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Basic objects

W a finite Coxeter group
S the simple generators (reflections)
n the rank |S| of W

T the reflections in W

Φ a root system for W

c a Coxeter element c = s1 · · · sn

for S = {s1, . . . , sn}
h the Coxeter number (order of c)
ei exponents (eigenvalues of c are ζei)

W -Catalan numbers

Cat(W ) :=
n

∏

i=1

ei + h + 1

ei + 1

Generalizes usual Catalan number (W = Sn).

W -Catalan combinatorics

Various constructions involving (W, c)—or in-

volving only W—yield sets of objects counted

by the W -Catalan number. Connections are

not fully understood.
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Clusters (Fomin, Marsh, Reineke, Zelevinsky)

Almost positive roots: the set Φ≥−1 of positive

roots Φ together with negative simple roots

(−Π).

For s ∈ S, define σs : Φ≥−1 → Φ≥−1:

σs(α) :=

{

α if α ∈ (−Π) and α 6= −αs, or
s(α) otherwise.

c-Compatibility relation ‖c on Φ≥−1:

(i) For any s ∈ S,

−αs ‖c β if and only if β ∈ (Φ〈s〉)≥−1.

(ii) For s initial in c,

α1 ‖c α2 if and only if σs(α1) ‖scs σs(α2).

Clusters: maximal sets of pairwise c-compatible

roots in Φ≥−1.

Counted by Cat(W ).
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Example (W = Sn, special choice of c)

Simple roots are α1, · · · , αn−1 and positive roots

are αij = αi + αi+1 + · · ·αj.

n = 5:

−α1

−α2

−α3

−α4

Almost positive root↔diagonal of (n+2)-gon.

Negative simple roots ↔ diagonals forming “snake.”

Positive root αij ↔ diagonal crossing −αi, . . . ,−αj

but no other negative simple. (α23 shown.)

σs1 · · ·σsn ↔ rotation through 1/7 of a turn.

Compatible ↔ noncrossing.

Clusters ↔ triangulations.
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Noncrossing partitions
(Athanasiadis, Bessis, Biane, Brady-Watt, Picantin, Reiner)

lT (w): length of a shortest factorization of w

into reflections.

Set w � wt when lT (wt) = lT (w) + 1. (t ∈ T)

The noncrossing partition lattice is [1, c]�.

This lattice has Cat(W ) elements.

Example: W = Sn, c = (1 2 · · · n)

lT is (n − #cycles).

(1)(2)(3)(4)

(12)(3)(4) (13)(2)(4) (1)(23)(4) (14)(2)(3) (1)(24)(3) (1)(2)(34)

(123)(4) (14)(23) (124)(3) (134)(2) (12)(34) (1)(234)

(1234)
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Sorting words
Fix (some reduced word for) a Coxeter ele-

ment c. Form an infinite word

c∞ = c|c|c|c| · · ·

c-Sorting word for w: the lex. leftmost subword

of c∞ which is a reduced word for w.

Example: W = S5, c = s1s2s3s4,

c∞ = s1s2s3s4|s1s2s3s4|s1s2s3s4| · · ·

The c-sorting word for 42351 is s1s2s3s4|s2|s1.

Step c-Sorting word Permutation

0 42351
1 s1 41352
2 s1s2 41253
3 s1s2s3 31254
4 s1s2s3s4| 31245
5 s1s2s3s4| 31245
6 s1s2s3s4|s2 21345
7 s1s2s3s4|s2 21345
8 s1s2s3s4|s2 21345
9 s1s2s3s4|s2|s1 12345
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Sortable elements

A sorting word can be interpreted as a se-

quence of sets (letters between dividers “ |”).

If the sequence is nested then w is c-sortable.

Example: w with c-sorting word s1s2s3s4|s2|s1
is not c-sortable because {s1} 6⊆ {s2}.

The c-sortable elements are counted by Cat(W ).

Example: W = S3, c = s1s2.

c-sortable: not c-sortable:
1 123 s2|s1 312
s1 213
s1s2 231
s1s2|s1 321
s2 132

Example: W = Sn

For one choice of c, the c-sortable elements are

the “231-avoiding” or “stack-sortable” permu-

tations.

For another c, “c-sortable” = “312-avoiding”.
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Proof methods

l(w) is the length of a shortest word for w in the

alphabet S. (l(w) and lT (w) typically differ.)

l(sw) < l(w) means w has a reduced word be-

ginning with s ∈ S. Otherwise l(sw) > l(w).

Two lemmas are immediate from the defini-

tion, because we can take s1 = s in

c∞ = s1s2 · · · sn|s1s2 · · · sn|s1s2 · · · sn|s1s2 · · · sn| . . .

Lemma: Let s be an initial letter of c and let

w ∈ W have l(sw) > l(w). Then w is c-sortable

if and only if it is an sc-sortable element of W〈s〉.

