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Section 1. Dominance phenomena



Dominance relations between exchange matrices

B = [by] dominates B’ = [b}] if, for all i, j,

o bj and bj; weakly agree in sign (i.e. bjb;; > 0) and
o |by| > |bj].

| 01 , | 01
Example. B = [_2 O] B = [ ]

Question: What are the consequences of dominance for structures
that take an exchange matrix as input?

I'll address that question by presenting some “dominance
phenomena.”
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Four phenomena

Suppose B and B’ are exchange matrices and B dominates B’.
In many cases:

Phenomenon |

The identity map from RE to RE’ is mutation-linear.

Phenomenon 11

Fg refines Fgr.  (mutation fans)

Phenomenon Il

ScatFan(B) refines ScatFan(B’).  (cluster scattering fans)

Phenomenon IV

There is an injective, g-vector-preserving ring homomorphism from
Ao(B') to Ae(B).  (principal coefficients cluster algebras)
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Four phenomena

Suppose B and B’ are exchange matrices and B dominates B’.
In many cases (not the same cases for all four phenomena):

Phenomenon |

The identity map from RE to RE’ is mutation-linear.

Phenomenon 11

Fg refines Fgr.  (mutation fans)

Phenomenon Il

ScatFan(B) refines ScatFan(B’).  (cluster scattering fans)

Phenomenon IV

There is an injective, g-vector-preserving ring homomorphism from
Ao(B') to Ae(B).  (principal coefficients cluster algebras)
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Why phenomena?

e There are counterexamples.

e | don't know necessary and sufficient conditions for the
phenomena.

e Yet there are theorems that give compelling and surprising
examples.

Goal: Establish that something real and nontrivial is happening,
with an eye towards two potential benefits:

e Researchers from the various areas will apply their tools to
find more examples, necessary and/or sufficient conditions for
the phenomena, and/or additional dominance phenomena.

e The phenomena will lead to insights in the various areas
where matrix mutation, scattering diagrams, and cluster
algebras are fundamental.
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Phenomenon |

In many cases, the identity map from RE to RE’ is mutation-linear.

One way to understand this:

exchange matrix B

coefficient rows - - -
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Phenomenon |

In many cases, the identity map from RE to RE’ is mutation-linear.

One way to understand this:

exchange matrix B B

- - = specialization - = =

- - - CA IV, Section 12 - - =
coefficient rows - - - - - -
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Phenomenon |

In many cases, the identity map from RE to RE’ is mutation-linear.

One way to understand this:

exchange matrix B B

- - = specialization - = =

- - - CA IV, Section 12 - - =
coefficient rows - - - - - -

A mutation-linear map R5 to RE’ induces a functor

(geometric cluster algebras for B, specialization)

b
(geometric cluster algebras for B’ specialization)
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Phenomenon |

In many cases, the identity map from RE to RE’ is mutation-linear.

One way to understand this (and | won't say more here):

exchange matrix B B

- - = specialization - = =

- - - CA IV, Section 12 - - =
coefficient rows - - - - - -

A mutation-linear map R5 to RE’ induces a functor

(geometric cluster algebras for B, specialization)

b
(geometric cluster algebras for B’ specialization)

1. Dominance phenomena 4



Phenomena Il and Il (refinement of fans)

In many cases,
e the mutation fan Fpg refines the mutation fan Fg:.
e the cluster scattering fan ScatFan(B) refines the cluster
scattering fan ScatFan(B’).

Aside: Theorem (R., 2017). A consistent scattering diagram with
minimal support cuts space into a fan.

In finite type, both Fg and ScatFan(B) coincide with the g-vector
fan’, the normal fan to a generalized associahedron.

