
MA 724
Homework 9, Comments and some solutions.

Problem 1

A little philosophy before I actually answer the question. Recall that a simple graph is a graph
with no self-edges and no multiple edges between one pair of vertices. A 1-dimensional (geometric)
simplicial complex is precisely a simple graph together with a specific “drawing” of the graph in some
vector space with straight-line edges that don’t intersect each other except at endpoints. Kruskal-
Katona answers the question “Does there exist a simple graph with f1 edges and f0 vertices?” (for
given numbers f0 and f1).

Kruskal-Katona for d = 2 says that (f−1, f0, f1) is the f -vector of a simplicial complex of dimen-
sion ≤ 1 if and only if f−1 = 1 and f0 ≥ ∂2(f1). Thus, writing f1 − 1 as

(
a2

2

)
+
(
a1

1

)
for a2 > a1 ≥ 0,

the constraint is f0 ≥ a2 + 1. Recalling how we compute a2 and a1 (taking the largest possible a2
and then continuing), we can say this: f0 ≥ a2+1, where a2 is the largest number with

(
a2

2

)
≤ f1−1.

For each f1 from 1 to 11, here is the constraint on f0:

f1
1 f0 ≥ 2 (a2 = 1)
2 f0 ≥ 3 (a2 = 2)
3 f0 ≥ 3 (a2 = 2)
4 f0 ≥ 4 (a2 = 3)
5 f0 ≥ 4 (a2 = 3)
6 f0 ≥ 4 (a2 = 3)
7 f0 ≥ 5 (a2 = 4)
8 f0 ≥ 5 (a2 = 4)
9 f0 ≥ 5 (a2 = 4)
10 f0 ≥ 5 (a2 = 4)
11 f0 ≥ 6 (a2 = 5)

A simple explanation of Kruskal-Katona for graphs: It’s probably better to rephrase this way:
f0 > a2, where a2 is the largest number with

(
a2

2

)
< f1. The number

(
a2

2

)
is the number of edges

in a complete graph with a2 vertices. So f1 >
(
a2

2

)
, then you need strictly more than a2 vertices to

have that many edges. But since a2 is the largest number with
(
a2

2

)
< f1, we see that

(
a2+1

2

)
≥ f1,

so we know we can make a graph with a2 + 1 vertices and f1 edges (by removing 0 or more edges
from a complete graph). Thus f0 > a2 is the only constraint.

Problem 2

Kruskal-Katona for d = 3 says that (f−1, f0, f1, f2) is the f -vector of a simplicial complex of
dimension ≤ 2 if and only if f−1 = 1 and f0 ≥ ∂2(f1) and f1 ≥ ∂3(f2). The inequality f0 ≥ ∂2(f1)
comes about because if we deleted all the 2-dimensional faces (i.e. triangles) from a 2-dimensional
complex, we would get a 1-dimensional complex (a simple graph), and we already explained that
inequality for graphs. For the inequality f1 ≥ ∂3(f2), we find the largest a3 such that

(
a3

3

)
≤ f2 − 1

and the largest a2 such that
(
a2

2

)
≤ (f2 − 1)−

(
a3

3

)
and we require f1 ≥

(
a3

2

)
+ a2 + 1.

For each f2 from 1 to 11, here is the constraint on f1:

f2
1 f1 ≥ 3 (a3 = 2, a2 = 1)
2 f1 ≥ 5 (a3 = 3, a2 = 1)
3 f1 ≥ 6 (a3 = 3, a2 = 2)
4 f1 ≥ 6 (a3 = 3, a2 = 2)
5 f1 ≥ 8 (a3 = 4, a2 = 1)
6 f1 ≥ 9 (a3 = 4, a2 = 2)
7 f1 ≥ 9 (a3 = 4, a2 = 2)
8 f1 ≥ 10 (a3 = 4, a2 = 3)
9 f1 ≥ 10 (a3 = 4, a2 = 3)
10 f1 ≥ 10 (a3 = 4, a2 = 3)
11 f1 ≥ 12 (a3 = 5, a2 = 1)
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On the questions I asked you to think about but not turn in: Again, it’s good to rephrase: We
find the largest a3 such that

(
a3

3

)
< f2 and the largest a2 such that

(
a2

2

)
< f2 −

(
a3

3

)
and we require

f1 >
(
a3

2

)
+a2. Now,

(
a3

3

)
is the number of triangles in a simplex with a3 vertices, and we can see that

taking all the triangles in a simplex with a3 vertices is the way to get
(
a3

3

)
triangles with he fewest

vertices. A simplex with a3 vertices has
(
a3

2

)
edges, and we also see that this is the fewest edges we

could have for
(
a3

3

)
triangles. Since f2 >

(
a3

3

)
, then you need strictly more than

(
a3

2

)
edges to have

that many triangles. It gets a little more complicated from here (and more complicated each time
you raise the dimension, so you have to look at the actual proof of Kruskal-Katona, which doesn’t
treat each dimension separately). But basically, once you have all the triangles from a simplex S
with a3 vertices, you can add one more vertex and start making triangles with that vertex and edges
of S. You’re trying to get as many triangles as possible while making as few edges as possible, but
this reduces to choosing as many edges of S as possible while using as few vertices of S as possible,
to it reduces to the same question as in Problem 1: Find the largest a2 such that

(
a2

2

)
< f2 −

(
a3

3

)
and require f1 >

(
a3

2

)
+ a2.

