
MA 724
Homework 8, Comments and some solutions.

Lecture 7, Problem 1

We need to show that the two fans are the same collection of cones. Since P△△ = P , is enough
to show that the face fan of P is the normal fan of P△.

The face fan of P is the collection of all cones cone(F ) such that F is a face of P . This is the
set of all positive linear combinations of finite sets of points in F . But we can write it more simply,
because F is a convex set. If y⃗ =

∑
λix⃗i is such a combination and λ =

∑
λi is nonzero, then

y⃗′ = 1
λ y⃗ is a convex combination of points in F . So y⃗ is a positive multiple of a point in F . We see

that cone(F ) = {tx⃗ : x⃗ ∈ F, t ≥ 0}.
The polar polytope P△ has faces F ⋄ =

{
c⃗ ∈ (Rd)∗ : c⃗ x⃗ ≤ 1 ∀x⃗ ∈ P, c⃗ x⃗ = 1∀x⃗ ∈ F

}
. The cone

in N (P△) corresponding to F ⋄ is NF⋄ =
{
x⃗ ∈ Rd : F ⋄ ⊆ {c⃗ ∈ P△ : c⃗ x⃗ = max{⃗bx⃗ : b⃗ ∈ P△}}

}
.

Putting the definition of F ⋄ into it, you get

NF⋄ =
{
x⃗ ∈ Rd : if c⃗ y⃗ ≤ 1 ∀y⃗ ∈ P and c⃗ y⃗ = 1∀y⃗ ∈ F then c⃗ x⃗ = max{⃗bx⃗ : b⃗ ∈ P△}}

}
.

The assertion that cone(F ) ⊆ NF⋄ is equivalent to the following: If x⃗ ∈ F and t ≥ 0 and c⃗ y⃗ ≤ 1

for all y⃗ ∈ P and c⃗ y⃗ = 1 for all y⃗ ∈ F , then c⃗ tx⃗ = max{⃗btx⃗ : b⃗ ∈ P△}. These hypotheses

imply that c⃗ tx⃗ = t, and furthermore, since x⃗ ∈ P , we know that b⃗x⃗ ≤ 1 for all b⃗ ∈ P△, so t is

max{⃗btx⃗ : b⃗ ∈ P△}.
On the other hand, suppose x⃗ ∈ NF⋄ . If x⃗ = 0⃗, then since cone(F ) is a cone, x⃗ ∈ cone(F ), so

assume x⃗ ̸= 0⃗. Since P is compact and contains 0⃗, there exists a maximal t ≥ 0 such that tx⃗ ∈ P .
Since NF⋄ is a cone, tx⃗ ∈ NF⋄ . We will show that tx⃗ is in F . Let G be a facet of P containing F
and let c⃗ y⃗ ≤ 1 be the facet-defining inequality for this facet. (As discussed before, we can write the

inequality in this way because 0⃗ ∈ int(P ).) Now, F ⊆ G, so c⃗ y⃗ = 1 for all y⃗ ∈ F . Since tx⃗ ∈ NF⋄ ,

we known that c⃗ tx⃗ = max{⃗btx⃗ : b⃗ ∈ P△}. By the definition of P△, this maximum is at most 1.
But since tx⃗ is on the boundary of P , it is contained in some facet, so there is some facet-defining

inequality b⃗y⃗ ≤ 1 that is satisfied with equality at y⃗ = tx⃗. Thus the maximum is 1. So c⃗ tx⃗ = 1, i.e.
tx⃗ is on the facet G. This is true for all the facets G containing F , so tx⃗ ∈ F . We have showed that
NF⋄ ⊆ cone(F ).

Lecture 7, Problem 2

My way of checking all the possibilities involved a lot of cases. Did you find a better approach?
I think there are better approaches.

