
MA 724
Homework 6, Comments and some solutions.

Lecture 3, Problem 0

(i) Stellar subdivision is closely related to the operator Pyr. Stellar subdivision of a facet F amounts
to constructing the polytope Pyr(F ) and “gluing” it to P along F . More formally, the faces of
st(P, F ) consist of all the faces of P except F together with the following additional faces: For each
proper face G of F , there is a face conv(G ∪ {y⃗F }) (a pyramid over G).
(ii) If P is simplicial, then F is a simplex, so every face G of F is a simplex, so every new face
conv(G ∪ {y⃗F }) of st(P, F ) is a pyramid over a simplex, and thus a simplex. (Just think about
the definition: A simplex is the convex hull of affinely independent points, and when we take the
pyramid, we put in one more point to make a larger affinely independent set.) So st(P, F ) is simplicial
because P was simplicial and each new proper face is a simplex.

For k = d, there is one k-face of P and one k-face of st(P, F ). For k < d, st(P, F ) has a new
k-face for each (k − 1)-face of F . But since F is (d − 1)-simplex (and thus has d vertices), the

number of (k − 1)-faces is
(
d
k

)
. So for k < d − 1, fk(st(P, F )) = fk(P ) +

(
d
k

)
. For k = d − 1,

fk(st(P, F )) = fk(P ) + d− 1, because we lose F and only gain d new faces.
(iii) Another way to phrase this question (replacing P by P△ in Ziegler’s formulation): What
operation st△ on P△ has st△(P△, F ⋄) = st(P, F )△?

Since we’re talking about polar duality, we should think a bit about the face lattice. This especially
makes sense when you think—in the language of part (i)—of “constructing Pyr(F ) and gluing it
to P along F”. How do we get L(st(P, F )) from L(P )? We delete F and add an extra copy of
the interval [∅, F )—note that F is not included in this interval. The bottom of the new interval is
the new vertex y⃗F and the other elements of the interval are conv(G ∪ {y⃗F }) for G ∈ [∅, F ). Each
conv(G ∪ {y⃗F }) is G ∨ y⃗F in L(st(P, F )).

What if we dualize this (by turning the face lattices upside down)? Then L(st△(P△, F ⋄)) is
obtained from L(P△) by deleting the vertex F ⋄ and adding an extra copy of the interval (F ⋄, P ]
in such a way that each element of the new interval is G ∧ (y⃗F )

⋄ for a new facet (y⃗F )
⋄. We see

that the operation polar to stellar subdivision is st△(P△, F ⋄) =
{
c⃗ ∈ P△ : c⃗z⃗ ≤ a

}
for some z⃗ and

a chosen so that c⃗z⃗ ≤ a fails when c⃗ is the vertex F ⋄ but is satisfied for every other vertex of P△.
One might call this operation “shaving” the vertex F ⋄ from P△. And of course, one could do a
similar operation on a polytope P in space Rd, which is how Ziegler phrased the question.
Comment: This makes sense with our intuition about duality: Stellar subdivision adds a vertex
and the dual operation adds a new facet-defining hyperplane.

Lecture 3, Problem 3

One approach was to take the linear function FT (x⃗) from the proof of Corollary 0.8. I don’t think
that’s what Ziegler had in mind, though, and I asked you not to use Corollary 0.8. Here’s what I
think Ziegler had in mind:

Realize Cd(n) as Cd(t1, . . . , tn) = conv(x⃗(t1), . . . , x⃗(tn)) for t1 < · · · < tn, where x⃗(t) is the column
vector with entries t, t2, . . . , tn. Given i and j with 1 ≤ i < j ≤ n, we need to find a linear inequality
a⃗x⃗ ≤ α that holds with equality for x⃗(ti) and x⃗(tj) but holds strictly for x⃗(tk) when k ∈ ([n] \ {i, j}.
Taking a⃗ = (a1, . . . , ad), this is equivalent to finding a polynomial p(t) = a1t+ · · · adtd such that the
maximum of p(t) on {t1, . . . , tn} is attained at ti and tj but not at any other points in {t1, . . . , tn}.
For d < 4, one can easily see that this is impossible, but for d ≥ 4, it is easy: The polynomial
−(t− ti)

2(t− tj)
2 is zero on ti and tj and negative on every other value of t. We are looking for a

polynomial with constant term 0, so we take p(t) = −(t−ti)
2(t−tj)

2+t2i t
2
j . (Why are we looking for

a polynomial with constant term 0? Look up higher in the paragraph: A linear functional applied
to x⃗(t) is precisely a polynomial with constant term 0.)

