Dominance phenomena: Mutation, scattering and cluster algebras

Nathan Reading arXiv:1802.10107

NC State University

Vingt ans d'algèbres amassées CIRM, Luminy 21 mars 2018

Dominance phenomena Refinement Ring homomorphisms Section 1. Dominance phenomena

Dominance relations between exchange matrices

$$B = [b_{ij}]$$
 dominates $B' = [b'_{ij}]$ if, for all i, j ,

- b_{ij} and b'_{ij} weakly agree in sign (i.e. $b_{ij}b'_{ij} \geq 0$) and
- $|b_{ij}| \geq |b'_{ij}|$.

Example.
$$B = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}$$
 $B' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

Question: What are the consequences of dominance for structures that take an exchange matrix as input?

I'll address that question by presenting some "dominance phenomena."

Four phenomena

Suppose B and B' are exchange matrices and B dominates B'. In many cases:

Phenomenon I

The identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear.

Phenomenon II

 \mathcal{F}_B refines $\mathcal{F}_{B'}$. (mutation fans)

Phenomenon III

ScatFan(B) refines ScatFan(B'). (cluster scattering fans)

Phenomenon IV

There is an injective, **g**-vector-preserving ring homomorphism from $A_{\bullet}(B')$ to $A_{\bullet}(B)$. (principal coefficients cluster algebras)

Four phenomena

Suppose B and B' are exchange matrices and B dominates B'. In many cases (not the same cases for all four phenomena):

Phenomenon I

The identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear.

Phenomenon II

 \mathcal{F}_B refines $\mathcal{F}_{B'}$. (mutation fans)

Phenomenon III

ScatFan(B) refines ScatFan(B'). (cluster scattering fans)

Phenomenon IV

There is an injective, **g**-vector-preserving ring homomorphism from $A_{\bullet}(B')$ to $A_{\bullet}(B)$. (principal coefficients cluster algebras)

Why phenomena?

- There are counterexamples.
- I don't know necessary and sufficient conditions for the phenomena.
- Yet there are theorems that give compelling and surprising examples.

Goal: Establish that something real and nontrivial is happening, with an eye towards two potential benefits:

- Researchers from the various areas will apply their tools to find more examples, necessary and/or sufficient conditions for the phenomena, and/or additional dominance phenomena.
- The phenomena will lead to insights in the various areas where matrix mutation, scattering diagrams, and cluster algebras are fundamental.

In many cases, the identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear. One way to understand this:

In many cases, the identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear. One way to understand this:

In many cases, the identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear. One way to understand this:

A mutation-linear map \mathbb{R}^B to $\mathbb{R}^{B'}$ induces a functor (geometric cluster algebras for B, specialization) \downarrow (geometric cluster algebras for B', specialization)

1. Dominance phenomena

In many cases, the identity map from \mathbb{R}^B to $\mathbb{R}^{B'}$ is mutation-linear.

One way to understand this (and I won't say more here):

A mutation-linear map \mathbb{R}^B to $\mathbb{R}^{B'}$ induces a functor (geometric cluster algebras for B, specialization) \downarrow (geometric cluster algebras for B', specialization)

1. Dominance phenomena

Phenomena II and III (refinement of fans)

In many cases,

- the mutation fan \mathcal{F}_B refines the mutation fan $\mathcal{F}_{B'}$.
- the cluster scattering fan ScatFan(B) refines the cluster scattering fan ScatFan(B').

Aside: **Theorem** (R., 2017). A consistent scattering diagram with minimal support cuts space into a fan.

In finite type, both \mathcal{F}_B and ScatFan(B) coincide with the **g**-vector fan^T, the normal fan to a generalized associahedron.

Example: cyclohedron and associahedron.

2-cyclohedron & 2-associahedron

2-cyclohedron & 2-associahedron

Aside: Can we understand this on the level of triangulations?

