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Section 1: Cluster algebras of finite type



(Principal coefficients) Cluster algebras

Start with an initial seed consisting of initial cluster of cluster
variables x1, . . . xn and a skew-symmetric integer matrix B .

Mutation: an operation that takes a seed and gives a new seed.

There are n “directions” for mutation.

Mutation does two things:

switches out one cluster variable, replaces it with a new cluster
variable to obtain a new cluster;
changes B (and some extra rows) by matrix mutation.

The result is a new seed.

Mutation is involutive.
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(Principal coefficients) Cluster algebras (continued)

Do all possible sequences of mutations, and collect all the cluster
variables which appear.
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′

3

☛
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′

2, x3
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✡
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✠
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The cluster algebra A•(B) for the given initial seed is the
subalgebra of F generated by all cluster variables.
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Mutation

Write [a]+ for max(a, 0). The mutation of B in direction k is the
matrix B ′ = µk(B) with

b′ij =

{

−bij if k ∈ {i , j};

bij + sgn(bkj )[bikbkj ]+ otherwise.

For principal coefficients, we replace B by
[

B
I

]

but we only mutate
in directions 1, . . . , n.

We also introduce coefficients y1, . . . , yn.

Mutating the cluster variables x1, . . . , xn in direction k means
keeping xi for i 6= k and replacing xk by x ′k according to the
exchange relations

xkx
′
k =

n
∏

i=1

x
[bik ]+
i y

[b(n+i)k ]+
i +

n
∏

i=1

x
[−bik ]+
i y

[−b(n+i)k]+
i .
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Mutation example
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Mutation example
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This cluster algebra is of finite type (finite # of cluster variables).

The cluster variables are: x1, x2,
x2+y1
x1

, x1y1y2+x2+y1
x1x2

, 1+x1y2
x2

.
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Cluster algebras of finite type

Theorem (FZ, 2001). For any exchange matrix B , every cluster
variable is a Laurent polynomial in the xi with coefficients
(ordinary) polynomials in the yi .

Thus, each cluster variable has a denominator vector (d-vector).

Example (continued):

Cluster variable: x1 x2
x2+y1
x1

x1y1y2+x2+y1
x1x2

1+x1y2
x2

d-vector: [−1, 0] [0, −1] [1, 0] [1, 1] [0, 1]

Theorem (FZ, 2003). The cluster algebra A•(B) is of finite type
if and only if B is mutation-equivalent to an exchange matrix
whose associated Cartan matrix A is of finite type. In this case, the
d-vectors are the almost positive roots for A.

In the example, B =
[

0 1
−1 0

]

and A =
[

2 −1
−1 2

]

(type A2).
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Cluster algebras of finite type (continued)

Fomin and Zelevinsky defined a notion of compatibility on the set
of almost positive roots for A (of finite type).

combinatorial clusters: maximal pairwise compatible sets of almost
positive roots.

Theorem (FZ, 2003). For B of finite type, the map from cluster
variables to denominator vectors takes clusters of cluster variables
bijectively to combinatorial clusters of almost positive roots.

Theorem (FZ, 2003). For B of finite type, each combinatorial
cluster spans a full-dimensional cone. These cones are the maximal
cones of a complete fan (the d-vector fan).

Example (continued):

B =
[

0 1
−1 0

]

A =
[

2 −1
−1 2

]
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Generalized Associahedra

Theorem (Chapoton-FZ 2002). The d-vector fan is the normal
fan of a polytope, the generalized associahedron.

Example:

B =
[

0 −1 0
1 0 1
0 −1 0

]

�
�
�
�
�
r

�
�
�
�
�

✂
✂
✂
✂
✂
✂
✂
✂
✂
✂

❅
❅

❅❅

✂
✂
✂
✂
✂

✂
✂
✂
✂
✂

�
�
��

❅
❅

❅❅
❇
❇
❇
❇
❇

❅
❅

❅
❅

❅
❅❅�

�
�
�α2

α1 + α2

α2 + α3

α1+α2+α3

α1

α3

r r

r

r

r r

r

r r

r r

r r

A fan for every cluster algebra Cluster algebras of finite type 7



Section 2: g-Vector fans



The g-vector fan

Define ŷj = yj
∏n

i=1 x
bij .