“Why does the minimum possible f1 sometimes change more and sometimes less when f2 increases
by 1?”

• The constraint on f1 sometimes changes by 2 when f2 increases by 1. This happens when
when the increase in f2 causes a3 to increase. In this case, the smaller value of f2 meant
that our complex could be all triangles in a simplex. When we add one more triangle, only
one of its edges can be in the simplex, so we make two additional edges.

• The constraint on f1 usually changes by 1 when f2 increases by 1. This happens in cases
where we can place a triangle that uses two edges that are already in the complex.

• The constraint on f1 sometimes changes by 0 when f2 increases by 1. This happens in cases
where we can place a triangle all of whose edges are already in the complex.

Problem 3

We start with a formula that is basically in the book, although since Ziegler does things “back-
wards” from what we did in class, it may be harder to see what he does. (He defines the h-vector
in terms of sizes of restriction faces of a shelling and then proves that the h-polynomial and f -
polynomial are related by h(x) = f(x − 1). We defined h-vectors in general using h(x) = f(x − 1)
and proved that if the complex is shellable then the h-vector is given by sizes of restriction faces.)

Anyway, starting from h(x) = f(x − 1), we extract coefficients. To extract coefficients, we use
the binomial theorem to write f(x − 1) as a double sum: (What do you do when you see a double
sum? Reverse it.)

f(x− 1) =

d∑
i=0

fi−1(x− 1)d−i

=

d∑
i=0

fi−1

d−i∑
j=0

(−1)d−i−j

(
d− i

j

)
xj

=

d∑
j=0

xj

d−j∑
i=0

(−1)d−i−j

(
d− i

j

)
fi−1

Now, hk is the coefficient of xd−k in f(x − 1), which is
∑d−(d−k)

i=0 (−1)d−i−(d−k)
(
d−i
d−k

)
fi−1, which

simplifies to Definition 8.18 (a “definition” because Ziegler and I do things backwards from each
other):

hk =

k∑
i=0

(−1)k−i

(
d− i

d− k

)
fi−1.

Setting k = 0, we see that h0 = f−1 = 1. Setting k = 1, we obtain h1 = −df−1 + f0 = f0 − d.
Setting k = d, we obtain

hd =

d∑
i=0

(−1)d−i

(
d− i

0

)
fi−1 = (−1)d−1

d∑
i=0

(−1)i−1fi−1 = (−1)d−1χ̃(∆).
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That’s everything but part c. To do part c, you could use the formula for fk−1 in the middle of
page 249 and set k = d − 1. (In the book, the formula for fk−1 is proved for a shellable complex,
but you could derive it from f(x) = h(x + 1) by the same method we used above to get a formula
for hk.) Or, there is a speedier way to get part c: Just set x = 0 in the formula f(x) = h(x+ 1).

Problem 4

Using the formula from Problem 3 for entries in the h-vector, we see that the Dehn-Sommerville
equations for simplicial 3-polytopes are

h0 = h3 : f−1 = −f−1 + f0 − f1 + f2 simplified: 2f−1 + f1 = f0 + f2
h1 = h2 : −3f−1 + f0 = 3f−1 − 2f0 + f1 simplified: 3f0 = 6f−1 + f1

Recall that the directions said: “You should literally translate the equations h0 = h3 and h1 = h2

into equations relating entries of the f-vector, rather than just using Problem 18 from Lecture 18.
(Why is that not the same thing?)”

Well, for one thing, if it was the same thing, then you would all have done Problem 18 easily using
the formulas from the book. But let’s look specifically at it. If we use Problem 18 from Lecture 18,
we get four equations:

f−1 = −f−1 + f0 − f1 + f2 simplified: 2f−1 + f1 = f0 + f2
f0 = f0 − 2f1 + 3f2 simplified: 2f1 = 3f2
f1 = −f1 + 3f2 simplified: 2f1 = 3f2
f2 = f2 simplified: 0 = 0

Why are these different? The Dehn-Sommerville equations say that the f -vectors live in some
subspace. These are two different ways to describe the same subspace. (Notice that if you multiply
2f−1 + f1 = f0 + f2 by 3, you can replace 3f2 by 2f1 to get 6f−1 + f1 = 3f0.) We did two different
kinds of algebraic manipulations to get the two descriptions, so it’s not surprising that they are
different.

Problem 5

h0 = h4 : f−1 = f−1 − f0 + f1 − f2 + f3 simplified: f0 + f2 = f1 + f3
h1 = h3 : −4f−1 + f0 = −4f−1 + 3f0 − 2f1 + f2 simplified: 2f1 = 2f0 + f2


