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Some maps

Sn := {permutations of [n]}.

Yn := {planar binary trees with n+1 leaves}.

2[n−1] := {subsets of {1,2, . . . , n− 1}}.
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We have δ = δ′ ◦ η. More details soon.
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Maps on polytopes

Permutohedron: vertices are permutations.

Associahedron: vertices are planar binary trees.

The maps η and δ on vertices extend to maps

on faces.
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(Billera & Sturmfels, Tonks, Loday & Ronco)
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Maps on Hopf Algebras

Hopf algebras of:

• permutations: MR (Malvenuto-Reutenauer)

• planar binary trees: PBT

• subsets: NCSym

MR

PBT

NCSym
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(Loday & Ronco.)
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Maps on Posets

Loday & Ronco described the products in these

three Hopf algebras in terms of partial orders

(in fact lattices) on basis elements. The maps

are order-preserving.

Weak order

Tamari lattice

Boolean algebra
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(also Björner and Wachs.)
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Questions

What is it about these maps that gives them

such nice geometric and algebraic properties?

Can we generalize?

That is, can we find other maps from permuta-

tions to objects which are just as well-behaved

geometrically and (Hopf) algebraically?
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Answer

Both η and δ are lattice homomorphisms.

(For δ, Le Conte de Poly-Barbut, and for η,

almost proven by Björner and Wachs.)

Note: “lattice homomorphisms” means more

than “order-preserving.” A lattice homomor-

phism must respect meets and joins.

The geometric and algebraic properties gener-

alize to other lattice homomorphisms.
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Geometry

Any lattice quotient (i.e. lattice-homomorphic

image) of the weak order defines a complete

fan of convex cones such that:

• The partial order is induced on maximal cones

by a linear functional.

• Homotopy types of intervals are determined

by the facial structure of the fan.

• Any linear extension of the partial order is a

shelling of the fan.

It is not clear from this construction whether

the fans are normal fans of polytopes.

This is all true, even replacing Sn by the weak

order on any finite Coxeter groups. One case

of the construction gives the normal fan of

Fomin and Zelevinsky’s generalized associahe-

dron (in types A and B, and conjecturally in all

types).
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Hopf Algebras

For each n, let Zn be a lattice quotient of weak

order on Sn with some compatibility require-

ments, and let K [Z∞] be the vector space in-

dexed by the elements of the Zn’s.

Then K [Z∞] has a graded Hopf-algebra struc-

ture and embeds as a sub Hopf algebra of the

Malvenuto-Reutenauer Hopf algebra.

The Hopf algebras constructed in this manner

correspond to order-ideals in an infinite partial

order H∞.

Each of these Hopf algebras has a basis con-

sisting of permutations satisfying a condition

similar to pattern-avoidance.
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Order Ideals in H∞

Here are the top 4 ranks of H∞:

23451 34512 24513 23514 45123 35124 25134 51234

2341 3412 2413 4123

231 312

21

The ideal represents what is “modded out.”

Thus the empty ideal is the MR algebra. Tak-

ing the ideal to be the whole poset gives a Hopf

algebra with one-dimensional graded pieces.
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The ideal for NCSym:

231 312

The ideal for PBT:

231



Baxter permutations

The Baxter permutations can be defined by a

pattern avoidance criterion and are counted by

∑n
k=1 (

n+1
k−1)(

n+1
k )(n+1

k+1)

(n+1
1 )(n+1

2 )
.

(Chung, Graham, Hoggatt, Kleiman)

The ideal generated by {3412,2413} gives a

Hopf algebra with a basis of twisted Baxter

permutations, which appear to be equinumer-

ous with Baxter permutations (up to n = 15).

24133412

12



A thought

Use ideals to build MR as the limit of an infinite

sequence, starting with NCSym.

Can one use this limiting process to “lift” prop-

erties or constructions from NCSym to MR?



(Right) weak order

A partial order (in fact a lattice) on permuta-
tions in Sn.

Covers are transpositions of adjacent entries.

Going “up” means putting the entries out of
numerical order.

The weak order on S3:

321

312231

132213

123

From now on “Sn” means “the weak order
on Sn.”
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Example

The weak order on S4:

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321

The cover relations in the weak order are ex-

actly the edges of the permutohedron.
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Lattice congruences

• Definition: equivalence relations respect-

ing meet and join. (Analogous to congru-

ences on rings).

• They arise as the fibers of lattice homo-

morphisms.

• Conversely, given a lattice congruence, the

quotient map (from elements to congru-

ence classes) is a lattice homomorphism.

16



Lattice congruences (cont’d)

A equivalence relation Θ on a finite lattice L
is a congruence if and only if:

(i) Every equivalence class is an interval.

