Clusters, noncrossing partitions and the Coxeter plane Nathan Reading NC State University FPSAC 2007 Nankai University, Tianjin, China ## Finite Coxeter groups Coxeter group W: Generated by a finite set S (with relations). #### Motivation Finite Coxeter groups \leftrightarrow finite groups generated by reflections. (Also Lie theory, rep. theory, geometric group theory, etc.) #### Classical examples S_n : permutations of $\{1,\ldots,n\}$. $(S = \{(i \ i+1)\})$ B_n : "signed" permutations of $\{\pm 1, \ldots, \pm n\}$. D_n : has a similar description in terms of permutations. #### (All) other examples $I_2(m)$: full (dihedral) symmetry group of regular m-gon. H_3 : full symmetry group of icosahedron/dodecahedron. F_4 , H_4 : symmetry groups of 4-dimensional regular polytopes. E_6 , E_7 , E_8 . ## Noncrossing partitions (Kreweras, 1972 & many others 1996-2002) Write $1, \ldots, n$ cyclically. Set partitions are crossing or noncrossing. This is the S_n case of a general algebraic construction. (Set partitions = equivalence relations \leftrightarrow sets of transpositions.) The general definition is algebraic, not via planar diagrams. Analog of set partitions: certain collections of reflections. Algebraic criterion \rightarrow certain partitions are "noncrossing." A pivotal role is played by a (the) Coxeter element $c = \prod S$. ## Noncrossing partitions (continued) Planar diagrams for noncrossing partitions for B_n and D_n : #### B_n : Write $1, \ldots, n, (-1), \ldots, (-n)$ cyclically. The "type B noncrossing partitions" are those classical noncrossing partitions which have central symmetry. #### D_n : A similar, slightly more complicated picture: Place ± 1 at the origin, write $2, \ldots, n, (-2), \ldots, (-n)$ cyclically. Criterion for noncrossing is essentially "blocks don't cross." 4 #### Clusters (Fomin and Zelevinsky, 2003) Clusters: max'l sets of "pairwise compatible almost positive roots." Almost positive roots: (more or less) correspond to reflections. Def. of compatibility: "altered" Coxeter element plays a key role. Generalized associahedron: polytope with vertices ↔ clusters. ## S_n : Almost positive roots for $S_n \leftrightarrow$ diagonals of an (n+2)-gon. Compatible \leftrightarrow diagonals don't cross. Clusters are triangulations of the (n+2)-gon. ## B_n : Clusters are centrally symmetric triangulations of a (2n + 2)-gon. #### D_n : Clusters are not quite as easily described (a slightly more complicated model on a 2n-gon). Why are models available for S_n , B_n , D_n only? Why are the models **planar**? Can we find (planar) models in other cases? Why are models available for S_n , B_n , D_n only? Small orbits. (\sim the Coxeter number h= the order of c.) Why are the models **planar**? Can we find (planar) models in other cases? Why are models available for S_n , B_n , D_n only? Small orbits. (\sim the Coxeter number h = the order of c.) Why are the models planar? They are based on projections of small orbits to the Coxeter plane. (A certain plane fixed, as a set, by c.) Can we find (planar) models in other cases? Why are models available for S_n , B_n , D_n only? Small orbits. (\sim the Coxeter number h = the order of c.) Why are the models **planar**? They are based on projections of small orbits to the Coxeter plane. (A certain plane fixed, as a set, by c.) Can we find (planar) models in other cases? Yes for compatibility, sometimes for noncrossing partitions. ## Motivation for planar models - 1. Realize noncrossing partitions as combinatorial objects s.t. the algebraic symmetry acts as a natural combinatorial symmetry. - 2. Realize clusters (and generalized clusters) as combinatorial objects with the defining symmetry acting as some natural combinatorial symmetry. (Cf. Eu's talk.) - Generalize the combinatorics occurring in diagrams for clusters → new combinatorial models for cluster algebras of infinite type. (Cf. Fomin's talk.) - 4. Generalize the beautiful fiber-polytope constructions for S_{n-} and B_{n-} associahedra. A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation. $W = H_3$ (the full symmetry group of the icosahedron), h = 10 A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation. $W=H_3$ (the full symmetry group of the icosahedron), h=10 Ω A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation. $W = H_3$ (the full symmetry group of the icosahedron), h = 10 Ω A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation. $W=H_3$ (the full symmetry group of the icosahedron), h=10 Ω A certain plane P fixed, as a set, by the Coxeter element c. The action of c on P is by h-fold rotation. $W = H_3$ (the full symmetry group of the icosahedron), h = 10 я ## Projecting an orbit to the Coxeter plane Take a smallest nontrivial orbit o of W. Project orthogonally to P. $$S_{12}$$ D_7 H_3 $|o|=12,\ h=12$ $|o|=14,\ h=12$ $|o|=12,\ h=10$ Projections are simple because $|o| \approx h$. ## Projecting an orbit to the Coxeter plane (continued) When $|o| \gg h$, the projections are necessarily more complicated. Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Example: a reflection in F_4 Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.) Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.) Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.) Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.) Reflection $t \to \text{matching on } o \to \text{matching on projection of } o$. Diagram of t: straight-line drawing of this matching in P. Diagram for a partition: union of the diagrams of the reflections. (This defines a set partition of the projected orbit.) ## Noncrossing partitions in S_n , B_n , D_n Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams. ## Noncrossing partitions in S_n , B_n , D_n Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams. We expect nice things to happen for H_3 , too, because h = 10 and H_3 has an orbit with 12 elements. ## Noncrossing partitions in S_n , B_n , D_n and H_3 ! Applying this construction to S_n , B_n and D_n , we get (the usual) nice planar diagrams. We expect nice things to happen for H_3 , too, because h=10 and H_3 has an orbit with 12 elements. Indeed, in H_3 we can determine noncrossing partitions by a simple criterion: Relative interiors of blocks may not intersect! c-Orbit representatives of noncrossing partitions in H_3 . ## Crossing partitions in H_3 c-Orbit representatives of crossing partitions in H_3 . ## Crossing and noncrossing partitions in F_4 In the Coxeter groups whose smallest orbit o has $|o|\gg h$, a general criterion for crossing/noncrossing partitions is lacking. Two partitions in F_4 (|o| = 24, h = 12) ## Crossing and noncrossing partitions in F_4 In the Coxeter groups whose smallest orbit o has $|o|\gg h$, a general criterion for crossing/noncrossing partitions is lacking. Two partitions in F_4 (|o| = 24, h = 12) Crossing Noncrossing ## Diagrams for compatibility There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots." When $|o| \approx h$, things work nicely. ## Diagrams for compatibility There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots." When $|o| \approx h$, things work nicely. Example: The G_2 -associahedron ## Diagrams for compatibility There is a uniform way to alter the projected orbit (h-gons become (h+2)-gons) and define diagrams for "almost positive roots." When $|o| \approx h$, things work nicely. Example: The G_2 -associahedron Example: Clusters for H_3 ## Diagrams for compatibility (continued) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 ## Diagrams for compatibility (continued) When $|o|\gg h$, things really **want** to work nicely... A root in E_8 When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) When $|o| \gg h$, things really **want** to work nicely... A root in E_8 (altered) And another altered root With very few additional (ad hoc) alterations (in E_6 , E_7 , E_8 , F_4), we obtain compatibility diagrams for all finite Coxeter groups. # Closing thoughts #### The ideal: Ideally, we want a completely uniform construction and a completely uniform criterion in both settings. #### What we have: What we have is a completely uniform construction in both settings, and so far no uniform criterion in either setting. In the compatibility setting, we also have a non-uniform alteration of the construction which leads to a very nice criterion. #### Heuristically: Because we start with a construction that reproduces the classical combinatorial models, this work suggests that combinatorial models for crossing/noncrossing or compatibility for exceptional Coxeter groups cannot be much simpler than what is described here.