3-cyclohedron & 3-associahedron: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

3-cyclohedron & 3-associahedron: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

3-cyclohedron & 3-associahedron: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

3-cyclohedron & 3-associahedron: $B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

Non-Example: $B = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}$ $B' = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$

These are normal fans to two different 3-associahedra.

In many cases, there is an injective, **g**-vector-preserving ring homomorphism from $\mathcal{A}_{\bullet}(B')$ to $\mathcal{A}_{\bullet}(B)$ (principal coefficients cluster algebras).

Remarks:

- Phenomenon is known* to occur for B acyclic of finite type.
- There is a nice description of the homomorphism (where it sends initial cluster variables and coefficients).
- In some cases, including acyclic finite type, the map sends cluster variables to cluster variables (or "ray theta functions" to ray theta functions).
- Sending cluster variables to cluster variables is suggested by Phenomena II and III (fan refinement).
- Coefficients—and specifically principal ones—are crucial.

Section 2. Refinement

Mutation maps $\eta_{\mathbf{k}}^{B}$

Let B be $\begin{bmatrix} B \\ \mathbf{a} \end{bmatrix}$ (i.e. B with an extra row $\mathbf{a} \in \mathbb{R}^n$).

For $\mathbf{k} = k_q, k_{q-1}, \dots, k_1$, define $\eta_{\mathbf{k}}^B(\mathbf{a})$ to be the last row of $\mu_{\mathbf{k}}(\widetilde{B})$.

Example: $B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & 1 \\ -1 & 0 \\ a_1 & a_2 \end{bmatrix} \quad \xrightarrow{\mu_1} \quad \begin{bmatrix} 0 & -1 \\ 1 & 0 \\ -a_1 & ? \end{bmatrix}$$

$$? = \begin{cases} a_2 & \text{if } a_1 \leq 0 \\ a_2 + a_1 & \text{if } a_1 \geq 0 \end{cases}$$

Define an equivalence relation \equiv^B on \mathbb{R}^n by setting

$$\mathbf{a}_1 \equiv^B \mathbf{a}_2 \quad \Longleftrightarrow \quad \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_1)) = \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_2)) \quad \forall \mathbf{k}.$$

 $\operatorname{sgn}(\mathbf{a})$ is the vector of signs (-1,0,+1) of the entries of \mathbf{a} .

B-classes: equivalence classes of \equiv^B .

B-cones: closures of *B*-classes.

Define an equivalence relation \equiv^B on \mathbb{R}^n by setting

$$\mathbf{a}_1 \equiv^B \mathbf{a}_2 \quad \Longleftrightarrow \quad \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_1)) = \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_2)) \quad \forall \mathbf{k}.$$

 $\operatorname{sgn}(\mathbf{a})$ is the vector of signs (-1,0,+1) of the entries of \mathbf{a} .

B-classes: equivalence classes of \equiv^B .

B-cones: closures of B-classes.

Right intuition, but not strictly correct:

B-cones are common domains of linearity of all mutation maps.

Define an equivalence relation \equiv^B on \mathbb{R}^n by setting

$$\mathbf{a}_1 \equiv^B \mathbf{a}_2 \quad \Longleftrightarrow \quad \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_1)) = \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_2)) \quad \forall \mathbf{k}.$$

sgn(a) is the vector of signs (-1,0,+1) of the entries of a.

B-classes: equivalence classes of \equiv^B .

B-cones: closures of B-classes.

Right intuition, but not strictly correct:

B-cones are common domains of linearity of all mutation maps.

Mutation fan for B:

The collection \mathcal{F}_B of all *B*-cones and all faces of *B*-cones.

Theorem (R., 2011). \mathcal{F}_B is a complete fan (possibly with infinitely many cones).

Define an equivalence relation \equiv^B on \mathbb{R}^n by setting

$$\mathbf{a}_1 \equiv^B \mathbf{a}_2 \quad \Longleftrightarrow \quad \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_1)) = \operatorname{sgn}(\eta_{\mathbf{k}}^B(\mathbf{a}_2)) \quad \forall \mathbf{k}.$$

 $\operatorname{sgn}(\mathbf{a})$ is the vector of signs (-1,0,+1) of the entries of \mathbf{a} .

