
MA 724
Homework 7, Comments and some solutions.

Lecture 6, Problem 1

I’ll give 2 sample solutions.

Sample solution 1. Suppose X and X ′ are affine point configurations with the same set of minimal
affine dependencies. We may as well assume that aff(X) = Rd, because otherwise we could restrict
to the affine subspace aff(X). Thus X has a subset consisting of d+ 1 affinely independent vectors,
and we may as well take them to be x⃗1, . . . , x⃗d+1. (We could do this by renumbering X, and we
would then renumber X ′ in the same way, to preserve the “same set of minimal affine dependencies”
supposition.) We also may as well assume that x⃗d+1 = 0⃗, because we could subtract x⃗d+1 from every

vector in X without changing the afine dependencies. Similarly, we may as well assume x⃗′
d+1 = 0⃗.

Define a linear map T that sends x⃗i to x⃗′
i for all i = 1, . . . , d. This map also sends x⃗d+1 to

x⃗′
d+1, because these are both 0⃗. Suppose i > d + 1. I claim that T sends x⃗i to x⃗′

i as well. Since

x⃗1, . . . , x⃗d+1 are affinely independent, their affine hull is Rd, so xi is in their affine hull. Choose a
minimal subset {x⃗j : j ∈ S} of {x⃗1, . . . , x⃗d+1} having x⃗i in its affine hull, and write x⃗i =

∑
j∈S λj x⃗j

with
∑

j∈S λj = 1. Then xi +
∑

j∈S(−λj)x⃗j = 0 is an affine dependence, and in fact, it’s a minimal

one: If we remove i from the set S ∪ {i} of indices, we don’t get an affine dependence using the
remaining indices, because {xj : j ∈ S} is affinely independent. For the same reason, and because
S was chosen to be minimal, we can’t remove any j ∈ S from {xj : j ∈ S}. Since this is a minimal
dependence, the same dependence holds among the x⃗′, namely x′

i +
∑

j∈S(−λj)x⃗
′
j = 0, or in other

words, x⃗′
i =

∑
j∈S λj x⃗

′
j . Since T is linear, T (x⃗i) =

∑
j∈S λjT (x⃗j) =

∑
j∈S λj x⃗

′
j = x′

i. □

Why did I define a linear map that sends x⃗i to x⃗′
i for all i = 1, . . . , d instead of an affine map that

sends x⃗i to x⃗′
i for all i = 1, . . . , d+ 1? Well, an affine map is a linear map followed by a translation,

but since I translated things to make x⃗d+1 = x⃗′
d+1 = 0⃗, for such an affine map, the translation

would have to be 0⃗ anyway. If you didn’t move x⃗d+1 and x⃗′
d+1 to 0⃗, everything should come out the

same (but you’ll need to use the fact that the coefficients of an affine combination sum to 1, or the
equivalent fact that the coefficients of an affine dependency sum to 0).

Sample solution 2. Let X be an affine point configuration. We first check that every affine de-
pendence is a linear combination of minimal affine dependences. Let z⃗ ∈ Rn be a nonzero affine
dependence. If z⃗ is not a minimal dependence, let z⃗ ′ be a minimal nonzero affine dependence whose
support is strictly contained in the support of z⃗. Then there exists i ∈ [n] such that neither zi nor
z′i is zero. Writing c = zi/z

′
i, the vector z⃗ − cz⃗ ′ is a nonzero affine dependence with support smaller

than the support of z⃗. Continuing in this manner with z⃗ − cz⃗ ′, we eventually write z⃗ as a linear
combination of minimal affine dependences.