Theorem (FZ 2007). Each cluster variable is a monomial in the xi
times a polynomial in the ŷj .

The g-vector of the cluster variable is the exponent sequence of
that monomial.

Example (continued): B =
[

0 1
−1 0

]
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The g-vector fan

Define ŷj = yj
∏n

i=1 x
bij .

Theorem (FZ 2007). Each cluster variable is a monomial in the xi
times a polynomial in the ŷj .

The g-vector of the cluster variable is the exponent sequence of
that monomial.

Example (continued): B =
[

0 1
−1 0

]

ŷ1 = y1x
−1
2
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The g-vector fan

Define ŷj = yj
∏n

i=1 x
bij .

Theorem (FZ 2007). Each cluster variable is a monomial in the xi
times a polynomial in the ŷj .

The g-vector of the cluster variable is the exponent sequence of
that monomial.

Example (continued): B =
[

0 1
−1 0

]

ŷ1 = y1x
−1
2 ŷ2 = y2x1.
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The g-vector fan

Define ŷj = yj
∏n

i=1 x
bij .

Theorem (FZ 2007). Each cluster variable is a monomial in the xi
times a polynomial in the ŷj .

The g-vector of the cluster variable is the exponent sequence of
that monomial.

Example (continued): B =
[

0 1
−1 0

]

ŷ1 = y1x
−1
2 ŷ2 = y2x1.

The cluster variables:

Cluster variable: x1 x2
x2+y1
x1

x1y1y2+x2+y1
x1x2

1+x1y2
x2

↓ ↓ ↓ ↓ ↓

x1 x2
x2(1+ŷ1)

x1

1+ŷ1+ŷ1ŷ2
x1

1+ŷ2
x2

g-vector: [1, 0] [0, 1] [−1, 1] [−1, 0] [0, −1]
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The g-vector fan (continued)

The g-vectors of each cluster span a full-dimensional cone. These
g-vector cones are the maximal cones of a fan. (Conjectured: FZ
2007. Proved: GHKK 2014.)

The g-vector fan is combinatorially isomorphic to the d-vector fan.

In finite type, the g-vector fan is complete. Outside of finite type,
it is not complete. (It does have nice properties: Maximal cones
are full-dimensional, and each codimension-1 cone is a face of
exactly two full-dimensional cones.)

[

0 1
−1 0

] [

0 2
−2 0

] [

0 3
−3 0

]
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Another infinite g-vector fan example: B =
[

0 −2 2
2 0 −2
−2 2 0

]
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Are g-vector fans what we want?

The g-vector fan is a fan. A fan for every cluster algebra!
(so, can we quit early and have an extra-long break?)
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Are g-vector fans what we want?

The g-vector fan is a fan. A fan for every cluster algebra!
(so, can we quit early and have an extra-long break?)

The problem is, that the g-vector fan is not complete if B is not of
finite type. Why is that a problem?

Because we are interested in additive bases for the cluster algebra.
(This was one of the original motivations. “Dual canonical basis”.)

In finite type, you have a great additive basis: cluster monomials.
A cluster monomial is a monomial in a set of cluster variables, all
contained in one cluster. You have one basis element for each
g-vector.
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Are g-vector fans what we want?

The g-vector fan is a fan. A fan for every cluster algebra!
(so, can we quit early and have an extra-long break?)

The problem is, that the g-vector fan is not complete if B is not of
finite type. Why is that a problem?

Because we are interested in additive bases for the cluster algebra.
(This was one of the original motivations. “Dual canonical basis”.)

In finite type, you have a great additive basis: cluster monomials.
A cluster monomial is a monomial in a set of cluster variables, all
contained in one cluster. You have one basis element for each
g-vector.

In infinite type, you only have
cluster monomials for g-vectors
in the g-vector fan.
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Are g-vector fans what we want? (cont’d)

In infinite type, you only get one cluster monomial for each
g-vector in the g-vector fan.