B-classes: equivalence classes of \equiv^B .

B-cones: closures of B-classes.

Right intuition, but not strictly correct:

B-cones are common domains of linearity of all mutation maps.

Mutation fan for *B*:

The collection \mathcal{F}_B of all B-cones and all faces of B-cones.

Theorem (R., 2011). \mathcal{F}_B is a complete fan (possibly with infinitely many cones).

Theorem (R., 2017). ScatFan(B) refines \mathcal{F}_B .

Conjecture. For rank ≥ 3 , they coincide iff B mutation-finite.

2. Refinement

12

2. Refinement

12

Example: $B = \begin{bmatrix} 0 & 2 - 2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ (Markov quiver)

2. Refinement

13

Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ (Markov quiver)

Mutation fans are hard to construct in general, but in some cases, there are combinatorial models.

13

Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$ (Markov quiver)

Mutation fans are hard to construct in general, but in some cases, there are combinatorial models.

We'll discuss Phenomenon II in two models: Cambrian fans and surfaces (orbifolds).

13

Mutation fans in the surfaces model

Maximal cones in the mutation fan are given by triangulations and more general configurations that include closed curves.

(Shear coordinates of quasi-laminations)

Resecting a triangulated surface on an edge

Theorem. (R., 2013) Assuming the Null Tangle Property, B dominates B' and \mathcal{F}_B refines* $\mathcal{F}_{B'}$.

Null Tangle Property: Known for some surfaces, probably true for many more (or maybe all?).

Resecting a triangulated surface on an edge

Theorem. (R., 2013) Assuming the Null Tangle Property, B dominates B' and \mathcal{F}_B refines* $\mathcal{F}_{B'}$.

Null Tangle Property: Known for some surfaces, probably true for many more (or maybe all?).

* "rational parts" of these fans.

Resecting a triangulated surface on an edge

Theorem. (R., 2013) Assuming the Null Tangle Property, B dominates B' and \mathcal{F}_B refines* $\mathcal{F}_{B'}$.

Null Tangle Property: Known for some surfaces, probably true for many more (or maybe all?).

* "rational parts" of these fans.

Orbifold model: Extends surfaces model to cover more general non-skew-symmetric cases.

Shira Viel, 2017: Constructs mutation fan for an orbifold. She defines orbifold resection, and proves Phenomenon II. (E.g. cyclohedron fan refines associahedron fan.)

2. Refinement

15

Example

Resect arc 1 then arc 3.

Example: $B = \begin{bmatrix} 0 & 2 & -2 \\ -2 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix}$

 $\mathcal{F}_{B} \qquad \text{(torus)}$

2. Refinement

 \mathcal{F}_B (torus)

 $\mathcal{F}_{\mathcal{B}'}$ (annulus)

2. Refinement

 \mathcal{F}_B (torus) $\mathcal{F}_{\mathcal{B}'}$ (annulus)

2. Refinement

2. Refinement

2. Refinement

2. Refinement

2. Refinement

2. Refinement

Finite acyclic type: Cambrian fans

Each B defines a Cartan matrix A.

E.g.
$$B = \begin{bmatrix} 0 & 1 & 0 \\ -2 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \rightarrow A = \begin{bmatrix} 2 & -1 & 0 \\ -2 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$

Coxeter fan: Defined by the reflecting hyperplanes of the Coxeter group W associated to A. Maximal cones \leftrightarrow elements of W.

Cambrian fan: A certain coarsening of the Coxeter fan. Two ways to look at this:

- ullet Coarsen according to a certain lattice congruence on W.
- Coarsen according to the combinatorics of "sortable elements."

For S_n , this is the normal fan to the usual associahedron. (In general, generalized associahedron.)

Cambrian fans and mutation fans

For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams.