SupposeX andX ′ are affine point configurations with the same set of minimal affine dependencies.
By the paragraph above, X and X ′ have the same set of affine dependencies. We will assume that
both affine point configurations affinely span Rd, because otherwise we could restrict to an affine
subspace. (The assertion that the points live in an affine hyperplane is itself a statement about
affine dependencies, so both would be restricted to the same affine subspace.) Linearizing both as
in Problem 3, we obtain two acyclic vector configurations V = [ 1

X ] and V ′ =
[

1
X′

]
. Problem 3 says

that V and V ′ have the same set of linear dependencies.
Since X and X ′ both affinely span Rd, V and V ′ both linearly span Rd+1. Choose d+1 vectors in

V that form a basis. We may as well take them to be v⃗1, . . . , v⃗d+1. (We could do this by renumbering
V , and we would then renumber V ′ in the same way, to preserve the fact that they have the same
set of linear dependencies.) We can write every other vector in V as a linear combination of this
basis, and these are linear dependecies. Thus the corresponding vectors in V ′ can be written as
the same linear combinations of the v⃗′1, . . . , v⃗

′
d+1. Thus if we map v⃗i to v⃗′i for i = 1, . . . , d + 1 and

extend linearly, we get a linear isomorphism from V to V ′. Since all the points in V and V ′ have
0th coordinate 1, the linear map preserves the affine hyperplane where the points live. The linear
map restricts to an affine map on this hyperplane, which in particular is an affine isomorphism from
X to X ′. □
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Lecture 6, Problem 3

a-Dep(X) =
{
z⃗ ∈ Rn : Xz⃗ = 0⃗, 1z⃗ = 0

}
=

{
z⃗ ∈ Rn : [ 1

X ]z⃗ = 0⃗
}
= Dep ([ 1

X ])

a-Val(X) =
{
c⃗X + z1 ∈ (Rn)∗ : c⃗ ∈ (Rd)∗, z ∈ R

}
=

{
c⃗[ 1

X ] ∈ Rn : c⃗ ∈ (Rd+1)∗
}
= Val ([ 1

X ])

(I replaced −z by +z in the definition of a-Val(X) because z is an arbitrary real number and this
seemed simpler. In the third term of the second equation, the new c⃗ is [1 (old c⃗)].

Lecture 6, Problem 5

Sample proof 1 that a vector configuration is acyclic if and only if its dual is totally acyclic.
There exists c⃗ ∈ (Rr)∗ with c⃗V > 0 (i.e. c⃗v⃗i > 0 for all i ∈ [n]) if and only if there exists c⃗ ∈ (Rr)∗

with c⃗V ≥ 1. This is (replacing c⃗ by −c⃗) if and only if there exists c⃗ ∈ (Rr)∗ with c⃗V ≤ −1. By
Farkas I (written in dual form), there exists c⃗ ∈ (Rr)∗ with c⃗V ≤ −1 if and only if there does not

exist y⃗ ∈ Rn with y⃗ ≥ 0⃗, V y⃗ = 0⃗, and −1y⃗ < 0. Thus the two characterizations are equivalent. □

Sample proof 2 that a vector configuration is acyclic if and only if its dual is totally acyclic.
There exists c⃗ ∈ (Rr)∗ with c⃗V > 0 (i.e. c⃗v⃗i > 0 for all i ∈ [n]) if and only if there exists c⃗′ ∈ (Rr+1)∗

with c⃗ ′[ 1
V ] ≥ 0 and c⃗ ′[ 1

0⃗

]
< 0. (The vector c⃗ ′ would be [a c⃗], and c⃗ ′[ 1

0⃗

]
< 0 would say a < 0, while

c⃗ ′[ 1
V ] ≥ 0 would say each v⃗i has a + c⃗v⃗i ≥ 0, so that c⃗v⃗i > 0.) By Farkas I, this is if and only if

there does not exist x⃗ ≥ 0 with [ 1
V ]x⃗ =

[
1
0⃗

]
. This is if and only if there does not exist x⃗ ≥ 0 with

V x⃗ = 0⃗ and the sum of the coordinates of x⃗ equal to 1. By scaling, that is if and only if there does
not exist x⃗ ≥ 0 with x⃗ ̸= 0⃗ and V x⃗ = 0⃗. Thus the two characterizations are equivalent. □

The rest of the problem. The statement about the dual of an acyclic configuration follows immedi-
ately.