I’m going to start with Theorem 7.20, which we did not discuss in class, but which was in the
reading. That says that every zonotope has at least one simple vertex. (Actually it says 2n, but
we just need one.) So, what can the zonotope look like at that vertex? We may as well take that
vertex to be the origin, and represent the three edges coming out of it by the standard basis vectors
e⃗1, e⃗2, e⃗3. The other two line segments are represented by nonzero vectors x⃗ and y⃗ with nonnegative
coefficients. By the symmetry of permuting the standard basis vectors and swapping x⃗ and y⃗, the
following are all the possibilities.
Case 1: x⃗ and y⃗ are both positive scalar multiples of e⃗1, e⃗2, or e⃗3. This is a cube.
Case 2: y⃗ is a positive scalar multiple of e⃗1, e⃗2, or e⃗3 but x⃗ is not.
Case 2a: x⃗ is in the strictly positive span of e⃗1 and e⃗2. This is a hexagonal prism.
Case 2b: x⃗ is in the strictly positive span of e⃗1, e⃗2 and e⃗3. This is the rhombic dodecahedron.
Case 3: Neither of them is a scalar multiple of e⃗1, e⃗2, or e⃗3. In this case, we may as well assume
that x⃗ and y⃗ are not parallel. (If they are parallel, the possibilities are exactly as in Case 2.)
Case 3a: x⃗ and y⃗ are both in the strictly positive span of e⃗1 and e⃗2. This is an octagonal prism.
Case 3b: x⃗ is in the strictly positive span of e⃗1 and e⃗2 and y⃗ is in the strictly positive span of e⃗2
and e⃗3. This is a dodecahedron with 4 hexagons and 8 rhombi.
Case 3c: x⃗ is in the strictly positive span of e⃗1, e⃗2, and e⃗3.
Case 3c(i): y⃗ is in the strictly positive span of e⃗1 and e⃗2, such that e⃗3, x⃗ and y⃗ are coplanar. This
is a dodecahedron with 4 hexagons and 8 rhombi, isomorphic to the other one.
Case 3c(ii): y⃗ is in the strictly positive span of e⃗1 and e⃗2, such that e⃗3, x⃗ and y⃗ are not coplanar.
This is a zonotope with two hexagons and 14 rhombi.
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Case 3c(iii): y⃗ is in the strictly positive span of e⃗1, e⃗2, and x⃗, such that e⃗3, x⃗ and y⃗ are coplanar.
This is a zonotope with two hexagons and 14 rhombi, isomorphic to the other one.
Case 3c(iv): y⃗ is in the strictly positive span of e⃗1, e⃗2, and x⃗, such that e⃗3, x⃗ and y⃗ are not
coplanar. This is a simple zonotope with 20 rhombi.

I got seven possibilities. My favorite way to draw the pictures is as hyperplane arrangements.
(Drawing the zonotopes themselves can get very difficult.) Recall that the normal fans of zonotopes
are defined by the hyperplane arrangement consisting of a normal hyperplane to each vector.

Each picture shows the intersection of the hyperplane arrangement with the top half (x3 ≥ 0) of a
unit sphere. To get the graph of the zonotope, you could put a vertex in each spherical triangle and
connect vertices for adjacent triangles. (You would also have to fill in what happens on the bottom
half of the sphere, but antipodal symmetry gives you that.) In each picture, each ei is labeled as i
and x⃗ and y⃗ are labeled without the arrow above.

From here, you can find the counts of vertices, simple vertices, etc.

x

y

1

2

3

x

y

1

2

3

x

y

1

2

3

Case 1 Case 2a Case 2b
(many places for x⃗ and y⃗) (3 places for y⃗) (3 places for y⃗)

cube hexagonal prism rhombic dodecahedron

x

y

1

2

3

xy

1

2

3

x

y

1

2

3

Case 3a Case 3b Case 3c(i)
octagonal prism 4 hexagons, 8 rhombi 4 hexagons, 8 rhombi

x y

1

2

3

x
y

1

2

3
x

y

1

2

3

Case 3c(ii) Case 3c(iii) Case 3c(iv)
2 hexagons, 14 rhombi 2 hexagons, 14 rhombi 20 rhombi



3

Comment on computing h-vectors. I noticed after TEX-ing this all up, that I had done all the
h-vectors by a different version of Stanley’s trick than what we did in class (which is also in the
book). I think it’s pretty plain to see that it’s the same thing, so I’m going to leave it. I don’t care
how you compute h-vectors, but you should make sure you have a quick way to do it.