Lemma: Let s be an initial letter of c and let

w ∈ W have l(sw) < l(w). Then w is c-sortable

if and only if sw is scs-sortable.

These lemmas allow proofs by induction on

rank of W and on length of w.
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Sortable ↔ NC

The cover reflections of w are the reflections

of the form wsw−1 for s ∈ S such that w has a

reduced word ending in s. (In this case w ·> ws

is a cover in weak order.)

Let w have c-sorting word s1s2 · · · sk.

Each cover reflection t has a unique i ∈ [k] with

tw = s1s2 · · · ŝi · · · sk.

Let ncc(w) be the product of the cover reflec-

tions of w, ordered by increasing i.

The map ncc is a bijection between c-sortable

elements and noncrossing partitions (i.e. ele-

ments of [1, c]T ).
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Example: W = Sn

Cover reflections of π are transpositions (i j)
with i > j and i immediately before j in π.
(Related to “descents” of π.)

For W = Sn, ignore the order of multiply-
ing transpositions. Interpret the transposition
(i j) as “i and j in the same block.” This
gives a noncrossing partition of the cycle c.

In S3 with c = s1s2 = (1 2 3), every permuta-
tion except 312 is c-sortable.

1

23

π ncc(π)

123

213

231

321 −→

132
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Sortable ↔ Clusters

Let w have c-sorting word a1a2 · · · ak and let

s ∈ S.

The last root for s in w is the positive root for

the reflection a1a2 · · · ai−1aiai−1 · · · a2a1, where

ai is the rightmost instance of s in a1a2 · · · ak.

If s doesn’t occur in a1a2 · · · ak then the last

root for s in w is −αs, where αs is the simple

root associated to s.

Define clc(w) = {last roots of w}

The map clc is a bijection between c-sortable

elements and c-clusters.
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Example:

For W = S3 and c = s1s2 the map is as follows:

−α1

−α2

w ncc(π)

1 −α1,−α2

s1 α1,−α2

s1s2 α1, α12

s1s2|s1 α2, α12

s2 −α1, α2
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Lattices and fans

Define x ≡ y if the maximal c-sortable element

below x (in weak order) equals the maximal

c-sortable element below y. This is a lattice

congruence on the weak order on W—in fact,

the “Cambrian” congruence.

Any lattice congruence on weak order defines a

complete fan. Maximal cones are unions (over

congruence classes) of maximal cones of the

fan defined by the reflecting hyperplanes of W .

The clusters also define a complete fan. Each

cluster defines a maximal cone: the positive

linear span of the roots in the cluster.

Joint with D. Speyer: The map clc induces a

combinatorial isomorphism between the Cam-

brian fan and the cluster fan. For special (“bi-

partite”) choices of c, there is also a linear

isomorphism.
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Example (W = B2, c = s0s1)

1
s0

s0s1

s0s1s0

s0s1s0s1

s1

s1s0

s1s0s1

1
s0

s0s1

s0s1s0

s0s1s0s1

s1

(i) (ii)

−αs0
−αs1

αs0
αs1

αs0s1s0
αs1s0s1

cl(1)

cl(s0)

cl(s0s1)

cl(s0s1s0)

cl(s1)

cl(s0s1s0s1)

(iii) (iv)

(i) The fan defined by reflecting hyperplanes

(ii) The c-Cambrian fan

(iii) The c-cluster fan

(iv) The map clc from (ii) to (iii)
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Clusters ↔ NC partitions
(with D. Speyer)

For a special (“bipartite”) choice of c, there is

a completely geometric bijection between clus-

ters and noncrossing partitions.

Choose a certain vector v. For each maximal

cone C of the cluster fan, v chooses a “bot-

tom” face B(C) in a way that can be made

precise. The map taking a maximal cone to

L(B(C)) is a bijection between clusters and

noncrossing partitions.

(L is some specific linear map. Noncrossing

partitions are represented here by their fixed

subspaces.)

Example
In picture (ii) on the previous slide, v can be

chosen to point left and L is the reflection fix-

ing the lower left and upper right corners of

the shaded square.
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Remarks

• All definitions in the theory of sortable ele-

ments are given without relying on the classi-

fication of finite Coxeter groups. However, a

few key lemmas about sortable elements cur-

rently only have “case-by-case” proofs.

• Several cluster algebra constructions have in-

terpretations in terms of the Cambrian fan.

For example, the “g-vector” of a cluster vari-

able is the coordinates, in the basis of fun-

damental weights, of the corresponding Cam-

brian ray. (Joint with D. Speyer.) Work is in

progress to extend these results beyond finite

type.

• The nonnesting partitions (antichains in the

root poset) are also counted by Cat(W ). No

bijection is known between nonnesting parti-

tions and any other object discussed in this

talk.
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