Finally, we want to find a vector configuration that admits a nonnegative dependence but no
positive dependence. For example, take three vectors in R2, the column vectors [ 10 ],

[−1
0

]
, and [ 01 ],

so that V =
[
1 −1 0
0 0 1

]
. Then there is a nonnegative dependence

[
1
1
0

]
∈ R3 but there is no x⃗ ∈ R3 with

x⃗ > 0⃗ such that V x⃗ = 0⃗ because the second entry of V x⃗ will always be x2. □

The last point in the problem was possibly confusing because of the way Ziegler defines things:
The definition of totally cyclic was given in terms of collections of row vectors. But you wanted to
find a configuration of vectors that had a nonnegative dependence but no positive dependence, so
your configuration needed to consist of either column vectors or row vectors once and for all, instead
of changing your mind about rows/columns in the middle of the problem.

Lecture 6, Problem 8

As we discussed in class when we did the 3-polytopes with 5 vertices example, a 0-dimensional
Gale diagram is the Gale diagram of a polytope if and only if it has at least 2 white vertices and
at least 2 black vertices. Up to swapping white and black, it is then easy to see that the four
possibilities listed are the only four polytopes.

You could do all of these mechanically by finding positive circuits and taking complements, then
taking intersections of facets to get lower-dimensional faces. But for some cases, I used a shortcut,
recalling that adding a gray vertex corresponds to taking a pyramid. In the other cases, the facets
were simplices, so instead of taking all intersections, I could just take all subsets. In every case, it
would be good to draw a Schlegel diagram, although I am not providing them here.

2 black, 2 white, and 2 gray: The only 2-polytope with 4 vertices is a quadrilateral, so this is a pyra-
mid over a pyramid over a quadrilateral, or in other words a pyramid over an Egyptian pyramid. It
has 6 facets, 13 ridges, 13 edges, and 6 vertices. It is not simplicial, because it has a facet that is an
Egyptian pyramid. It is not simple, because it has a vertex contained in 5 facets.

3 black, 2 white, and 1 gray: As discussed in class, 3 black and 2 white is a bipyramid over a trian-
gle, so with a gray point, it is a pyramid over a triangular bipyramid. It has 7 facets, 15 ridges, 14
edges, and 6 vertices. It is not simplicial, because it has a facet that is a bipyramid. It is not simple,
because it has a vertex contained in 5 facets.
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3 black and 3 white: Number the blacks 1, 2, 3 and the whites 4, 5, 6. The positive circuits are all
pairs consisting of a black vertex and a white vertex, so the facets are all sets consisting of 2 elements
from {1, 2, 3} and 2 elements from {4, 5, 6}. Since they are all 3-dimensional and each has 4 vertices,
each is a simplex, i.e. the polytope is simplicial. In particular, the lower-dimensional faces’ vertex
sets are all subsets of these 4-sets. We see that the 2-dimensional faces’ vertex sets are all sets
with either 2 elements from {1, 2, 3} and 1 element from {4, 5, 6} or 1 element from {1, 2, 3} and 2
elements from {4, 5, 6}. There are 2 ·

(
3
2

)(
3
1

)
= 18 of them. All

(
6
2

)
= 15 pairs of vertices occur as

edges. In summary, this is a simplicial polytope with 9 facets, 18 ridges, 15 edges, and 6 vertices.
(It is not simple, because to be simple and simplicial, it would have to be a simplex.) Since all pairs
of vertices occur as edges, this is a neighborly polytope. Since the two previous polytopes are not
simplicial and we will see that the last polytope is not neighborly, we conclude that this is the cyclic
polytope.