Lecture 8, Problem 13

Part (i). Check Kruskal-Katona:

f−1 = 1: Yup.

f0 ≥ ∂2(f1):

47− 1 =
(
10
2

)
+
(
1
1

)
, so ∂2(47) =

(
10
1

)
+
(
1
0

)
= 11. Yup.

f1 ≥ ∂3(f2):

52− 1 =
(
7
3

)
+
(
6
2

)
+
(
1
1

)
, so ∂3(52) =

(
7
2

)
+

(
6
1

)
+
(
1
0

)
= 28. Yup.

f2 ≥ ∂4(f3):

38− 1 =
(
7
4

)
+
(
3
3

)
+
(
2
2

)
+
(
0
1

)
, so ∂4(38) =

(
7
3

)
+
(
3
2

)
+
(
2
1

)
+

(
0
0

)
= 41. Yup.

f3 ≥ ∂5(f4):

12− 1 =
(
6
5

)
+
(
5
4

)
+
(
2
3

)
+
(
1
2

)
+
(
0
1

)
, so ∂5(12) =

(
6
4

)
+
(
5
3

)
+

(
2
2

)
+

(
1
1

)
+

(
0
0

)
= 28. Yup.

This passes Kruskal-Katona, so it’s the f -vector of a simplicial complex.

Part (ii). I interpret “shellable complex” as “shellable simplicial complex.” Compute the h-vector:

12 ?
38 ? ?

52 ? ? ?
47 ? ? ? ?

23 ? ? ? ? ?
1 1 1 1 1 1 1

−→

12 1
38 11 −12

52 27 23 39
47 25 4 −16 −35

23 22 21 20 19 18
1 1 1 1 1 1 1

Shellable simplicial complexes have nonnegative h-vectors, so this is not shellable. (By the way:
If we hadn’t found negative entries in the h-vector, I don’t think we could have concluded that
there exists a shellable complex with this f -vector.)

Part (iii). Simplicial polytopes are shellable! So by Part (ii), this is not the f -vector of a simplicial
polytope. (However: What if we hadn’t found negative entries in the h-vector? Then we would
have checked Dehn-Sommerville, and if that failed, we would know that this is not the f -vector of
a simplicial polytope.)

Lecture 8, Problem 18

The h-vector is defined by
∑d

i=0 fi−1(x − 1)d−i =
∑d

i=0 hix
d−i. Write h(x) for

∑d
i=0 hix

d−i.
Then Dehn-Sommerville says that xdh(x−1) = h(x). Thus

xd
d∑

i=0

fi−1(x
−1 − 1)d−i =

d∑
i=0

fi−1(x− 1)d−i.

Rewriting:
d∑

i=0

fi−1x
i(1− x)d−i =

d∑
i=0

fi−1(x− 1)d−i.
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Substituting x+ 1 for x:
d∑

i=0

fi−1(x+ 1)i(−1)d−i =

d∑
i=0

fi−1x
d−i.

Thus fk−1 is the coefficient of xd−k on the right side. We use the binomial theorem inside the
summand to rewrite the left side:

d∑
i=0

fi−1(−1)d−i
i∑

j=0

(
i

j

)
xj

Reversing the sum:
d∑

j=0

xj
d∑

i=j

fi−1(−1)d−i

(
i

j

)
The coefficient of xd−k is

∑d
i=k fi−1(−1)d−i

(
i
k

)
, as desired.

If k = d−1, this says fd−2 = fd−2(−1)1
(
d−1
d−1

)
+fd−1(−1)0

(
d

d−1

)
, which simplifies to 2fd−2 = dfd−1.