(ii) The projection π↓ which takes each ele-
ment to the bottom of its equivalence class,
is order-preserving.

(iii) The analogous map π↑ is also order-preserving.

π↓x

x

π↑x

The quotient lattice L/Θ is isomorphic to the
subposet of L consisting of bottoms of con-
gruence classes of Θ.
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Permutations to trees

η(x) for x = x1x2 · · ·xn ∈ Sn:

First label the lowest branch point by xn.

Then construct the subsequence of x consist-

ing of entries less than xn, and the subsequence

of entries greater than xn.

For x = 385297614, these sequences are 321

and 85976.

Use these to make the left and right subtrees

recursively. An empty sequence makes a leaf.

For x = 385297614, η(x) is

3
2

1

5 8
9

7

6

4
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Example

The weak order on S4:

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Example

The map η on S4.

20



Example (continued)

The quotient of S4 mod the fibers of η. (The

Tamari lattice).
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More on η

The fibers of η define a lattice congruence on
weak order (proof: use inversion sets).

planar binary trees
←→ Bottoms of congruence classes

←→ 312-avoiding permutations.

The map η is a lattice homomorphism to the
lattice induced on trees (the Tamari lattice).

Read π↓(x) recursively from the (labeled) tree:
Last element is the bottom branch point; the
left subtree precedes the right subtree.

Thus for x = 385297614, we obtain π↓(x) =
321589764.

3
2

1

5 8
9

7

6

4
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Permutations to sets

(Solomon) descent map.

A (left) descent of a permutation π is a pair

(i, i+1) which is inverted in π.

For example, δ(385297614) is

{(1,2), (2,3), (4,5), (6,7), (7,8)}.

The fibers of this map define a lattice congru-

ence. The quotient is the Boolean algebra.

The descent set of x consists of simple trans-

positions. Then π↓(x) is the maximal element

of the (parabolic) subgroup generated by those

transpositions.

For example, π↓(385297614) = 321548769.
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Example

The descent congruence on S4:

1234

2134 1324 1243

2314 3124 2143 1342 1423

2341 3214 3142 2413 1432 4123

3241 2431 3412 4213 4132

3421 4231 4312

4321
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Example

The quotient of S4 mod the descent congru-

ence:

1234

2134 1324 1243

2314 3124 2143 1342 1423

3214 2341 3142 2413 4123 1432

3241 2431 3412 4213 4132

3421 4231 4312

4321

1234

2134 1324 1243

2143

3214 1432

4321
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The MR Hopf algebra

As a graded vector space:

K [S∞] :=
⊕

n≥0K [Sn].

Product: “sum over all shifted shuffles.”

Order-theoretic description of product (Loday

& Ronco):

312 •S 21 is the sum of the elements of the

interval [31254,54312] in weak order.

23154

23514

23541 25314

25341 52314

25431 52341

52431

54231



MR Hopf algebra (continued)

The coproduct:

∆S(x) =
∑n

p=0 st(x1, . . . , xp)⊗ st(xp+1, . . . , xn).

“st” is the standard permutation of a word.

Example:

∆S(35124) = ∅ ⊗ 35124+ 1⊗ 4123

+ 12⊗ 123+ 231⊗ 12

+3412⊗1+35124⊗∅.
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A family of quotients

• Fix a congruence Θn on each Sn. The no-

tation x ≡ y and π↓x refers to the congru-

ence Θn on the appropriate Sn.

• Define Zn := Sn/Θn for each n. We will

always think of Zn as:
{

x ∈ Sn : π↓x = x
}

⊆ Sn.

• Let K [Z∞] denote
⊕

n≥0K [Zn].
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Maps

• Define c : K [Z∞] −→ K [S∞] by

x ∈ Zn 7−→
∑

x′≡x

x′.

(“class” map).

• Define r : K [S∞] −→ K [Z∞] by

x ∈ Sn 7−→

{

x if π↓x = x, or

0 otherwise.

(“representative” map).

• Note that r ◦ c = id : K [Z∞] −→ K [Z∞].
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Product

For u ∈ Zp and v ∈ Zq, define u •Z v ∈ Zp+q by

u •Z v = r(u •S v).

In words: sum over those shifted shuffles of u

and v which are in Zp+q.
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Example

Let Θn be the “312-avoidance” congruence

and let Zn := Sn/Θn for each n. (So elements

of Zn correspond to planar binary trees).

We have 231 ∈ Z3 and 21 ∈ Z2.

231 •Z 21 = 23154+ 23541+ 25431.

23154

23514

23541 25314

25341 52314

25431 52341

52431

54231
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Example

Let Θn be the descents congruence and let

Zn := Sn/Θn for each n.

We have 213 ∈ Z3 and 21 ∈ Z2.