4 black and 2 white: Number the blacks 1, 2, 3, 4 and the whites 5, 6. Again, the positive circuits are
all pairs consisting of a black vertex and a white vertex, so this time the facets are all sets consisting
of 3 elements from {1, 2, 3, 4} and 1 element from {5, 6}. Again, these are all simplices, so the vertex
sets of lower-dimensional faces are all of the subsets of the vertex sets of facets. All 3-element sets
except those containing {5, 6} occur for 2-faces, so there are

(
6
3

)
− 4 = 16 of them. All 2-element

sets except {5, 6} occur for edges, so there are
(
6
2

)
− 1 = 14. In summary, this is simplicial but not

simple, has 8 facets, 16 ridges, 14 edges, and 6 vertices, and is not neighborly. This is the bipyramid
over a 3-simplex. (One might see that by process of elimination. Alternatively, notice that there
is exactly one pair of vertices that does not form an edge: {5, 6}. These are the bipyramid points.
Now, notice that for every proper subset S of {1, 2, 3, 4}, there is a face S ∪{5} and a face S ∪{6}.)

Lecture 6, Problem 9

I didn’t assign this because it was much too long, if you drew Schlegel diagrams and computed
vertex-facet matrices in every case. The first time I assigned it to a class, I thought that, since
Ziegler gave it as a problem, just finding the Gale diagrams must be reasonable. I no longer think
so. Let’s give some indications of how you might start. Let P be the polytope described by the Gale
diagram.

First, let’s take care of gray vertices. Three gray vertices would be a pyramid over a pyramid over
a pyramid over a 1-polytope with 4 vertices, but 1-polytopes have 2 vertices. More than three gets
even more impossible. Thus there could be at most 2 gray vertices, in which case, P is a pyramid
over a pyramid over a 2-polytope with 5 vertices. If there is 1 gray vertex, then P is a pyramid over
a 3-polytope P ′ with 6 vertices (whose Gale diagram has no gray points). Determining the Gale
diagram for P ′ is a good “warmup” if you were determined to do the whole problem.

Recall that the condition is that, if we pick any of the points and choose either direction of the
line to be “positive,” the number of black points on the positive side plus the number of white points
on the negative side is at least 2. If you start trying to write down all the Gale diagrams on a line
with 6 vertices (none gray), you will find a very large number! The problem is that each linear Gale
diagram in R2 can be affinized in many ways, and we would list all of those separately and then
be stuck with the task of figuring out which are combinatorially the same polytope. (I think this
becomes reasonable if you read Grünbaum’s book, Convex Polytopes, and learn how to cut down
the symmetry. He writes his Gale diagrams on a circle, not a line, and had no black and white
points.) Amazingly, there are only 6 of these (plus the pentagonal pyramid). See
http://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/075PREPRINT.pdf.

The problem with no gray points is a step more complicated! If you’re interested in the answer,
it’s also in the Grünbaum book.

Lecture 6, Problem 13

Here is the proof of what I think Ziegler meant to ask: (Prove that the positive co-circuits for
the cyclic polytope coincide with the positive circuits of the affine point configuration shown.)

Proof of duality for positive (co-)circuits. Gale’s Evenness condition tells us that every facet of Cd(n)
has d vertices and that a d-subset S is a facet if and only if for all i < j not in S, the number
#{k ∈ S : i < k < j} is even. Equivalently, a subset C is a positive co-circuit if and only if it has
n−d elements and for all i < j in C, the number #{k ̸∈ C : i < k < j} is even. Thus an affine point

http://www.mi.fu-berlin.de/math/groups/discgeom/ziegler/Preprintfiles/075PREPRINT.pdf
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configuration with colored points is a Gale diagram for Cd(n) if and only if it satisfies: C is a positive
circuit if and only if it has n−d elements and for all i < j in C, the number #{k ̸∈ C : i < k < j} is
even. Applying this to our alternating black-white points on the moment curve in Rn−d−2, we need
to show that C is a positive circuit if and only if it has n− d points and alternates black and white.

We begin by showing that given any k + 2 points on the moment curve in Rk, alternating black
and white, the convex hull of the black points intersects the convex hull of the white points. If the
points are x⃗(ti) for t1 < t2 < · · · < tk+2, this amounts to showing that there exist nonnegative
constants λ1, . . . , λk+2 with λ1 + λ3 + · · · = 1 and λ2 + λ4 + · · · = 1 such that

λ1x⃗(t1) + λ3x⃗(t3) + · · · = λ4x⃗(t4) + λ4x⃗(t4) + · · · .