Example: cyclohedron and associahedron.
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2-cyclohedron & 2-associahedron




2-cyclohedron & 2-associahedron

O | D

7V

QDG

[-55]

W
N

[-25]

7

Aside: Can we understand this on the level of triangulations?
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3-cyclohedron & 3-associahedron: 5= [—% (i’

0
|
0

Fg (cyclohedron)
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3-cyclohedron & 3-associahedron: B = [—%

10
01}
10

Fg (cyclohedron)

Fp (associahedron)
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3-cyclohedron & 3-associahedron: B = [—%

10
01}
10

Fg (cyclohedron)

Fp (associahedron)
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3-cyclohedron & 3-associahedron: B = [—%

10
01}
10

Fg (cyclohedron)

Fp (associahedron)

General cyclo/associahedra:
S. Viel, thesis in progress
(surface and orbifold models)
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Non-Example: 5=[-1 ¢71] &=~

Fs Fer

These are normal fans to two different 3-associahedra.
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Phenomenon IV

In many cases, there is an injective, g-vector-preserving ring
homomorphism from A(B’) to A4(B) (principal coefficients
cluster algebras).

Remarks:

e Phenomenon is known™ to occur for B acyclic of finite type.
e There is a nice description of the homomorphism (where it
sends initial cluster variables and coefficients).

e In some cases, including acyclic finite type, the map sends
cluster variables to cluster variables (or “ray theta functions'
to ray theta functions).

e Sending cluster variables to cluster variables is suggested by
Phenomena Il and Il (fan refinement).

o Coefficients—and specifically principal ones—are crucial.

1. Dominance phenomena 9



Section 2. Refinement



Mutation maps 1

Let B be [B] (i.e. B with an extra row a € R" ).
For k = kg, kg—1, - - - , ki, define nZ(a) to be the last row of ux(B).

Example: B = [_(1) (1,

0 1 0 -1
ays a2 —a ?

2 _ ar If31§0
C ata ifag>0
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The mutation fan

Define an equivalence relation =& on R” by setting

as=Pay — sgn(nf(a1)) =sgn(n(az)) vk

sgn(a) is the vector of signs (—1,0,+1) of the entries of a.

B-classes: equivalence classes of =&,
B-cones: closures of B-classes.
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The mutation fan

Define an equivalence relation =& on R” by setting

as=Pay — sgn(nf(a1)) =sgn(n(az)) vk

sgn(a) is the vector of signs (—1,0,+1) of the entries of a.

B-classes: equivalence classes of =&,
B-cones: closures of B-classes.

Right intuition, but not strictly correct:
B-cones are common domains of linearity of all mutation maps.

2. Refinement 11



The mutation fan

Define an equivalence relation =& on R” by setting

as=Pay — sgn(nf(a1)) =sgn(n(az)) vk

sgn(a) is the vector of signs (—1,0,+1) of the entries of a.

B-classes: equivalence classes of =&,
B-cones: closures of B-classes.

Right intuition, but not strictly correct:
B-cones are common domains of linearity of all mutation maps.

Mutation fan for B:
The collection Fg of all B-cones and all faces of B-cones.

Theorem (R., 2011). Fp is a complete fan (possibly with
infinitely many cones).

2. Refinement 11



The mutation fan

Define an equivalence relation =& on R” by setting

as=Pay — sgn(nf(a1)) =sgn(n(az)) vk

sgn(a) is the vector of signs (—1,0,+1) of the entries of a.

B-classes: equivalence classes of =&,
B-cones: closures of B-classes.

Right intuition, but not strictly correct:
B-cones are common domains of linearity of all mutation maps.

Mutation fan for B:
The collection Fg of all B-cones and all faces of B-cones.

Theorem (R., 2011). Fp is a complete fan (possibly with
infinitely many cones).

Theorem (R., 2017). ScatFan(B) refines Fp.

Conjecture. For rank > 3, they coincide iff B mutation-finite.
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Example: B =] 9 {]

2. Refinement 12



o
=T
I
)
@
o
S
s
X
L

12

2. Refinement



Example: B =] 9 {]
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Example: B =] 9 {]

"
e

b

“n

2. Refinement 12

Each of the 5 maximal
cones shown in the top-
left picture is a B-cone.




Markov quiver)
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Example: B



(Markov quiver)

Mutation fans are
hard to construct
in general, but in
some cases, there are
combinatorial models.

13



(Markov quiver)

Mutation fans are
hard to construct
in general, but in
some cases, there are
combinatorial models.