Work of various people (probably starting with
Sherman-Zelevinsky’s work on 2× 2 exchange matrices)
constructed bases with one element for each g-vector in the space.
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Are g-vector fans what we want? (cont’d)

In infinite type, you only get one cluster monomial for each
g-vector in the g-vector fan.

Work of various people (probably starting with
Sherman-Zelevinsky’s work on 2× 2 exchange matrices)
constructed bases with one element for each g-vector in the space.

Upshot: We need to understand the space outside the g-vector fan.
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Are g-vector fans what we want? (cont’d)

In infinite type, you only get one cluster monomial for each
g-vector in the g-vector fan.

Work of various people (probably starting with
Sherman-Zelevinsky’s work on 2× 2 exchange matrices)
constructed bases with one element for each g-vector in the space.

Upshot: We need to understand the space outside the g-vector fan.

Topic for the next few slides: We want a complete fan for every
exchange matrix B . In finite type, but not in infinite type, the
g-vector fan gives us what we want.

So, are there other constructions that give the same fan in finite
type? And do they give complete fans in infinite type?
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Section 3: Other fan constructions



Finite g-vector fans are Cambrian fans∗

The Cartan matrix A associated to B defines a root system Φ and
a Weyl group W . The reflecting hyperplanes for W cut space into
a fan (the Coxeter fan).

Sortable elements associated to B : Certain elements of W defined
by admitting a particular form of reduced word.

Each sortable element defines a cone via the combinatorics of
reduced words, with inequalities described in terms of roots. These
are the g-vector cones. In particular, the g-vector fan refines the
Coxeter fan.

∗When B is acyclic.
A fan for every cluster algebra Other fan constructions 13



Finite g-vector fans are Cambrian fans∗

The Cartan matrix A associated to B defines a root system Φ and
a Weyl group W . The reflecting hyperplanes for W cut space into
a fan (the Coxeter fan).

Sortable elements associated to B : Certain elements of W defined
by admitting a particular form of reduced word.

Each sortable element defines a cone via the combinatorics of
reduced words, with inequalities described in terms of roots. These
are the g-vector cones. In particular, the g-vector fan refines the
Coxeter fan.

Does this generalize nicely to infinite type? Many nice things
happen, but infinite Cambrian fans are not complete, and in fact
are subfans of the g-vector fan. (The issue: Cambrian fans can’t
“know” much about space outside of the Tits cone.)

∗When B is acyclic.
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The mutation fan

Let B̃ be [ Ba ] (i.e. B with an extra row a ∈ R
n ).

For k = kq , kq−1, . . . , k1, define ηBk (a) to be the last row of µk(B̃).

Example: B =
[

0 1
−1 0

]

η
B
1−→

B-cones: common domains of linearity of all mutation maps.∗

Mutation fan: the set of all B-cones and all faces of B-cones.

Theorem (R., 2011). FB is a complete fan (possibly with
infinitely many cones).

(FB is related to a notion of “universal” cluster algebras.)
A fan for every cluster algebra Other fan constructions 14



Example: B = [ 0 1
−1 0 ]

η
B
1−→

↓ ηB2

Each of the 5 maximal
cones shown in the top-
left picture is a B-cone.
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Example: B =
[

0 2 −2
−2 0 2
2 −2 0

]

(Markov quiver)
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Section 4: Scattering diagrams/fans



Scattering diagrams

Scattering diagrams arose from mirror symmetry, Donaldson-
Thomas theory (string theory), integrable systems. There are also
connections to stability conditions (representation theory).

Gross, Hacking, Keel, and Kontsevich recently applied scattering
diagrams to prove longstanding conjectures about cluster algebras.
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Scattering diagrams

Scattering diagrams arose from mirror symmetry, Donaldson-
Thomas theory (string theory), integrable systems. There are also
connections to stability conditions (representation theory).

Gross, Hacking, Keel, and Kontsevich recently applied scattering
diagrams to prove longstanding conjectures about cluster algebras.

(Personal thanks to organizers of a recent MSRI Hot Topics
workshop and to Mandy Cheung.)
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Scattering diagram setup

Summary: skew-symmetric matrix, vector space and its dual,
integer points ↔ Laurent monomials.
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Scattering diagram setup

Summary: skew-symmetric matrix, vector space and its dual,
integer points ↔ Laurent monomials.

