
MA 724, Midterm Exam solutions

1a. S = {[ 10 ], [ 11 ]}
S△ = {[c1 c2] ∈ (R2)∗ : c1 ≤ 1, c1 + c2 ≤ 1}.

1b. S = P
([

1 0
0 1

−1 −1

]
,
[
1
1
1

])
S△ = {c⃗

[
1 0
0 1

−1 −1

]
: c⃗ ≥ 0, c⃗ 1⃗ = 1}

This is the convex hull of the rows of the given matrix.

1c. S = conv ( [ 1 1 2
1 −2 1 ] )

S△ = {c⃗ ∈ (R2)∗ : c⃗
[
1 1 −2
1 −2 1

]
≤ 1}

You didn’t need to notice that the polytopes in parts b and c are the same. I gave P△ in the form (V or H)
that you could get easily from the given form of P . You should be comfortable doing polar duality on a
polytope given in V-form or H-form, as long as 0⃗ is in its interior.

2. The polar dual is also an Egyptian pyramid. One way to see this is to actually draw the Hasse diagram
of the face lattice and then turn it upside down. Another way is to think through: There are 5 vertices
of P△, corresponding to the 5 facets of P . Facets of P△ correspond to vertices of P . Since there is one
vertex of P contained in 4 facets, there is one facet of P (necessarily 2-dimensional) with 4 vertices, or
in other words, a sqaure. Similarly, there are 4 other vertices of P , each contained in 3 facets, and these
correspond to triangular facets of P△. A bit of thought (possibly thinking of how edges of P become edges
of P△), shows that P△ is an Egyptian pyramid.

3. A priori, P is P (A, z⃗). But if any entry of z⃗ is negative (say zi < 0), then 0⃗ ̸∈ P , because 0⃗ does not
satisfy a⃗ix⃗ ≤ zi. Also if any entry of z⃗ is zero, then 0⃗ is not in the interior of P . (For this, you could
remember Lemma 2.8 or just think it through: If 0⃗ ∈ int(P ) then P must be full-dimensional. But if
zi is zero, then 0⃗ satisfies a⃗ix⃗ ≤ zi with equality, so 0⃗ is in a proper face P ∩ {x⃗ ∈ Rd : a⃗ix⃗ = zi} of P ,
contradicting 0⃗ ∈ int(P ). Thus every entry of z⃗ is positive, so we can scale the rows of Ax⃗ ≤ z to get
A′x⃗ ≤ 1⃗ for some matrix A′. Thus P = P (A′, 1⃗).

4. The entire point of this problem was that if you have a polytope, you can think of it as an H-polytope
or a V-polytope, as you please.

Given two H-polytopes P and Q, they are also V-polytopes. Write P = conv(V ) and Q = conv(W ).
The point is that conv(P ∪Q) = conv(V ∪W ), which is a V-polytope (and thus also an H polytope).

To see that conv(P ∪ Q) = conv(V ∪ W ), first note that conv(P ∪ Q) ⊇ conv(V ∪ W ) is immediate
because P ∪ Q ⊇ V ∪ W . On the other hand, if x⃗ ∈ conv(P ∪ Q), then x⃗ can be written as a convex
combination of points y⃗1, . . . , y⃗k where each y⃗i is either a convex combination of points in V or a convex
combination of points in W . Thus x⃗ is a convex combination of points in V ∪W .

5a. 5b. 5c.



For part c, the polytope is the convex hull of 3 points on the moment curve. They’re affinely independent
(meaning “not collinear” since there are 3 of them), so their convex hull is a triangle.

6a. The statement x⃗ ∈ conv(V ) means precisely ∃t⃗ ∈ Rn such that t⃗ ≥ 0⃗, 1t⃗ = 1, and V t⃗ = x⃗. The
statement that there exists an affine hyperplane separating x⃗ from V from v is precisely saying that there
exists a⃗ ∈ (Rd)∗ and z ∈ R such that a⃗v⃗i ≤ z for all i ∈ [n] and a⃗x⃗ > z.

Thus, the Lemma is that ∃t⃗ ∈ Rn such that t⃗ ≥ 0⃗, 1t⃗ = 1, and V t⃗ = x⃗ or ∃a⃗ ∈ (Rd)∗ and z ∈ R such
that a⃗v⃗i ≤ z for all i ∈ [n] and a⃗x⃗ > z, but not both. (The “but not both” part should be obvious.)

6b. We can rewrite the Lemma further as follows: ∃t⃗ ∈ Rn such that t⃗ ≥ 0⃗ and [ V1 ]⃗t = [ x⃗1 ] or ∃⃗b ∈ (Rd+1)∗

such that b⃗
[
V
1⃗

]
≥ 0 and b⃗x⃗ < 0, but not both. (The b⃗ in this restatement is [ −a⃗ z ] for a⃗ and z as in part a.)

We see that the Lemma is exactly Farkas II with A =
[
V
1⃗

]
, m = d+ 1, d = n, and z⃗ = [ x⃗1 ].

7. Note that this problem did not use any facts about the graph of a polytope. Just the definition of the
graph and then facts from Lectures ≤ 2.

7a. Because if the graph of a polytope is K7, then the polytope has 7 vertices and thus has dimension at
most 6.

7b. The 6-dimensional simplex.

7c. The cyclic polytope C7(5).

8. Suppose P has 0⃗ ∈ int(P ). In Problem 3, we showed that P = P (A, 1⃗). We proved in class (and in the
book) that P△ is a polytope with 0 ∈ int(P△). But we also proved in class that P△ is the convex hull of
the rows of A. (Compare Problem 1b.)

Conversely, suppose P = P (A, 1⃗) for some matrix A such that the convex hull of the rows of A contains
0 in its interior. This convex hull of the rows of A is P△, and we proved in class that (P△)△ has 0⃗ in its
interior. (In fact, we proved that dual of that fact.) But P ⊆ (P△)△, so 0⃗ ∈ int(P ).