Lecture 8, Problem 28

For a 3-polytope, the Euler-Poincare formula says −1+f0−f1+f2 = 1. This, with the requirement
that f−1 = 1, defines an affine plane in the 4-dimensional space of f -vectors. We easily see that
any vector of the form (1, 4, 6, 4) + a(0, 1, 1, 0) + b(0, 0, 1, 1) is in that plane. Since (0, 1, 1, 0) and
(0, 0, 1, 1) are linearly independent, the vectors in that form span the plane. (There is a subtle point
though: Do vectors of that form with integers a and b cover all the integer vectors in that plane?
Yes: Given any integer point (f−1, f0, f1, f2) in that plane, we can choose a = f0− 4 and b = f2− 4,
and the other entry must be right, because the point is in the plane.)

We know that a 3-polytope cannot have fewer than 4 vertices or fewer than 4 facets, so we get
a ≥ 0 and b ≥ 0.

For the simplicial case, we compute the h-vector:

4 + b ?
6 + a+ b ? ?

4 + a ? ? ?
1 1 1 1 1

−→

4 + b 1
6 + a+ b 3 + b 1 + b− a

4 + a 3 + a 2 + a 1 + a
1 1 1 1 1

Dehn-Sommerville says 1 + b− a = 1 + a, so b = 2a, and in particular the f -vector is (1, 4 + a, 6 +
3a, 4 + 2a).

Here is my complicated way of seeing that b ≤ 2a and a ≤ 2b: A cyclic polytope is in particular
simplicial, and since it maximizes f -vectors with a given number of vertices (Theorem 8.23), in
particular any 3-polytope with 4 + a vertices must have at most 4 + 2a facets, and thus since the
number of facets is 4 + b, we have b ≤ 2a for general polytopes. Passing to the polar dual polytope
switches the roles of a and b, so also 2b ≥ a.

Here is a simpler way that I learned from some of your papers (good job!): Since every edge is
in exactly 2 facets and every facet has at least 3 edges, 2f1 ≥ 3f2, so that 12 + 2a + 2b ≥ 12 + 3b,
and thus 2a ≥ b. Since every edge has exactly 2 vertices and every vertex is in at least 3 edges,
2f1 ≥ 3f0, so that 12 + 2a+ 2b ≥ 12 + 3a, and thus 2b ≥ a.

It remains to show that, for any vector (1, 4, 6, 4) + a(0, 1, 1, 0) + b(0, 0, 1, 1) with 2a ≥ b ≥ 0
and 2b ≥ a ≥ 0, there is a 3-polytope with that f -vector. This is tricky in some sense, but also
straightforward once you see what you have to do. The point is to consider some operations that
give the polytope more faces.

One is stellar subdivision of triangular facets, as in Lecture 3, Problem 0 in Homework 7. If
a polytope has a triangular facet, find a point beyond that facet and take the convex hull of the
simplex and that new point. We lose one facet, but create 1 new vertex, 3 new edges, and 3 new
(triangular) facets. In effect, we increase a by 1 and increase b by 2. Importantly, the result is a
polytope that continues to have a triangular facet, and also has a simple vertex (a vertex incident
to exactly 3 edges).

The other operation is the dual of stellar subdivision, “shaving a simple vertex”, also discussed
in Lecture 3, Problem 0 in Homework 7. If a polytope has a simple vertex, find a hyperplane H
that separates that vertex from all other vertices. Replace the polytope by its intersection with the
halfspace defined by H (the one containing all the other vertices). We lose one vertex, but create 3



5

new vertices, 3 new edges, and 1 new (triangular) facet. That is increasing a by 2 and increasing b
by 1. The result is a polytope that continues to have a simple vertex and now has a triangular facet.

So, what do we do? For convenience, let’s think of vectors [a b] in Z2. We want to be able to find
a polytope for every [a b] with 2a ≥ b ≥ 0 and 2b ≥ a ≥ 0. We find a finite set C of vectors [a b] such
that every vector [a b] with 2a ≥ b ≥ 0 and 2b ≥ a ≥ 0 can be obtained by adding integer multiples
of [1 2] and [2 1]. This set is {[0 0], [1 1], [2 2]}.