Details:

B is an n × n skew-symmetric integer matrix

V real vector space, basis α1, . . . , αn

V ∗ its dual space, basis ρ1, . . . , ρn

〈ρi , αj 〉 = δij (Kronecker delta)

integer points in V ∗: λ =
∑n

i=1 ciρi ↔ xλ = xc11 · · · x
cn
n

integer points in V : β =
∑n

i=1 diαi ↔ ŷβ = ŷd11 · · · ŷ
dn
n

ω : V × V → R skew-symmetric, bilinear. In the αi basis, its
matrix is B .

There is a global transpose B ↔ BT relating this setup to GHKK.
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Scattering diagrams

1 + ŷ1 + 7ŷ21 + · · ·
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A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .
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A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .

Details:

• Each wall is normal to a
primitive, positive integer
vector β. (That is,
β =

∑

ciαi with ci ≥ 0,
∑

ci > 0, gcd(ci ) = 1.)
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1

1+ŷ3
1 ŷ2

1 + ŷ21 ŷ
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A scattering diagram is
a set of walls. Each wall
is a codimension-1 cone
in V ∗, decorated with a
scattering term—a formal
power series in the ŷi .

Details:

• Each wall is normal to a
primitive, positive integer
vector β. (That is,
β =

∑

ciαi with ci ≥ 0,
∑

ci > 0, gcd(ci ) = 1.)

• The scattering term is a
univariate FPS in ŷβ with
constant term 1.

• A finiteness condition
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a (generic) path γ.
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Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a (generic) path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):
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1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

γ1
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Wall-crossing homomorphisms and path-ordered products

Crossing a wall (d, fd(ŷ
β)) acts on polynomials (or FPS):

xλ 7→ xλf
〈λ,±β〉
d

ŷφ 7→ ŷφf
ω(±β, φ)
d

Take “−” if crossing with β or “+” if crossing against β.

Path-ordered product pγ : compose these along a (generic) path γ.

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

Let’s try this in an example (B =
[

0 1
−1 0

]

):

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for generic paths).
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Two scattering diagrams are equivalent if they give the same
path-ordered products (for generic paths).
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Two scattering diagrams are equivalent if they give the same
path-ordered products (for generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent
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1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.
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Equivalence and consistency

Two scattering diagrams are equivalent if they give the same
path-ordered products (for generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent

1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)
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Two scattering diagrams are equivalent if they give the same
path-ordered products (for generic paths).

Example. Does the diagram below have 2 walls or 4?

A scattering diagram is consistent if path-ordered products depend
only on the endpoints of the path.

Example. As we saw, this scattering diagram is not consistent
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We can make it consistent by adding one wall.

pγ1 : x
−1
1 7→ x−1

1 7→ x−1
1 (1 + ŷ1ŷ2)

7→ x−1
1 (1 + ŷ1)(1 + ŷ1ŷ2(1 + ŷ1)

−1)

pγ2 : x
−1
1 7→ x−1

1 (1 + ŷ1) 7→ x−1
1 (1 + ŷ1(1 + ŷ2))

γ1

γ2

1 + ŷ1ŷ2
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Scattering fans

Theorem (R., 2017). A consistent scattering diagram with
minimal support cuts V ∗ into a complete fan.

Decoding this statement:

Support of a scattering diagram D is the union of its walls.
Equivalent scattering diagrams can have different supports.

The rampart associated to a positive integer vector β is the
union of all the walls contained in β⊥.

RamD(p): the set of ramparts of containing a given point p

Declare p, q ∈ V ∗ to be D-equivalent if and only if there is a
path γ from p to q on which RamD( · ) is constant.

D-cone: The closure of a D-equivalence class.

The scattering fan is the set of all D-cones and all faces of
D-cones.
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Cluster scattering diagrams

Theorem/Definition (Gross, Hacking, Keel, Kontsevich, 2014).
Given a skew-symmetric integer matrix B , the cluster scattering
diagram is the unique (up to equivalence) consistent scattering
diagram D such that

D contains the walls (α⊥
i , 1 + ŷi ).