We'll discuss
Phenomenon Il in
two models:
Cambrian fans and
surfaces (orbifolds).
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Mutation fans in the surfaces model

AN
3
1 9 1
N N
N\ 3

0 2-2
[72 0 2}

2-2 0
Maximal cones in the
mutation fan are given
by triangulations and
more general configu-

rations that include
closed curves.

(Shear coordinates of
quasi-laminations)
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Resecting a triangulated surface on an edge

(e} % o
B B’

Theorem. (R., 2013) Assuming the Null Tangle Property,
B dominates B’ and Fpg refines* Fg.

Null Tangle Property: Known for some surfaces, probably true
for many more (or maybe all?).
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Resecting a triangulated surface on an edge

(e} % o
B B’

Theorem. (R., 2013) Assuming the Null Tangle Property,
B dominates B’ and Fpg refines* Fg.

Null Tangle Property: Known for some surfaces, probably true
for many more (or maybe all?).

*

“rational parts” of these fans.
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Resecting a triangulated surface on an edge

« % o

B B’
Theorem. (R., 2013) Assuming the Null Tangle Property,
B dominates B’ and Fg refines* Fpr.

Null Tangle Property: Known for some surfaces, probably true
for many more (or maybe all?).

* "rational parts” of these fans.

Orbifold model: Extends surfaces model to cover more general
non-skew-symmetric cases.

Shira Viel, 2017: Constructs mutation fan for an orbifold.
She defines orbifold resection, and proves Phenomenon II.

(E.g. cyclohedron fan refines associahedron fan.)
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Example

Resect arc 1 then arc 3.

Torus Annulus Hexagon
AN
73
1 9 1
N S
N N

<w

AN

7

0 2-2 0 1-1 0 1-1
[—2 0 2] [—1 0 2} |:—1 0 1]

2-2 0 1-2 0 1-1 0
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Example: B = [72 j _g}

FB (torus)

Fe (annulus)
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Example: 5= [ -2

Fpr  (hexagon)
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Example: 5= [ -2

Fpr  (hexagon)
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Example: 5= [—g

Fgr  (hexagon)
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Finite acyclic type: Cambrian fans

Each B defines a Cartan matrix A.

Coxeter fan: Defined by the reflecting hyperplanes of the Coxeter
group W associated to A. Maximal cones <> elements of W.

Cambrian fan: A certain coarsening of the Coxeter fan.
Two ways to look at this:

e Coarsen according to a certain lattice congruence on W.

e Coarsen according to the combinatorics of “sortable
elements.”

For Sp, this is the normal fan to the usual associahedron.
(In general, generalized associahedron.)
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Cambrian fans and mutation fans

For B acyclic of finite type, Fg is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, Fg refines Fp/
if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance
relations among Cartan matrices. So the theorem is a statement
that refinement relations exist among Cambrian fans when we
decrease edge-labels (or erase edges) on Coxeter diagrams.
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Cambrian fans and mutation fans

For B acyclic of finite type, Fg is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, Fg refines Fp/
if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance
relations among Cartan matrices. So the theorem is a statement
that refinement relations exist among Cambrian fans when we
decrease edge-labels (or erase edges) on Coxeter diagrams.

Example (carried out incorrectly):
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Cambrian fans and mutation fans

For B acyclic of finite type, Fpg is a Cambrian fan. (Key technical
point: identify fundamental weights with standard basis vectors.)

Theorem (R., 2013). For B acyclic of finite type, Fg refines Fp/
if and only if B dominates B'.

Dominance relations among exchange matrices imply dominance
relations among Cartan matrices. So the theorem is a statement
that refinement relations exist among Cambrian fans when we
decrease edge-labels (or erase edges) on Coxeter diagrams.

Example (carried out correctly):
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Lattice homomorphisms between Cambrian lattices

The Cambrian lattice Cambg is:

e A partial order on maximal cones in the Cambrian fan Fp.
The fan and the order interact very closely.

e A lattice quotient—and a sublattice—of the weak order on
the finite Coxeter group associated to B.

