systems shown on the previous page are
the only root systems of rank 2, up to scaling and rotation.

To get you started on Exercise 1j, note that up to scaling and

rotation, we may as well have the root α =

[

1
0

]

in Φ. What vectors

β have the property that 〈α∨, β〉 and 〈β∨, α〉 are both integers?
27



A rank-3 example

B3
28



More rank-3 examples

A3 C3

(A3, B3 and C3 are the only “irreducible” examples.)

29



Exercises

Exercise 1k
1. Show that {ej − ei : i , j ∈ [n + 1], i 6= j} is a rank-n root
system. (It is called An.)

2. Show that {±ei : i ∈ [n]} ∪ {±ej ± ei : i , j ∈ [n], i < j} is a
rank-n root system. (It is called Bn.)

3. Show that {±2ei : i ∈ [n]} ∪ {±ej ± ei : i , j ∈ [n], i < j} is a
rank-n root system. (It is called Cn.)

4. Show that {±ej ± ei : i , j ∈ [n], i < j} is a rank-n root system.
(It is called Dn.)

These will be repetitive, so re-use your work. A different one:

Exercise 1l
Show that the following is a rank-4 root system. (It is called F4.)

{±ej ± ei : i , j ∈ [4], i < j}∪{±ei : i ∈ [4]}∪
{

1

2
(±e1 ± e2 ± e3 ± e4)

}

30



Why root systems? I

Root systems were defined and classified in the work of Cartan and
Killing, starting in the 1890’s, as part of the classification of
complex simple Lie algebras (and then of simple Lie groups). This
eventually led to Weyl’s study of the associated reflection groups.
The point:

finite-dimensional complex simply-connected semisimple Lie groups
l

finite-dimensional complex semisimple Lie Algebras
l

root systems

We’ll see that root systems are completely classified (the famous
Cartan-Killing classification).
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Why root systems? II

Finite reflection groups (finite transformation groups generated by
reflections) correspond to not-necessarily-crystallographic root
systems (i.e. with condition (iii) omitted).

The symmetry groups of regular polytopes are reflection groups, so
primordial examples (symmetry groups of the Platonic solids) were
known to the Greeks, without the notion of a “group.”

Finite reflection groups appear, around 1890, in Kantor’s
classification of subgroups of the Cremona group of birational
transformations of the complex projective plane.

Finite reflection groups correspond to the abstractly defined finite
Coxeter groups. These were defined and classified by Coxeter in
1935. The classification extends the Cartan-Killing classification.

Reflection groups appear in many places, e.g. quadratic/modular
forms, low dimensional topology/singularity theory, etc.

More later... For now, some pictures.
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Finite Reflection group examples

A2 I2(5)
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Finite Reflection group examples (continued)

B3 H3
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Positive and negative roots

Choose a linear functional not zero on any root.

Why can we do this?
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hyperplanes in dual space.

35



Positive and negative roots

Choose a linear functional not zero on any root.

Why can we do this? We just need to avoid finitely many
hyperplanes in dual space.

By this choice, the functional is strictly positive or strictly negative
on every root. So we’ll use the functional to decompose Φ into
positive and negative roots.

Φ = Φ+ ∪ Φ− (disjoint union)

This choice is unique up to symmetry. Why?
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Positive and negative roots

Choose a linear functional not zero on any root.

Why can we do this? We just need to avoid finitely many
hyperplanes in dual space.

By this choice, the functional is strictly positive or strictly negative
on every root. So we’ll use the functional to decompose Φ into
positive and negative roots.

Φ = Φ+ ∪ Φ− (disjoint union)

This choice is unique up to symmetry. Why?

Dual hyperplanes to Φ are a very symmetric collection.
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Simple roots

Define Π to be the unique minimal set of positive roots such that
any positive root is in the positive linear span of Π. The roots in Π
are called the simple roots.

Why can we do this?

36



Simple roots

Define Π to be the unique minimal set of positive roots such that
any positive root is in the positive linear span of Π. The roots in Π
are called the simple roots.