All other walls are outgoing. (That is, each wall (d, fd(ŷ
β))

does not contain ω( · , β).)
1 + ŷ1

1 + ŷ1

1 + ŷ21 + ŷ2

1
+
ŷ
1 ŷ
2Example. The cluster scattering diagram

for B =
[

0 1
−1 0

]

.

One can check that the wall we added
is outgoing.

We get basis elements from cluster scattering diagram for any
g-vector. (The theta basis—“broken lines”.)
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Cluster scattering diagrams (cont’d)

Theorem (GHKK, 2014). The g=vector fan is a subfan of the
cluster scattering fan. Scattering terms in these walls are 1 + ŷβ.

Example: B =
[

0 a
−a 0

]

.

Finite case (a < 2): Scattering fan = g-vector fan. All scattering
terms easy.

Affine case (a = 2): Scattering term on one wall is not easy.

Wild case (a > 2): ∃ region where scattering terms are unknown.

[

0 1
−1 0

] [

0 2
−2 0

] [

0 3
−3 0

]
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Affine rank-2 cluster scattering diagrams

Scattering terms are 1 + ŷβ except on the limiting ray.

Theorem (Reineke, 2011 for
[

0 2
−2 0

]

, R. 2017 for
[

0 1
−4 0

]

?).
The scattering term on the limiting walls are:

1
(1−ŷ1 ŷ2)2

= 1 + 2ŷ1
1 ŷ

1
2 + 3ŷ2

1 ŷ
2
2 + · · ·

1+ŷ1 ŷ
2
2

(1−ŷ1 ŷ
2
2 )

2 = 1 + 3ŷ1ŷ2
2 + 5ŷ2

1 ŷ
4
2 + · · ·

[

0 2
−2 0

] [

0 1
−4 0

]

A fan for every cluster algebra Scattering diagrams/fans 25



Scattering fans and mutation fans

Theorem (R., 2017). For all B , the scattering fan ScatFan(B)
refines the mutation fan FB .

Conjecture (R., 2017). For rank ≥ 3, they coincide iff B

mutation-finite.
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Scattering fans and mutation fans

Theorem (R., 2017). For all B , the scattering fan ScatFan(B)
refines the mutation fan FB .

Conjecture (R., 2017). For rank ≥ 3, they coincide iff B

mutation-finite.

Work is in progress to construct scattering diagrams
combinatorially in two cases: Affine type and the surfaces/orbifolds
case.

(Both of these cases are mutation finite.)
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Section 5: Combinatorial models



Cluster scattering diagrams of acyclic affine type

(joint with Salvatore Stella)

Theorem (Felikson-Shapiro-Thomas-Tumarkin 2012). When B is
n × n and n ≥ 3, the cluster algebra A•(B) has linear growth if
and only if B is mutation-equivalent to an acyclic exchange matrix
whose associated Cartan matrix is of affine type.

Accordingly: Say B is of affine type iff A•(B) has linear growth.

Stella and I have constructed cluster scattering diagrams for acyclic
affine B , building on earlier work with Speyer and with Stella.

We are working on proving that the scattering fan coincides with
the mutation fan in this case.

(Closely connected with that: We also hope to prove a conjecture
on universal geometric cluster algebras of affine type.)
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Cluster scattering diagrams for surfaces/orbifolds

(joint with Greg Muller and Shira Viel)

Fomin, Shapiro, and Thurston: a model for (certain) cluster
algebras based on triangulated (oriented) surfaces. (B is the signed
adjacency matrix of the triangulation.)

Felikson, Shapiro, and Tumarkin: modeled a larger class of cluster
algebras by triangulated orbifolds.

Muller, Viel and I are working on constructing scattering diagrams
for surfaces. (Orbifolds are the next step.) We have combinatorial
gadgets in the surface that specify walls explicitly, and we think
that we have constructed the scattering diagram in general, but
there are some details to check.