Equivalently, there exists z⃗ ∈ Rk+2 such that z⃗ ≥ 0 and
1 0 ··· ∗
0 1 ··· ∗
t1 −t2 ··· (−1)ktk+2

t21 −t22 ··· (−1)kt2k+2

...
...

...
tk1 −tk2 ··· (−1)ktkk+2

 z⃗ =


1
1
0
0
...
0

,
Where the first two rows of the matrix on left alternate 0 and 1 and the entries ∗ represent 0 or 1
as appropriate. By Farkas II, this is equivalent to the nonexistence of c⃗ = [a, b, c1, . . . , ck] ∈ (Rk+2)∗

such that a+ b < 0 (equivalently −a > b) and

c⃗


1 0 ··· ∗
0 1 ··· ∗
t1 −t2 ··· (−1)ktk+2

t21 −t22 ··· (−1)kt2k+2

...
...

...
tk1 −tk2 ··· (−1)ktkk+2

 ≥ 0.

But if such a c⃗ exists, then c1ti+c2t
2
i +· · ·+ckt

k
i ≥ −a for i ∈ [k+2] odd and c1ti+c2t

2
i +· · ·+ckt

k
i ≤ b

for i ∈ [k + 2] even. Since −a > b, we see that the polynomial b−a
2 + c1ti + c2t

2
i + · · ·+ ckt

k
i has at

least k + 1 zeros, which is impossible since its degree is k.
On the other hand, given any set of points on the moment curve not containing an alternating

black-white subsequence of k + 2 points, writing down the appropriate matrix, we find that we can
find such a c⃗. (We find a polynomial with simple zeros between ti and ti+1 whenever points i and
i+ 1 change color and no other zeros. We choose, say, a = −1 and b = 0 and scale the polynomial
large enough so that it takes values ≥ −a = 1 at some ti and ≤ b = 0 at other ti as appropriate.
The coefficients of the resulting polynomial are the ci such that c⃗ = [a, b, c1, . . . , ck].)

These considerations (with k = n − d − 2) show the desired fact: C is a positive circuit if and
only if it has n− d points and alternates black and white. □

Here is the proof of what Ziegler actually asked. (Prove the two oriented matroids are dual.)

Proof that the oriented matroids are actually dual. We will find the signed co-circuits of the point
configuration consisting of vertices of Cd(n) (i.e. n points on the moment curve in Rd) and show
that they coincide with the signed circuits of the configuration consisting of n points on the moment
curve in Rn−d−2, alternating between black and white points.

Once we find the signed co-circuits of the point configuration consisting of vertices of Cd(n), the
proof that these are the cocircuits of the alternating black/white points consists of a sequence of
rephrasings of what we are trying to prove, until it is just a fact about zeros of polynomials.

First, consider the n points on the moment curve in Rd. We proved in class that any d + 1 of
them are affinely independent. Thus any d of them are affinely independent and span a hyperplane.
In other words, for any d vertices, there is a signed circuit (or necessarily, two) whose zero positions
are those d positions. To work out the signs on the remaining positions, we recall what we learned
in the Gale Evenness proof: As t varies, the point x⃗(t) on the moment curve passes through the
hyperplane exactly when it passes through one of the d vertices that define the hyperplane. So the
signed signed co-circuits are exactly the sequences in {+,−, 0}n described as follows:

(*) A sequence of + entries, zero, a sequence of − entries, zero, sequence of + entries, zero, and
so forth until there are d zeros and d+ 1 sequences. (Any of the sequences may be empty.)
Or, the same thing starting with a sequence of − entries.
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We now prove that the signed circuits of n points on the moment curve in Rn−d−2, alternating
between black and white points, are the same as the signed co-circuits described above. Recall how
we find circuits in a configuration of white and black points: We find circuits as usual, and then
change the sign on all white points. Changing the sign on every other point in the descrition (*),
we obtain the following description:

(**) A sequence with exactly d zeros and the nonzero entries alternating sign.