Cambrian fans and mutation fans

For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams.

Example (carried out incorrectly):

Cambrian fans and mutation fans

For B acyclic of finite type, \mathcal{F}_B is a Cambrian fan. (Key technical point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, \mathcal{F}_B refines $\mathcal{F}_{B'}$ if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance relations among Cartan matrices. So the theorem is a statement that refinement relations exist among Cambrian fans when we decrease edge-labels (or erase edges) on Coxeter diagrams.

Example (carried out correctly):

Lattice homomorphisms between Cambrian lattices

The Cambrian lattice Camb_B is:

- A partial order on maximal cones in the Cambrian fan F_B.
 The fan and the order interact very closely.
- A lattice quotient—and a sublattice—of the weak order on the finite Coxeter group associated to *B*.

To prove the refinement of fans:

- Show that there is a surjective lattice homomorphism from Camb_B to $\mathsf{Camb}_{B'}$.
- Appeal to general results on lattice homomorphisms and fans.

Theorem (R., 2012). Such a surjective lattice homomorphism exists for all acyclic, finite-type B, B' with B dominating B'.

Example: A_3 Tamari is a lattice quotient of B_3 Tamari

Lattice homomorphisms between weak orders

To find a surjective lattice homomorphism $Camb_B \rightarrow Camb_{B'}$:

Find a surjective lattice homomorphism between the corresponding weak orders.

Theorem (R., 2012). If (W, S) and (W', S) are finite Coxeter systems such that W dominates W', then the weak order on W' is a lattice quotient of the weak order on W.

Dominance here means that the diagram of W' is obtained from the diagram of W by reducing edge-labels and/or erasing edges.

Lattice homomorphisms between weak orders

To find a surjective lattice homomorphism $Camb_B \rightarrow Camb_{B'}$:

Find a surjective lattice homomorphism between the corresponding weak orders.

Theorem (R., 2012). If (W, S) and (W', S) are finite Coxeter systems such that W dominates W', then the weak order on W' is a lattice quotient of the weak order on W.

Dominance here means that the diagram of W' is obtained from the diagram of W by reducing edge-labels and/or erasing edges.

This theorem is the origin of the study of the dominance relation on exchange matrices.

A research theme: Lattice theory of the weak order on finite Coxeter groups "knows" a lot of combinatorics and representation theory.

Example: A_3 as a lattice quotient of B_3

Section 3. Ring homomorphisms

Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables.

If \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion

$$\{ \mathsf{rays} \ \mathsf{of} \ \mathcal{F}_{B'} \} \hookrightarrow \{ \mathsf{rays} \ \mathsf{of} \ \mathcal{F}_B \}$$

Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables.

If \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion

$$\{\text{rays of }\mathcal{F}_{B'}\}\hookrightarrow \{\text{rays of }\mathcal{F}_B\}$$

Let's look at a picture...

Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables.

If \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion

$$\{ \mathsf{rays} \ \mathsf{of} \ \mathcal{F}_{B'} \} \hookrightarrow \{ \mathsf{rays} \ \mathsf{of} \ \mathcal{F}_B \}$$

Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables.

If \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion

$$\{\text{rays of }\mathcal{F}_{B'}\}\hookrightarrow \{\text{rays of }\mathcal{F}_B\}$$

Therefore there is a natural injective map on cluster variables.

Rays of the mutation fan \mathcal{F}_B are in bijection with cluster variables.

If \mathcal{F}_B refines $\mathcal{F}_{B'}$, there is an inclusion

$$\{\text{rays of } \mathcal{F}_{B'}\} \hookrightarrow \{\text{rays of } \mathcal{F}_B\}$$

Therefore there is a natural injective map on cluster variables.