To prove the refinement of fans:

e Show that there is a surjective lattice homomorphism from
Cambg to Cambgr.

e Appeal to general results on lattice homomorphisms and fans.

Theorem (R., 2012). Such a surjective lattice homomorphism
exists for all acyclic, finite-type B, B’ with B dominating B’.
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Example: A3 Tamari is a lattice quotient of B3 Tamari
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Lattice homomorphisms between weak orders

To find a surjective lattice homomorphism Cambg — Cambpg/:

Find a surjective lattice homomorphism between the corresponding
weak orders.

Theorem (R., 2012). If (W,S) and (W', S) are finite Coxeter
systems such that W dominates W’, then the weak order on W' is
a lattice quotient of the weak order on W.

Dominance here means that the diagram of W’ is obtained from
the diagram of W by reducing edge-labels and/or erasing edges.
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Lattice homomorphisms between weak orders

To find a surjective lattice homomorphism Cambg — Cambpg/:

Find a surjective lattice homomorphism between the corresponding
weak orders.

Theorem (R., 2012). If (W,S) and (W', S) are finite Coxeter
systems such that W dominates W’, then the weak order on W' is
a lattice quotient of the weak order on W.

Dominance here means that the diagram of W’ is obtained from
the diagram of W by reducing edge-labels and/or erasing edges.

This theorem is the origin of the study of the dominance relation
on exchange matrices.

A research theme: Lattice theory of the weak order on finite
Coxeter groups “knows” a lot of combinatorics and representation
theory.

2. Refinement 22



Example: A3 as a lattice quotient of B
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Section 3. Ring homomorphisms



Ring homomorphisms of cluster algebras (finite type)

Rays of the mutation fan Fpg are in bijection with cluster variables.
If Fg refines Fp/, there is an inclusion

{rays of Fg/} — {rays of Fg}

3. Ring homomorphisms 24



Ring homomorphisms of cluster algebras (finite type)

Rays of the mutation fan Fpg are in bijection with cluster variables.
If Fg refines Fp/, there is an inclusion
{rays of Fg/} — {rays of Fg}

Let's look at a picture...
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Ring homomorphisms of cluster algebras (finite type)
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Ring homomorphisms of cluster algebras (finite type)
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Ring homomorphisms of cluster algebras (finite type)
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Ring homomorphisms of cluster algebras (finite type)

Rays of the mutation fan Fpg are in bijection with cluster variables.
If Fg refines Fp/, there is an inclusion

{rays of Fg/} — {rays of Fg}
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Ring homomorphisms of cluster algebras (finite type)

Rays of the mutation fan Fpg are in bijection with cluster variables.
If Fg refines Fp/, there is an inclusion
{rays of Fg/} — {rays of Fg}

Therefore there is a natural injective map on cluster variables.
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Ring homomorphisms of cluster algebras (finite type)

Rays of the mutation fan Fpg are in bijection with cluster variables.
If Fg refines Fp/, there is an inclusion
{rays of Fp/} — {rays of Fp}

Therefore there is a natural injective map on cluster variables.

Theorem* (Reading 2017, Viel, thesis in progress). This injection
extends to a g-vector-preserving injective homomorphism from
Ae(B’) to Ae(B). The map sends initial cluster variables to initial
cluster variables and on the tropical (coefficient) variables, it is

/
Yk 7 YikZk

where zj is the cluster monomial whose g-vector is the k" column
of B minus the k™ column of B’.
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Remarks on ring homomorphisms (finite type)

e Structure-preserving maps (ring structure and g-vectors).
e Close algebraic relationships between cluster algebras with
different exchange matrices of the same rank were not

previously known.

e The homomorphism sends y, to where it needs to go to
preserve g-vectors.

e Proof idea: the map defined on the initial cluster variables is
obviously a homomorphism to something, and is injective
(check the Jacobian matrix). Check that it sends cluster
variables to cluster variables.

e Equivalently, the map sends y, to yi times the F-polynomial
of z, and we check that it sends F-polynomials of cluster
variables to F-polynomials of cluster variables.