Thus we need to show that given n points on the moment curve in Rn−d−2 (with no black/white
coloring, or if you prefer, with all points black), a sequence in {+,−, 0}n is a signed vector if and
only if at most d entries are zero and the nonzero entries alternate sign.

By the definition of signed vectors and signed circuits, we need to prove the following: Given
disjoint subsets S and T of the n points, the intersection conv(S)∩ conv(T ) is nonempty if and only
if there exist S′ ⊆ S and T ′ ⊆ T such that |S′|+ |T ′| = n− d and S′ and T ′ interleave. (This means
that, listing the points in S′ ∪ T ′ in order along the moment curve, we have an element of S′, then
an element of T ′, an element of S′, of T , etc., or similarly starting with T ′.) Equivalently, we need
to prove that when we list the elements of S ∪ T in order, we switch from S to T or from T to S at
least n− d− 1 times.

This is something we can prove without worrying about the original n points: We just need
to show that given disjoint sets S and T of points on the moment curve in Rk, the intersection
conv(S) ∩ conv(T ) is nonempty if and only if when we list the points of S ∪ T in order, we switch
from S to T at least k + 1 times.

Then the intersection conv(S) ∩ conv(T ) is nonempty if and only if there exist a nonnegative
constants λs⃗ for each s⃗ ∈ S and λt⃗ for each t⃗ ∈ T such that

∑
s⃗∈S λs⃗ = 1 and

∑
t⃗∈T λt⃗ = 1 and∑

s⃗∈S λs⃗ s⃗ =
∑

t⃗∈T λt⃗ t⃗. Equivalently, there exists x⃗ ∈ Rk such that x⃗ ≥ 0 and
1 1 ··· 1 0 0 ··· 0
0 0 ··· 0 1 1 ··· 1
t1 t2 ··· tℓ −u1 −u2 ··· −um

t21 t22 ··· t2ℓ −u2
1 −u2

2 ··· −u2
m

...
...

...
...

...
...

tk1 tk2 ··· tkℓ −uk
1 −uk

2 ··· −uk
m

 x⃗ =


1
1
0
0
...
0

,
Here, S = {x⃗(t1), . . . , x⃗(tℓ)}, T = {x⃗(u1), . . . , x⃗(um)}, and x⃗ would correspond to the vector of λ’s.

By Farkas II, this is equivalent to the nonexistence of c⃗ = [a, b, c1, . . . , ck] ∈ (Rk+2)∗ such that
a+ b < 0 (equivalently −a > b) and

c⃗


1 1 ··· 1 0 0 ··· 0
0 0 ··· 0 1 1 ··· 1
t1 t2 ··· tℓ −u1 −u2 ··· −um

t21 t22 ··· t2ℓ −u2
1 −u2

2 ··· −u2
m

...
...

...
...

...
...

tk1 tk2 ··· tkℓ −uk
1 −uk

2 ··· −uk
m

 ≥ 0.

So, we are trying to prove that such a c⃗ fails to exist if and only if when we list the points of S ∪ T
in order, we switch from S to T at least k + 1 times.

The condition on c⃗ is equivalent to c1ti+ c2t
2
i + · · ·+ ckt

k
i ≥ −a for i ∈ [ℓ] and c1uj + c2u

2
j + · · ·+

ckt
k
i ≤ b for i ∈ [m].
If such a c⃗ exists, then since −a > b, the number of zeros of the polynomial b−a

2 + c1ti + c2t
2
i +

· · · + cn−d−2t
n−d−2
i is at least the number of times that we switch from S to T , when we list the

points of S ∪ T in order. Since the polynomial has degree k, it has at most k zeros, so we switch
from S to T at most k times.

On the other hand, if we switch from S to T exactly p times with p ≤ k, we can choose points
x⃗(v1), . . . , x⃗(vp) on the moment curve, strictly between the points of S and T every place where they
switch. Take a polynomial with simple zeros at each v⃗i, and scale it large enough so that it takes
values > −a for each ti and < b for each ui. The coefficients of the resulting polynomial are the ci
such that c⃗ = [a, b, c1, . . . , ck]. □