Why can we do this? This is basic convexity theory. We’re asking
for the extreme rays of a finitely generated cone.
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Simple roots

Define Π to be the unique minimal set of positive roots such that
any positive root is in the positive linear span of Π. The roots in Π
are called the simple roots.

Why can we do this? This is basic convexity theory. We’re asking
for the extreme rays of a finitely generated cone.

Some other facts:

The simple roots are linearly independent. The number of simple
roots equals the rank of Φ.

The angles between simple roots are never acute.

Π determines Φ: Any root in Φ can be obtained from some root in
Π by applying a sequence of reflections with respect to a root in Π.

These facts are not hard, but need proof.
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Exercise

Exercise 1m
For each part of Exercise 1k, we propose a set of positive roots
below. Verify that this is a valid choice. Also, find the
corresponding set of simple roots.

1. {ej − ei : i , j ∈ [n + 1], i < j}
2. {ei : i ∈ [n]} ∪ {ej ± ei : i , j ∈ [n], i < j}
3. {2ei : i ∈ [n]} ∪ {ej ± ei : i , j ∈ [n], i < j}
4. {ej ± ei : i , j ∈ [n], i < j}
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Examples: Positive and simple roots

α1

α2

α1

α2

A1 × A1 A2

α1

α2

α1

α2

B2 G2
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Examples: Positive and simple roots

α1

α2

α3

α1

α2

α3

B3 C3
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Cartan matrices (Finally!)

The Cartan matrix for a root system Φ is the matrix

[〈

α∨, β
〉]

α,β∈Π
.

The entries are the coefficients that show up when you reflect a
simple root with respect to another simple root.

The Cartan matrix completely determines Φ. Why?
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Cartan matrices (Finally!)

The Cartan matrix for a root system Φ is the matrix

[〈

α∨, β
〉]

α,β∈Π
.

The entries are the coefficients that show up when you reflect a
simple root with respect to another simple root.

The Cartan matrix completely determines Φ. Why?

Because if you know 〈α∨, β〉 and 〈β∨, α〉, then you know the angle
between α and β and the relative lengths of α and β.

Therefore, you know Π up to scaling and rotation, which
determines Φ up to scaling and rotation.
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Cartan matrices (Finally!)

The Cartan matrix for a root system Φ is the matrix

[〈

α∨, β
〉]

α,β∈Π
.

The entries are the coefficients that show up when you reflect a
simple root with respect to another simple root.

The Cartan matrix completely determines Φ. Why?

Because if you know 〈α∨, β〉 and 〈β∨, α〉, then you know the angle
between α and β and the relative lengths of α and β.

Therefore, you know Π up to scaling and rotation, which
determines Φ up to scaling and rotation.

This isn’t really quite right, but it is the right intuition, and it’s
wrong in a very precise, limited way, that we’ll see next.
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Cartan matrices of rank-two root systems

α1

α2

α1

α2

[

2 0
0 2

] [

2 −1
−1 2

]

α1

α2

α1

α2

[

2 −2
−1 2

] [

2 −3
−1 2

]
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Cartan matrices (continued)

When simple roots are orthogonal, the Cartan matrix reflects that,
but may not determine their relative lengths.

When two simple roots α1, α2 ∈ Π are not orthogonal, how does
the Cartan matrix determine their angle and relative lengths?
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Cartan matrices (continued)

When simple roots are orthogonal, the Cartan matrix reflects that,
but may not determine their relative lengths.

When two simple roots α1, α2 ∈ Π are not orthogonal, how does
the Cartan matrix determine their angle and relative lengths?

〈

α∨, β
〉

= 2
〈α, β〉
〈α,α〉 ,

〈

β∨, α
〉

= 2
〈α, β〉
〈β, β〉 .
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Cartan matrices (continued)

When simple roots are orthogonal, the Cartan matrix reflects that,
but may not determine their relative lengths.

When two simple roots α1, α2 ∈ Π are not orthogonal, how does
the Cartan matrix determine their angle and relative lengths?

〈

α∨, β
〉

= 2
〈α, β〉
〈α,α〉 ,

〈

β∨, α
〉

= 2
〈α, β〉
〈β, β〉 .