Theorem* (Reading 2017, Viel, thesis in progress). This injection extends to a **g**-vector-preserving injective homomorphism from $\mathcal{A}_{\bullet}(B')$ to $\mathcal{A}_{\bullet}(B)$. The map sends initial cluster variables to initial cluster variables and on the tropical (coefficient) variables, it is

$$y'_k \mapsto y_k z_k$$

where z_k is the cluster monomial whose **g**-vector is the k^{th} column of B minus the k^{th} column of B'.

3. Ring homomorphisms 24

Remarks on ring homomorphisms (finite type)

- Structure-preserving maps (ring structure and **g**-vectors).
- Close algebraic relationships between cluster algebras with different exchange matrices of the same rank were not previously known.
- The homomorphism sends y'_k to where it needs to go to preserve **g**-vectors.
- Proof idea: the map defined on the initial cluster variables is obviously a homomorphism to something, and is injective (check the Jacobian matrix). Check that it sends cluster variables to cluster variables.
- Equivalently, the map sends \hat{y}'_k to \hat{y}_k times the F-polynomial of z_k and we check that it sends F-polynomials of cluster variables to F-polynomials of cluster variables.

3. Ring homomorphisms

Rank-2 examples

Rank-2 examples

$\downarrow \mathbf{g} B \rightarrow$	$\left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right]$
<i>x</i> ₁	1	1
$x_1 x_2^{-1}$		$1+\hat{y}_2$
x_2^{-1}	$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
$x_1 x_2^{-1}$ x_2^{-1} x_1^{-1} x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$
x ₂	1	1

Rank-2 examples

$\downarrow \mathbf{g} B \rightarrow$	$\left[\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix} \right]$
<i>x</i> ₁	1	1
$x_1 x_2^{-1}$		$1+\hat{y}_2$
x_2^{-1}	$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$
$x_1 x_2^{-1} \\ x_2^{-1} \\ x_1^{-1}$	$1+\hat{y}_1$	$1+\hat{y}_1$
<i>x</i> ₂	1	1

$\downarrow \mathbf{g} B \rightarrow$	[88]	$\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$
<i>x</i> ₁	1	1	1
$x_1^2 x_2^{-1}$			$1+\hat{y}_2$
$x_1x_2^{-1}$		$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
x_2^{-1}	$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$
$x_1^2 x_2^{-1}$ $x_1 x_2^{-1}$ x_2^{-1} x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$	$1+\hat{y}_1$
x ₂	1	1	1

3. Ring homomorphisms

26

$\downarrow \mathbf{g} B \rightarrow$	[88]	$\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$
<i>x</i> ₁	1	1	1
$x_1^2 x_2^{-1}$			$1+\hat{y}_2$
$x_1x_2^{-1}$		$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
x_2^{-1}	$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$
$x_1^2 x_2^{-1}$ $x_1 x_2^{-1}$ x_2^{-1} x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$	$1+\hat{y}_1$
x ₂	1	1	1

	$\downarrow \mathbf{g} B \rightarrow$	[88]	$\left[\begin{smallmatrix} 0 & -1 \\ 1 & 0 \end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & -3 \\ 1 & 0 \end{smallmatrix} \right]$
-	<i>x</i> ₁	1	1	1	1
	$x_1^3 x_2^{-1}$				$1+\hat{y}_2$
	$x_1^2 x_2^{-1}$			$1+\hat{y}_2$	$1 + \hat{y}_2 +$
	$x_1^3 x_2^{-2}$				$1 + 2\hat{y}_2 + \hat{y}_2^2 +$
	$x_1x_2^{-1}$		$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 +$
	$x_1 x_2^{-1}$ x_2^{-1} x_2^{-1} x_1^{-1}	$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 +$
	x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$	$1+\hat{y}_1$	$1+\hat{y}_1$
	<i>x</i> ₂	1	1	1	1