3. Ring homomorphisms 25



Rank-2 examples

X1 1
x5t 1+ 9
Xt 1+
X 1
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Rank-2 examples

lg B~ 881 [%75]

X1 1 1

X1X2_1 1+

X 1+9% 1+p+np
Xt 1+ 1+»

X2 1 1

3. Ring homomorphisms

26



Rank-2 examples

lg B~ 881 [%75]
X1 1 1
X1, ! 1+
x5t 1+9 149+
X " 1+91 1+hn
X2 1 1
o= N

Vo = »(l+n)

3. Ring homomorphisms 26



Rank-2 examples

lg B~ 881 [%75]

X1 1 1

X1X2_1 1+

X 1+9% 1+p+np
Xt 1+ 1+»

X2 1 1

3. Ring homomorphisms

26



Rank-2 examples

0 -1 0 -2

lg B— [85] [1 o] [1 o]
X1 1 1 1

2.1 o
X1 X 1+
X1%y 1+ 14+ 94+ 0o
x 149 1+9+h L+ p+2010+ 920
X! 1+ 1+5h I+3
X 1 1 1

3. Ring homomorphisms

26



Rank-2 examples

g B—~ [881 [97% [ 73]
X1 1 1 1
xixg ! 1+ 9
X1Xy 1+ 1+ + 0
x 149 1+9+h L+ p+2010+ 920
X 1+ 1+5h 1+n
X2 1 1 1
h h
V2 P2(L+ 1)

3. Ring homomorphisms

26



Rank-2 examples

0 -1 0 -2

lg B— [85] [1 o] [1 o]
X1 1 1 1

2.1 o
X1 X 1+
X1%y 1+ 14+ 94+ 0o
x 149 1+9+h L+ p+2010+ 920
X! 1+ 1+5h I+3
X 1 1 1

3. Ring homomorphisms

26



Rank-2 examples

lg B— 881 [97%] Earl Eard
X1 1 1 1 1

xf’x{l 1+
x12x2_1 1+ 1490+
xfxz_z 1420 + 92 +
X1Xy 1+ 1+ + 0 1+ +
x5t 1+9 149+ 1+p+200m+920 1+php+
X! 1+ 14+ 1+ 1+
X2 1 1 1 1

3. Ring homomorphisms



Rank-2 examples

lg B— [?7] [273) [273)

X1 1 1 1

x3xy ! 1+

xExy ! 1+ 1+ 92+ e
x5 2 1420+ 9% + 39152 + 30153
X1%y 1+ 1+ 9+ e 1+ +20190+y
%t 1+ P+ 09 1+ 90 +200+9202 1+ 92 +39192+3
Xt 1+ 1+ 1+

X2 1 1 1

3. Ring homomorphisms
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Rank-2 examples

lg B— [973] 775

X1 1 1

x| L+,

xBx; ! 149 L+ 9o+ N

xx; 2 L+ 205 + 55 + 3019 + 39155 + 39293 + 9353
x1%, 1L+ 9+ 1+ 92+ 20192 + 9792

x; 1 L+ 9o+ 20192 + 9292 1+ 9o+ 30102 + 39205 + 939
Xt 1+ 1+

X2 1 1

3. Ring homomorphisms 26



Rank-2 examples

lg B~ [?73] 775
X1 1 1
x3xy ! 1+
xBx; ! 149 L+ 9o+ N
xx; 2 L+ 205 + 55 + 3019 + 39155 + 39293 + 9353
x1%, 1L+ 9+ 1+ 92+ 20192 + 9792
Xyt L+ 9o+ 20100+ 9292 1+ 9o+ 39102 + 3929 + 9i9e
Xt 1+ 1+
X2 1 1
o= hn

vo = P14+ 1)

