Clusters, noncrossing partitions and the Coxeter plane

Nathan Reading

NC State University

FPSAC 2007 Nankai University, Tianjin, China

Finite Coxeter groups

Coxeter group W: Generated by a finite set S (with relations).

Motivation

Finite Coxeter groups \leftrightarrow finite groups generated by reflections. (Also Lie theory, rep. theory, geometric group theory, etc.)

Classical examples

 S_n : permutations of $\{1,\ldots,n\}$. $(S = \{(i \ i+1)\})$

 B_n : "signed" permutations of $\{\pm 1, \ldots, \pm n\}$.

 D_n : has a similar description in terms of permutations.

(All) other examples

 $I_2(m)$: full (dihedral) symmetry group of regular m-gon.

 H_3 : full symmetry group of icosahedron/dodecahedron.

 F_4 , H_4 : symmetry groups of 4-dimensional regular polytopes.

 E_6 , E_7 , E_8 .

Noncrossing partitions (Kreweras, 1972 & many others 1996-2002)

Write $1, \ldots, n$ cyclically. Set partitions are crossing or noncrossing.

This is the S_n case of a general algebraic construction. (Set partitions = equivalence relations \leftrightarrow sets of transpositions.)

The general definition is algebraic, not via planar diagrams. Analog of set partitions: certain collections of reflections. Algebraic criterion \rightarrow certain partitions are "noncrossing."

A pivotal role is played by a (the) Coxeter element $c = \prod S$.

Noncrossing partitions (continued)

Planar diagrams for noncrossing partitions for B_n and D_n :

B_n :

Write $1, \ldots, n, (-1), \ldots, (-n)$ cyclically. The "type B noncrossing partitions" are those classical noncrossing partitions which have central symmetry.

D_n :

A similar, slightly more complicated picture:

Place ± 1 at the origin, write $2, \ldots, n, (-2), \ldots, (-n)$ cyclically.

Criterion for noncrossing is essentially "blocks don't cross."

4

Clusters (Fomin and Zelevinsky, 2003)

Clusters: max'l sets of "pairwise compatible almost positive roots." Almost positive roots: (more or less) correspond to reflections. Def. of compatibility: "altered" Coxeter element plays a key role. Generalized associahedron: polytope with vertices ↔ clusters.

S_n :

Almost positive roots for $S_n \leftrightarrow$ diagonals of an (n+2)-gon. Compatible \leftrightarrow diagonals don't cross. Clusters are triangulations of the (n+2)-gon.

B_n :

Clusters are centrally symmetric triangulations of a (2n + 2)-gon.

D_n :

Clusters are not quite as easily described (a slightly more complicated model on a 2n-gon).

Why are models available for S_n , B_n , D_n only?

Why are the models **planar**?

Can we find (planar) models in other cases?

Why are models available for S_n , B_n , D_n only?

Small orbits. (\sim the Coxeter number h= the order of c.)

Why are the models **planar**?

Can we find (planar) models in other cases?

Why are models available for S_n , B_n , D_n only?

Small orbits. (\sim the Coxeter number h = the order of c.)

Why are the models planar?

They are based on projections of small orbits to the Coxeter plane. (A certain plane fixed, as a set, by c.)

Can we find (planar) models in other cases?

Why are models available for S_n , B_n , D_n only?

Small orbits. (\sim the Coxeter number h = the order of c.)

Why are the models **planar**?

They are based on projections of small orbits to the Coxeter plane. (A certain plane fixed, as a set, by c.)

Can we find (planar) models in other cases?

Yes for compatibility, sometimes for noncrossing partitions.

Motivation for planar models

- 1. Realize noncrossing partitions as combinatorial objects s.t. the algebraic symmetry acts as a natural combinatorial symmetry.
- 2. Realize clusters (and generalized clusters) as combinatorial objects with the defining symmetry acting as some natural combinatorial symmetry. (Cf. Eu's talk.)
- Generalize the combinatorics occurring in diagrams for clusters → new combinatorial models for cluster algebras of infinite type. (Cf. Fomin's talk.)
- 4. Generalize the beautiful fiber-polytope constructions for S_{n-} and B_{n-} associahedra.

A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation.

 $W = H_3$ (the full symmetry group of the icosahedron), h = 10

A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation.

 $W=H_3$ (the full symmetry group of the icosahedron), h=10

Ω

A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation.

 $W = H_3$ (the full symmetry group of the icosahedron), h = 10

Ω

A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation.

 $W=H_3$ (the full symmetry group of the icosahedron), h=10

Ω

A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation.

 $W = H_3$ (the full symmetry group of the icosahedron), h = 10

я

Projecting an orbit to the Coxeter plane

Take a smallest nontrivial orbit o of W. Project orthogonally to P.

$$S_{12}$$
 D_7 H_3 $|o|=12,\ h=12$ $|o|=14,\ h=12$ $|o|=12,\ h=10$

Projections are simple because $|o| \approx h$.

Projecting an orbit to the Coxeter plane (continued)

When $|o| \gg h$, the projections are necessarily more complicated.

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P.

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P.

Example: a reflection in F_4

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P.

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.)

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.)

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.)

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.)

Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.)

Noncrossing partitions in S_n , B_n , D_n

Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams.

Noncrossing partitions in S_n , B_n , D_n

Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams. We expect nice things to happen for H_3 , too, because h = 10 and H_3 has an orbit with 12 elements.

Noncrossing partitions in S_n , B_n , D_n and H_3 !

Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams. We expect nice things to happen for H_3 , too, because h=10 and H_3 has an orbit with 12 elements. Indeed, in H_3 we can determine noncrossing partitions by a simple criterion: Relative interiors of blocks may not intersect!

c-Orbit representatives of noncrossing partitions in H_3 .

Crossing partitions in H_3

c-Orbit representatives of crossing partitions in H_3 .

Crossing and noncrossing partitions in F_4

In the Coxeter groups whose smallest orbit o has $|o|\gg h$, a general criterion for crossing/noncrossing partitions is lacking.

Two partitions in F_4 (|o| = 24, h = 12)

Crossing and noncrossing partitions in F_4

In the Coxeter groups whose smallest orbit o has $|o|\gg h$, a general criterion for crossing/noncrossing partitions is lacking.

Two partitions in F_4 (|o| = 24, h = 12)

Crossing

Noncrossing

Diagrams for compatibility

There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots." When $|o| \approx h$, things work nicely.

Diagrams for compatibility

There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots."

When $|o| \approx h$, things work nicely.

Example: The G_2 -associahedron

Diagrams for compatibility

There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots."

When $|o| \approx h$, things work nicely.

Example: The G_2 -associahedron

Example: Clusters for H_3

Diagrams for compatibility (continued)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8

Diagrams for compatibility (continued)

When $|o|\gg h$, things really **want** to work nicely...

A root in E_8

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

When $|o| \gg h$, things really **want** to work nicely...

A root in E_8 (altered)

And another altered root

With very few additional (ad hoc) alterations (in E_6 , E_7 , E_8 , F_4), we obtain compatibility diagrams for all finite Coxeter groups.

Closing thoughts

The ideal:

Ideally, we want a completely uniform construction and a completely uniform criterion in both settings.

What we have:

What we have is a completely uniform construction in both settings, and so far no uniform criterion in either setting.

In the compatibility setting, we also have a non-uniform alteration of the construction which leads to a very nice criterion.

Heuristically:

Because we start with a construction that reproduces the classical combinatorial models, this work suggests that combinatorial models for crossing/noncrossing or compatibility for exceptional Coxeter groups cannot be much simpler than what is described here.