\downarrow g $B \rightarrow$	$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & -2 \\ 1 & 0 \end{bmatrix}$	
<i>x</i> ₁	1	1	1
$x_1^3 x_2^{-1}$	_	_	$1+\hat{y}_2$
$x_1^3 x_2^{-1}$ $x_1^2 x_2^{-1}$ $x_1^3 x_2^{-2}$		$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$
$x_1^{\overline{3}}x_2^{-2}$			$1 + 2\hat{y}_2 + \hat{y}_2^2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1\hat{y}_2^2 + 3\hat{y}$
$x_1 x_2^{-1}$	$1+\hat{y}_2$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1$
x_{2}^{-1}	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 + 3\hat{y}_1\hat{y}_2 + 3$
$x_1x_2^{-1}$ x_1^{-1} x_2^{-1} x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$	$1+\hat{y}_1$
x ₂	1	1	1

$\downarrow \mathbf{g} B \rightarrow$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$	$\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix}$
x_1	1	1
$x_1^3 x_2^{-1}$		$1+\hat{y}_2$
$x_1^2 x_2^{-1}$	$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
$x_1^3 x_2^{-2}$		$1 + 2\hat{y}_2 + \hat{y}_2^2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1\hat{y}_2^2 + 3\hat{y}_1^2\hat{y}_2^2 + \hat{y}_1^3\hat{y}_2^2$
$x_1 x_2^{-1}$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$
$x_1 x_2^{-1}$ x_2^{-1} x_1^{-1} x_2^{-1}	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1^2\hat{y}_2 + \hat{y}_1^3\hat{y}_2$
x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$
<i>x</i> ₂	1	1

\downarrow g $B \rightarrow$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$	$\begin{bmatrix} 0 & -3 \\ 1 & 0 \end{bmatrix}$
x_1	1	1
$x_1^3x_2^{-1}$		$1+\hat{y}_2$
$x_1^{2}x_2^{-1}$	$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
$x_1^3 x_2^{-2}$		$1 + 2\hat{y}_2 + \hat{y}_2^2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1\hat{y}_2^2 + 3\hat{y}_1^2\hat{y}_2^2 + \hat{y}_1^3\hat{y}_2^2$
$x_1 x_2^{-1}$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$	$1+\hat{y}_2+2\hat{y}_1\hat{y}_2+\hat{y}_1^2\hat{y}_2$
x_{2}^{-1}	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1^2\hat{y}_2 + \hat{y}_1^3\hat{y}_2$
$x_1 x_2^{-1}$ x_2^{-1} x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$
<i>x</i> ₂	1	1

$$\begin{array}{ccc} \hat{y}_1 & \mapsto & \hat{y}_1 \\ \hat{y}_2 & \mapsto & \hat{y}_2(1+\hat{y}_1) \end{array}$$

Summary of what I know in rank-2:

There are g-vector preserving homomorphisms whenever

• B is of finite or affine type, or B. Ring homomorphisms

$\downarrow \mathbf{g} B \rightarrow$	$\left[\begin{smallmatrix} 0 & -2 \\ 1 & 0 \end{smallmatrix} \right]$	$\left[\begin{smallmatrix} 0 & -3 \\ 1 & 0 \end{smallmatrix} \right]$
<i>x</i> ₁	1	1
$x_1^3 x_2^{-1}$		$1+\hat{y}_2$
$x_1^{\overline{2}}x_2^{-1}$	$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
$x_1^3 x_2^{-2}$		$1 + 2\hat{y}_2 + \hat{y}_2^2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1\hat{y}_2^2 + 3\hat{y}_1^2\hat{y}_2^2 + \hat{y}_1^3\hat{y}_2^2$
$x_1x_2^{-1}$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$
$x_1 x_2^{-1}$ x_2^{-1} x_1^{-1} x_2^{-1}	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1^2\hat{y}_2 + \hat{y}_1^3\hat{y}_2$
x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$
<i>x</i> ₂	1	1

Summary of what I know in rank-2:

There are **g**-vector preserving homomorphisms whenever

• B is of finite or affine type, or

3. Ring homomorphisms of finite type.

Summary of what I know in rank-2:

There are g-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

Rank-2 examp

\downarrow g $B \rightarrow$	$\left[\begin{smallmatrix}0&-2\\1&0\end{smallmatrix}\right]$	$\left[\begin{smallmatrix} 0 & -3 \\ 1 & 0 \end{smallmatrix}\right]$
<i>x</i> ₁	1	1
$x_1^3 x_2^{-1}$		$1+\hat{y}_2$
$x_1^2 x_2^{-1}$	$1+\hat{y}_2$	$1+\hat{y}_2+\hat{y}_1\hat{y}_2$
$x_1^3 x_2^{-2}$		$1 + 2\hat{y}_2 + \hat{y}_2^2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1\hat{y}_2^2 + 3\hat{y}_1^2\hat{y}_2^2 + \hat{y}_1^3\hat{y}_2^2$
$x_1 x_2^{-1}$	$1 + \hat{y}_2 + \hat{y}_1 \hat{y}_2$	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$
x_2^{-1}	$1 + \hat{y}_2 + 2\hat{y}_1\hat{y}_2 + \hat{y}_1^2\hat{y}_2$	$1 + \hat{y}_2 + 3\hat{y}_1\hat{y}_2 + 3\hat{y}_1^2\hat{y}_2 + \hat{y}_1^3\hat{y}_2$
x_1^{-1}	$1+\hat{y}_1$	$1+\hat{y}_1$
<i>X</i> ₂	1	1

Summary of what I know in rank-2:

There are g-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.
- 3. Ring In these cases, cluster variables are sent to cluster variables (or

Rank-2 examp

Summary of what I know in rank-2:

There are **g**-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

In these cases, cluster variables are sent to cluster variables (or 3. Ring figure functions") unless $B = \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}$ and $B' = \begin{bmatrix} 0 & d \\ 0 & 0 \end{bmatrix}$ with

Summary of what I know in rank-2:

There are **g**-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

3. Ring homomorphisms and 1 / \(\lambda \) | \(\lambda \) | \(\lambda \)

In these cases, cluster variables are sent to cluster variables (or "ray theta functions") unless $B = \begin{bmatrix} 0 & b \\ 2 & 0 \end{bmatrix}$ and $B' = \begin{bmatrix} 0 & d \\ 6 & 0 \end{bmatrix}$ with

Summary of what I know in rank-2:

There are **g**-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

*X*₂

In these cases, cluster variables are sent to cluster variables (or "ray theta functions") unless $B=\left[\begin{smallmatrix}0&b\\a&0\end{smallmatrix}\right]$ and $B'=\left[\begin{smallmatrix}0&d\\c&0\end{smallmatrix}\right]$ with cd=-3 and $1\not\in\{|a|,|b|\}$.

There are **g**-vector preserving homomorphisms whenever

Summary of what I know in rank-2:

There are **g**-vector preserving non

- B is of finite or affine type, or
- B' is of finite type.

In these cases, cluster variables are sent to cluster variables (or "ray theta functions") unless $B = \begin{bmatrix} 0 & b \\ a & 0 \end{bmatrix}$ and $B' = \begin{bmatrix} 0 & d \\ c & 0 \end{bmatrix}$ with cd = -3 and $1 \notin \{|a|, |b|\}$.

X2

Summary of what I know in rank-2:

There are **g**-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

In these cases, cluster variables are sent to cluster variables (or "ray theta functions") unless $B = \begin{bmatrix} 0 & b \\ a & 0 \end{bmatrix}$ and $B' = \begin{bmatrix} 0 & d \\ c & 0 \end{bmatrix}$ with cd = -3 and $1 \notin \{|a|, |b|\}$.

 $\underset{\text{3. Ring homomorphisms}}{\text{Homomorphisms}} \text{ may exist in additional cases.}$

Summary of what I know in rank-2:

There are g-vector preserving homomorphisms whenever

- B is of finite or affine type, or
- B' is of finite type.