If we can find polytopes corresponding to these three vectors [a b] and if they each have at least
one simple vertex and at least one triangular facet, then we can get every possible [a b] using iterated
stellar subdivision of triangular facets and shaving of simple vertices.

We can:

• [0 0] gives f -vector (1, 4, 6, 4), which is the tetrahedron.
• [1 1] gives f -vector (1, 5, 8, 5), which is the Egyptian pyramid.
• [2 2] gives f -vector (1, 6, 10, 6). There is a suitable polytope with this f -vector, but it is not
one with a name that I knew. Take a triangular prism and “nudge” one of the vertices so that
one of the quadrilateral faces “breaks” into two triangles but the other two quadrilaterals
don’t. Since Wikipedia has everything, you can find both a picture and a name for this on
the page entitled Hexahedron.

Additional Problem 1

The tetrahedron has f -vector (1, 4, 6, 4). Its h-vector is (1, 1, 1, 1).

4 ?
6 ? ?

4 ? ? ?
1 1 1 1 1

−→

4 1
6 3 1

4 3 2 1
1 1 1 1 1

The octahedron has f -vector (1, 6, 12, 8). Its h-vector is (1, 3, 3, 1).

8 ?
12 ? ?

6 ? ? ?
1 1 1 1 1

−→

8 1
12 7 3

6 5 4 3
1 1 1 1 1

The icosahedron has f -vector (1, 12, 30, 20). Its h-vector is (1, 9, 9, 1).

20 ?
30 ? ?

12 ? ? ?
1 1 1 1 1

−→

20 1
30 19 9

12 11 10 9
1 1 1 1 1

Additional Problem 2

The 0 dimensional permutohedron has f -vector (1) and h-vector (1).
The 1 dimensional permutohedron has f -vector (1, 2) and h-vector (1, 1).
The 2 dimensional permutohedron (a hexagon) has f -vector (1, 6, 6) and h-vector (1, 4, 1).

6 ?
6 ? ?

1 1 1 1
−→

6 1
6 5 4

1 1 1 1

The 3 dimensional permutohedron (a hexagon) has f -vector (1, 24, 36, 14). Up to now (because
of low dimensions) these polytopes have been isomorphic to their duals. Now we have to dualize.
The dual has f -vector (1, 14, 36, 24) and h-vector (1, 11, 11, 1).

24 ?
36 ? ?

14 ? ? ?
1 1 1 1 1

−→

24 1
36 23 11

14 13 12 11
1 1 1 1 1

https://en.wikipedia.org/wiki/Hexahedron
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In general, the h-vector of the (n−1)-dimensional permutohedron has hk = A(n, k), where A(n, k)
is the Eulerian number, the number of permutations of [n] with exactly k ascents (adjacent entries
that are in correct numerical order). Here is one way to see why:

Recall that the weak order is a partial order (in fact a lattice) on permutations whose Hasse
diagram (if we think of it as an undirected graph) coincides with the graph of the permutohedron.
Thus we can think of the weak order as a partial order on the facets of the dual to the permutohedron,
and two facets share a ridge if and only if they are related by a cover in the weak order. By results of
your last homework, the face fan of the dual permutohedron is the normal fan of the permutohedron,
and that’s the fan cut out by the hyperplanes xi = xj for i ̸= j. Thus we can think of the weak
order as a partial order on the cones of that fan. As we discussed in class, we can figure out which
direction a cover relation between adjacent cones goes by a linear functional that has its maximum
in the region x1 ≤ x2 ≤ · · · ≤ xn.

The upshot: If we order the maximal cones as a linear extension of the weak order, every maximal
cone’s “old faces” are a union of facets, specifically those facets whose normals have positive inner
product with the linear functional. Thus this linear order is a shelling (on the fan or on the boundary
complex).

The restriction face of a cone is the intersections of the facets of the cone whose normals have
negative inner product with the linear functional. The dimension of the restriction face is the number
of ways to go up from the cone in the weak order. That’s the number of ascents of the corresponding
permutation.
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