3. Ring homomorphisms 26



Rank-2 examples

lg B~ [§77] 773

X1 1 1

x3xy ! 1+

xBx; ! 149 L+ 9o+ N

xx; 2 L+ 205 + 55 + 3019 + 39155 + 39293 + 9353
x1%, 1L+ 9+ 1+ 92+ 20192 + 9792

x; 1 L+ 9o+ 20192 + 9292 1+ 9o+ 30102 + 39205 + 939
Xt 1+ 1+

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or

3. Ring homomorphisms 26

P L



Rank-2 examples

xf’xz_1 1+wm

x2xy ! 1+ 9 1+ 9>+ i

xPxy 2 1429, + 93 + 39195 + 39192 + 39293 + 9393
X1, L+ 9+ 1+ o + 20195 + 9790

x2_1 L+ +20190 + 9292 1+ 92+ 30192 + 39202 + 9
Xt 1+ 1+

X0 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
3. Ring hom‘omﬁaisiﬁs Of flnlte type 26



Rank-2 examplg

lg B~ [§7] 23]

X1 1 1

x3xy ! 1+

x12x2_1 1+ L+ %+

x3x; 2 L4205 + 52 + 39192 + 39152 + 35292 + 9393
x5t 1+ 9>+ 190 1+ 9o + 20192 + 979

x; 1 L+ 9o+ 20192+ 9292 1+ 9o+ 30102 + 39205 + 939
xfl 14+ 1+

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

3. Ring homomorphisms . . . S N N P v 26



X3t 14 9

xZxy ! 1+ 1492+ 192

xPxy 2 1429, + 93 + 39195 + 39192 + 39293 + 9393
X1 L+ 9+ 1+ 9o + 20195 + 9790

x2_1 L+ +20190 + 9292 1+ 90+ 30192 + 39202 + 9
xl_1 1+% 1+

X0 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

3. ring MImbRESE.GAses, cluster variables are sent to cluster variables (or 2



lg B~ [¥7F] (93]

X1 1 1

xx 1+ §»

x2xy ! 1+ L+ 9o+ o

Xfxz_ 2 14295 + 92 + 39192 + 39192 + 39292 + 97 9%
P 1+ 9+ $19» 1+ 9o+ 20192 + 99>

x5t 1+ 904+ 20100 + 9292 1+ 92+ 39192 + 39290 + 939»
Xt 1+ 5 1+ 5

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

In these cases, cluster variables are sent to cluster variables (or
3. Ring hyaynaebvelra functions” ) unless B = [0 2] and B’ = [0 4] with 26



Rank-2 examp.h

xf’xz_1 1+

xZxy ! 1+ 1492+ 19>

xxy 2 14202 + 93 + 302 + 39153 + 3929% + 5293
X1t 1+ 9o+ 9195 1+ 9o+ 2019 + 929>

x2_1 L+ +20190 + 9292 1+ 90+ 30192 + 39202 + 9
xl_1 1+% 1+

X0 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

In these cases, cluster variables are sent to cluster variables (or

“ray theta functions”) unless B = [25] and B = [2d] with
3. Ring homomorphissns_ 1+ 1~ (| .| |KIL 26



Rank-2 examples

X1 1 1

xx 1+ §»

x2xy ! 1+ L4+ 9o+ 1y

X3X_2 1420 4 92 o o o2 5202 | 0362
1% +200 + 95 +3092 +30n95 + 39195 + 19

x1%, ! 1L+ + 0 1+ 9o + 200 + 929>

Xyt L+ 92+ 20190 + 9292 1+ 9o+ 39192 + 3920 + 93

Xt 14+ 14

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

In these cases, cluster variables are sent to cluster variables (or
“ray theta functions”) unless B = [25] and B’ = [2 9] with
cd =—3 and 1 ¢ {|a|, |b|}.

3. Ring homomorphisms 26



Rank-2 examples
X1

)(f’xz_1 1+

xZxy ! 149 1492+ 19

xxy 2 14202 + 93 + 302 + 39153 + 39298 + 5292
X1t 1+ 9o+ 9195 1+ 9o+ 2019 + 9292

x2_1 L+ 92+ 20190 + 9292 1+ 90+ 39192 + 3929 + 93
X1 ! 14+ 1+

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

In these cases, cluster variables are sent to cluster variables (or
“ray theta functions”) unless B = [25] and B = [2d] with
cd =—-3and 1 ¢ {|al,|b|}.