In these cases, cluster variables are sent to cluster variables (or "ray theta functions") unless $B = \begin{bmatrix} 0 & b \\ a & 0 \end{bmatrix}$ and $B' = \begin{bmatrix} 0 & d \\ c & 0 \end{bmatrix}$ with cd = -3 and $1 \notin \{|a|, |b|\}$.

Homomorphisms may exist in additional cases.

The proof in the surfaces case (finite type)

 $\begin{array}{lll} \text{Cluster variables} & \longleftrightarrow & \text{(tagged) arcs} \\ \text{Coefficient variables} & \longleftrightarrow & \text{"elementary laminations"} \end{array}$

Strategy: Consider

- A homomorphism ν sending initial cluster variables to initial cluster variables and sending coefficients to coefficients times cluster monomials (as before).
- A map χ sending each cluster variable to the cluster variable with the same **g**-vector and treating coefficients like ν .

 ν and χ agree on initial cluster variables and coefficients.

Thus, if we show that χ sends each exchange relation to a valid relation, we can conclude that χ is the restriction of ν (which in particular maps to the cluster algebra).

The proof in the surfaces case (continued)

 χ sends each cluster variable to the cluster variable with the same g-vector, sends coefficients to coefficients times cluster monomials.

Want: χ sends each exchange relation to a valid relation.

Example:

A Cartan matrix $A = [a_{ij}]$ dominates a Cartan matrix $A' = [a'_{ij}]$

$$|a_{ij}| \ge |a'_{ij}|$$
 for all i, j .

Theorem (R., 2018) If A dominates A' then $\Phi(A') \subseteq \Phi(A)$.

A Cartan matrix $A = [a_{ij}]$ dominates a Cartan matrix $A' = [a'_{ij}]$

$$|a_{ij}| \ge |a'_{ij}|$$
 for all i, j .

Theorem (R., 2018) If A dominates A' then $\Phi(A') \subseteq \Phi(A)$.

... but only if you do it right.

A Cartan matrix $A = [a_{ij}]$ dominates a Cartan matrix $A' = [a'_{ij}]$ $|a_{ii}| \ge |a'_{ii}|$ for all i, j.

Theorem (R., 2018) If A dominates A' then $\Phi(A') \subseteq \Phi(A)$.

... but only if you do it right.

• Same simple roots in both root systems

A Cartan matrix $A = [a_{ij}]$ dominates a Cartan matrix $A' = [a'_{ij}]$

$$|a_{ij}| \geq |a'_{ij}|$$
 for all i, j .

Theorem (R., 2018) If A dominates A' then $\Phi(A') \subseteq \Phi(A)$.

... but only if you do it right.

- Same simple roots in both root systems
- Include imaginary roots

A Cartan matrix $A = [a_{ij}]$ dominates a Cartan matrix $A' = [a'_{ij}]$

$$|a_{ij}| \geq |a'_{ij}|$$
 for all i, j .

Theorem (R., 2018) If A dominates A' then $\Phi(A') \subseteq \Phi(A)$.

... but only if you do it right.

- Same simple roots in both root systems
- Include imaginary roots

Proof: Kac-Moody Lie algebras (Serre relations)

Dominance phenomena scorecard (B dominates B')

Phenomenon	menon Cases where it is known	
I & II	• acyclic finite type (& affine soon with Stella?)	
$(\mu$ -linearity	$ullet$ resection of surfaces ($\mathbb Q$ versions)	
and mutation	 erasing arrows to disconnect the quiver 	
fan refinement)	• fully characterized in rank 2 (occurs and fails)	
Ш	• acyclic finite type (& affine soon with Stella?)	
(scattering	• finite type surfaces (& more soon with Muller?)	
fan refinement)	• occurs always* in rank 2	
IV	acyclic finite type	
$(\mathbf{g} ext{-vector-}$	• rank 2, B finite or affine type	
preserving ring	\bullet rank 2, B' finite type	
homomorphisms)	• some non-acyclic surfaces of finite type	

arXiv:1802.10107

Thanks for listening.