We also expect to prove that scattering fans coincide with
mutation fans in the surfaces case.
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The doubled Cambrian fan

Speyer and I built the g-vector fan of acyclic affine type as a
doubled Cambrian fan—the Cambrian fan for B union the
antipodal image of the Cambrian fan for −B .

We characterized the space outside the g-vector fan as a certain
codimension-1 cone given by explicit inequalities (but no
information about how the space outside decomposes into cones).

Example: B =
[

0 1
−1 0

]
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An affine almost-positive roots model

Stella and I defined the affine-type almost positive Schur roots and
showed that they are precisely the d-vectors of cluster variables.

We defined a notion of compatibility. (Real) combinatorial clusters
are maximal sets of pairwise compatible real almost positive Schur
roots.

Each combinatorial cluster spans a full-dimensional cone. These
cones (for real clusters) are the maximal cones of the d-vector fan.
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An affine almost-positive roots model

Stella and I defined the affine-type almost positive Schur roots and
showed that they are precisely the d-vectors of cluster variables.

We defined a notion of compatibility. (Real) combinatorial clusters
are maximal sets of pairwise compatible real almost positive Schur
roots.

Each combinatorial cluster spans a full-dimensional cone. These
cones (for real clusters) are the maximal cones of the d-vector fan.

There is a unique imaginary Schur root δ.
Extending the definition of compatibility
in a natural way, we get a complete
fan having the d-vector fan as a subfan.
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An affine almost-positive roots model

Stella and I defined the affine-type almost positive Schur roots and
showed that they are precisely the d-vectors of cluster variables.

We defined a notion of compatibility. (Real) combinatorial clusters
are maximal sets of pairwise compatible real almost positive Schur
roots.

Each combinatorial cluster spans a full-dimensional cone. These
cones (for real clusters) are the maximal cones of the d-vector fan.

There is a unique imaginary Schur root δ.
Extending the definition of compatibility
in a natural way, we get a complete
fan having the d-vector fan as a subfan.

By a piecewise-linear map, the fan of almost
positive Schur roots becomes a completion
of the g-vector fan.
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Example: B =
[

0 1 1
−3 0 0
−1 0 0

]

(type G̃2)
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An affine almost-positive roots model (continued)

The link of the imaginary Schur root is combinatorially isomorphic
to a join of boundary complexes of type-B simplicial associahedra
(graph associahedra of cycles).

Example: If the rank-3 example we just did, the link was a
0-sphere (the boundary complex of a 1-cyclohedron).

Example: If the rank-4 examples there are two possibilities for the
link:

A quadrilateral (the join of two 0-spheres), or

A hexagon (the boundary complex of a 2-cyclohedron).
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Making the cluster scattering diagram/fan

We would like to show that the complete fan defined by (real and
imaginary!) clusters of almost positive Schur roots is the cluster
scattering fan. So far, we can construct the cluster scattering
diagram:

For each almost positive Schur root β, there is either

a B-sortable join-irreducible element whose unique cover
reflection corresponds to β, or

a B-sortable join-irreducible element whose unique cover
reflection corresponds to β, or (only finitely often) both.

From each join-irreducible element, we make a wall (a “shard”),
and in the “both” case, we get the same wall either way. Each of
these walls gets scattering term 1 + ŷβ.

Finally, we have an “imaginary wall”: Precisely the space outside
the g-vector fan. The scattering term is a FPS in ŷ δ, given by a
formula like in rank 2.
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Making the cluster scattering diagram/fan (cont’d)

...We have the cluster scattering diagram. It has exactly one wall
orthogonal to each positive Schur root.

We are currently trying to show that it coincides with both the
mutation fan and the fan defined from almost positive Schur roots.

The mutation fan connection would prove a case of the conjecture
on when the mutation fan and cluster scattering fan coincide.

It would also lead to the proof of a conjecture on universal
coefficients.
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Thank you for listening.

Cambrian frameworks for cluster algebras of affine type (with Speyer).
Trans. AMS 2018

An affine almost positive roots model (with Stella). arXiv:1707.00340

Scattering fans. arXiv:1712.06968 (to appear in IMRN)

A combinatorial approach to scattering diagrams. arXiv.1806.05094
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