〈α,α〉
〈β, β〉 =

〈β∨, α〉
〈α∨, β〉 .
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Cartan matrices (continued)

When simple roots are orthogonal, the Cartan matrix reflects that,
but may not determine their relative lengths.

When two simple roots α1, α2 ∈ Π are not orthogonal, how does
the Cartan matrix determine their angle and relative lengths?

〈

α∨, β
〉

= 2
〈α, β〉
〈α,α〉 ,

〈

β∨, α
〉

= 2
〈α, β〉
〈β, β〉 .

〈α,α〉
〈β, β〉 =

〈β∨, α〉
〈α∨, β〉 .

The angle θ between α and β is non-acute and has

cos2(θ) =
〈α, β〉2

〈α,α〉〈β, β〉 =
1

4

〈

β∨, α
〉〈

α∨, β
〉

.
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Cartan matrices (concluded)

A root system is Φ reducible if it is the disjoint union of two
subsets Φ1 and Φ2 such that every root in Φ1 is orthogonal to
every root in Φ2. In this case, Φ1 and Φ2 are both root systems,
and we can obtain simple roots for Φ by taking the union of simple
roots Π1 for Φ1 and Π2 for Φ2.

The correct statement is: The Cartan matrix determines angles.
The Cartan matrix determines relative lengths within each
irreducible component of Φ.

Furthermore, the Cartan matrix determines the irreducible
components. We find them by simultaneously permuting rows and
columns to put the Cartan matrix in block-diagonal form. For
example:





2 0 −1
0 2 0
−1 0 2



 −→





2 −1 0
−1 2 0
0 0 2



 “=” A2 × A1
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Some properties of Cartan matrices

Let A = (aij) be an n× n Cartan matrix. Then

(i) aii = 2 for every i ∈ [n];

(ii) aij ≤ 0 for i 6= j

(iii) aij = 0 if and only if aji = 0.

(iv) There exist positive, real δ1, . . . , δn such that

δiaij = ajiδj for all i , j ∈ [n].

Recall that A is the matrix [〈α∨
i , αj 〉]αi ,αj∈Π

.

Condition (i): By definition α∨= 2 α
〈α,α〉 .

Condition (ii): Angles between simple roots are never acute.

Condition (iii): Scaling doesn’t affect orthogonality.

Condition (iv): Take δi =
〈αi ,αi 〉

2 . Then δiaij and ajiδj both equal
〈αi , αj 〉. Condition (iv) says that A is symmetrizable.
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Dynkin diagrams for Cartan matrices

α1

α2

α1

α2

[

2 0
0 2

] [

2 −1
−1 2

]

α1

α2

α1

α2

[

2 −2
−1 2

] [

2 −3
−1 2

]
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Dynkin diagrams for Cartan matrices (continued)

Vertices ↔ Simple roots

Edges or non-edges:

if roots are orthogonal

if angle is 2π
3 (same length)

if angle is 3π
4 (length ratio is

√
2)

if angle is 5π
6 (length ratio is

√
3)

Convention: Arrows point downhill (from longer root to shorter
root).

Note: Irreducible components of root systems correspond to
connected components of Dynkin diagrams.
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Dynkin diagrams for irreducible finite root systems

What are the possible Cartan matrices for finite root systems
(AKA Cartan matrices of finite type)?

Exactly those whose Dynkin diagrams have connected components
on the following list. This is the famous Cartan-Killing
classification.

An (n ≥ 1) t t t t t t t t

Bn (n ≥ 2) t t t t t t t t

Cn (n ≥ 3) t t t t t t t t

Dn (n ≥ 4)
HHH

���t t t t t t t
t
t
More on next page...
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Dynkin diagrams for irreducible finite root systems (cont’)

E6

t
t t t t t

E7

t
t t t t t t

E8

t
t t t t t t t

F4 t t t t

G2
t t
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Exercises, in order of priority

There are more exercises than you can be expected to complete in
a day. Please work on them in the order listed. Exercises on the
first line constitute a minimum goal. It would be profitable to work
all of the exercises eventually.

1b, 1d, 1e, 1i, 1k.1,

1k.2–4, 1m, 1f, 1g, 1h, 1j, 1l, 1c, 1a.
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