3. Ring pamomorphisis I civae v avict in ad A+ Anal ~acac 26



Rank-2 exampizss
> 1

X1 X + 3

x5t 1+ L+ 9+

x5 2 Lt 292 + 53+ 3192 + 30153 + 39295 + 9352
x1%, L+ + 1+ 9o + 20192 + 929>

Xyt L+ 9o+ 20192 + 9292 1+ 9o+ 39192 + 39202 + 9
Xfl 14+ 1+n

X2 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.

In these cases, cluster variables are sent to cluster variables (or
“ray theta functions”) unless B = [25] and B’ = [2 9] with
cd =—3and 1 ¢ {|a|,|b|}.

Homomorphisms may exist in additional cases.
3. Ring homomorphisms 26



Rank-2 examples

xZxy ! 1+ 1492+ 19

xxy 2 1420 + 53+ 32 + 39153 + 39098 + 529
X6t 1+ 9o+ 9195 1+ 9o+ 2019 + 929>

x2_1 L+ 92+ 20192 + 9292 1+ 90+ 39192 + 3929 + 93
xl_1 1+% 1+

Xo 1 1

Summary of what | know in rank-2:
There are g-vector preserving homomorphisms whenever

e B is of finite or affine type, or
e B’ is of finite type.
In these cases, cluster variables are sent to cluster variables (or

“ray theta functions”) unless B = [25] and B’ = [2 9] with
cd =—3and 1 ¢ {|a|, |b|}.

Homomorphisms may exist in additional cases.
3. Ring homomorphisms 26



The proof in the surfaces case (finite type)

Cluster variables +— (tagged) arcs
Coefficient variables +—  “elementary laminations”

Strategy: Consider
e A homomorphism v sending initial cluster variables to initial

cluster variables and sending coefficients to coefficients times
cluster monomials (as before).

e A map x sending each cluster variable to the cluster variable
with the same g-vector and treating coefficients like v.

v and x agree on initial cluster variables and coefficients.

Thus, if we show that y sends each exchange relation to a valid
relation, we can conclude that x is the restriction of v (which in
particular maps to the cluster algebra).

3. Ring homomorphisms 27



The proof in the surfaces case (continued)

x sends each cluster variable to the cluster variable with the same
g-vector, sends coefficients to coefficients times cluster monomials.

Want: x sends each exchange relation to a valid relation.

Example:
A!-l _

Bis
o

X4 x|
a
5 = +

3. Ring homomorphisms 28



Aside: Dominance on Cartan matrices

A Cartan matrix A = [a;] dominates a Cartan matrix A" = [a};
|ayj| > |afj| for all i,j.

Theorem (R., 2018) If A dominates A’ then ®(A") C ®(A).

4. Dominance on Cartan matrices 29
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... but only if you do it right.
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Aside: Dominance on Cartan matrices

A Cartan matrix A = [a;] dominates a Cartan matrix A" = [a};
|ayj| > |afj| for all i,j.
Theorem (R., 2018) If A dominates A’ then ®(A") C ®(A).

[34] [172] [173] 3l

... but only if you do it right.

e Same simple roots in both root systems
e Include imaginary roots
Proof: Kac-Moody Lie algebras (Serre relations)
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Dominance phenomena scorecard

(B dominates B')

Phenomenon Cases where it is known
I & Il e acyclic finite type (& affine soon with Stella?)
(p-linearity e resection of surfaces (Q versions)

and mutation
fan refinement)

e erasing arrows to disconnect the quiver
o fully characterized in rank 2 (occurs and fails)

"
(scattering
fan refinement)

e acyclic finite type (& affine soon with Stella?)
e finite type surfaces (& more soon with Muller?)
e occurs always* in rank 2

v

(g-vector-
preserving ring
homomorphisms)

4. Dominance on Cartan matrices

e acyclic finite type

e rank 2, B finite or affine type

e rank 2, B’ finite type

e some non-acyclic surfaces of finite type

arXiv:1802.10107

Thanks for listening.
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