We have 213 •Z 21 = 21354+ 21543.

21354

21534

21543 25134

25143 52134

25413 52143

52413

54213

In this algebra, the product of two basis ele-

ments is always a sum of two basis elements.

(Why?)
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Coproduct

Define ∆Z = (r ⊗ r) ◦∆S ◦ c.

In words: . . . well, it doesn’t get much simpler

in words, but this formula says no more than:

“We want K [Z∞] to embed as a sub-coalgebra

of K [S∞].”
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Example

Again, let Zn arise from the “312-avoidance”

congruence.

123

132 213

312 231

321

We have 132 ∈ Z3 and

∆Z(132) = (r ⊗ r) ◦∆S ◦ c(132)

= (r ⊗ r) ◦∆S(132+ 312)

= (r ⊗ r) [∅ ⊗ 132+ 1⊗ 21+ 12⊗ 1+ 132⊗ ∅
∅ ⊗ 312+ 1⊗ 12+ 21⊗ 1+ 312⊗ ∅]

= ∅ ⊗ 132+ 1⊗ (12 + 21) +
(12+ 21)⊗ 1+ 132⊗ ∅.



Sub Hopf algebras

Two compatibility conditions on {Θn}, guar-

antee that the map c embeds K [Z∞] as a sub

Hopf algebra of K [S∞].

To understand these conditions, we need to

consider join-irreducible elements:

An element j of L is join-irreducible if it covers

exactly one element j∗.

For the weak order on Sn, these are permuta-

tions which are increasing everywhere except

at one position. For example, 23678145.

Specifying a join-irreducible is equivalent to

specifying its left set (the elements before the

decrease). Equivalently, specify the right set.

The left set of 23678145 is {2,3,6,7,8} and

the right set is {1,4,5}.
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One last slide about

Lattice Congruences

Say a congruence contracts a join-irreducible j

if j ≡ j∗.

A key theorem on congruences: A congruence

is determined by the set of join-irreducibles it

contracts.

Contracting one join-irreducible typically forces

others to be contracted.

One step in finding the compatibility condi-

tions was determining these forcing relation-

ships for join-irreducibles of the weak order

on Sn.

36



Two operations

Insertion: Given a join-irreducible j in Sn and

i ∈ [n+ 1], insert i into the right or left set.

Every entry ≥ i is increased by 1.

Example: right-insertion of 3 into 23678145:

R3(23678145) = 247891356.

Translation: A special case of insertion. The

two translates of j are L1(j) and Rn+1(j).

Example: the translates of 23678145 are:

L1(23678145) = 134789256,

R9(23678145) = 236781459.
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1st compatibility criterion

Translation:

L1(j) is contracted by Θn+1

m

j is contracted by Θn

m

Rn+1(j) is contracted by Θn+1.

This is why H∞ consists of “untranslated” join-

irreducibles.
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2nd compatibility criterion

Insertion:

j is contracted by Θn

⇓

Li(j) and Ri(j) are contracted by Θn+1

for any i ∈ [n+1].

The cover relations on H∞ are these inser-

tion relations, restricted to untranslated join-

irreducibles.
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H∞

Thus choosing an ideal in H∞ defines a family

of congruences such that K [Z∞] embeds as a

sub Hopf algebra.

23451 34512 24513 23514 45123 35124 25134 51234

2341 3412 2413 4123

231 312

21

Given an ideal, there is a pattern-avoidance

condition which describes membership in Zn.
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Pattern avoidance

For example, choose the principal ideal gener-

ated by 256134.

A permutation x is not in Zn if and only if it

has entries a < b < c < d < e < f such that:

(i) f occurs immediately before a,

(ii) b and e occur before f (in any order), and

(iii) c and d occur after a (in any order).

For example, with this choice of ideal, 713592846

is not in Zn. (Take (a, b, c, d, e, f) = (2,3,4,6,7,9)).

For general ideals, impose a condition like this

for each maximal element of the ideal.

41



Pattern avoidance (continued)

This pattern-avoidance condition is why the

product formula was so simple.

A priori, the product should have been:

u •Z v = r(c(u) •S c(v)).

But it is easy to check from the pattern-avoidance

condition that if u′ 6∈ Zp, then the shifted shuf-

fle of u′ with any permutation in Sq is not in

Zp+q.

So we may as well write:

u •Z v = r(u •S v).
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Examples

This pattern-avoidance condition applies to the

examples discussed previously:

PBT: 312-avoiding permutations.

NCSym: permutations x with xi+1 ≥ xi − 1.

K [Sn,k]: permutations x with xi+1 ≥ xi−k+1.

BAX: permutations avoiding 3412 with “4”

and “1” adjacent and 2413 with “4” and “1”

adjacent (“twisted Baxter permutations”).
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