It surprised me at first that you can do this with a degree-4 polynomial for any d ≥ 4. We can
find these edges while ignoring dimensions 5 through d. But this should not be so surprising: The
graph of Cd(n) is complete for any d ≥ 4 and furthermore if we project Cd(n) to R4 by just ignoring
the entries in positions 5 through d, we get exactly C4(n), with the same set of edges.
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Lecture 3, Problem 4(i)

As mentioned in the statement of Problem 3, for d ≥ 4, every cyclic polytope has a complete
vertex-edge graph. If n > d+1, then the cyclic polytope Cd(n) is not a simplex, because a d-simplex
has d + 1 vertices. So for every d > 4, we can make a 4-dimensional polytope whose graph is the
same as the graph of the d-simplex.

If the graph of a d-simplex is to be dimensionally ambiguous, there would have to be a lower -
dimensional polytope with the same graph. (No polytope with this graph could have dimension
higher than d, because the affine hull of d+1 points cannot have dimension higher than d.) If d < 4,
then we can rule out dimensional ambiguity for the simplex because we know very precisely what
polytopes of dimensions −1, 0, 1, and 2 look like: Empty graphs, isolated points, line segments, and
cycles. If d = 4, then the graph of the d-simplex is the complete graph K5 with 5 vertices. Again,
dimensions 0, 1, and 2 can’t admit a polytope with this graph, and dimension 3 won’t work because
Steinitz’ Theorem says the graph would have to be planar, but K5 is not. (If you’re not familiar
with planarity and K5 not being planar, then you could just as easily use the result you proved as
Problem 0 of Lecture 0.)

Lecture 3, Problem 5

A d-polytope P in Rd is simple (by definition) if and only if each vertex v⃗ is contained in exactly
d facets. The normals to the set of facets containing v⃗ must span Rd, or else v⃗ and every vertex
adjacent to v⃗ would be contained in a proper subspace of Rd, and that would force P to be in the
proper subspace. (Recall that we proved in class that P is contained in v⃗+cone({u⃗− v⃗ : u⃗ ∈ N(v⃗)}),
where N(v⃗) is the set of neighbors of v⃗.) Thus there are more than d⃗ facets containing v⃗ if and only
if there is a linear dependence among facets of P containing v⃗. So: P is simple if and only if, for
each vertex v⃗ of P , the set of normals of facets containing v⃗ is linearly independent.

Let P = P (A, z⃗). By Problem 14 of Lecture 2, the facet-defining inequalities of these facets are
given by rows of Ax⃗ ≤ z⃗. For each subset I of the set of indices of rows of A, let AI be the submatrix
of A consisting of the rows indexed by I, and let z⃗I be the corresponding subvector of z⃗. If P is not
simple, then there exists a vertex v⃗ such that the set of normals of facets containing v⃗ is linearly
dependent. In this case, we can choose a minimal linear dependence among d + 1 of the normals.
Let I be the first d indices in the support of the dependence and let J be the last d indices. By
minimality, AI and AJ are linearly independent, and since the corresponding facets all contain v⃗,
the solution set to both AI x⃗ = z⃗I and AJ x⃗ = z⃗J is {v⃗}.

For z⃗ = 1⃗(λ), we can thus avoid letting P (A, z⃗) be simple by making sure that, for every minimal
linear dependence among d + 1 rows of A with I and J as above, the solution sets to AI x⃗ = z⃗I
and AJ x⃗ = z⃗J don’t coincide. The entries of A−1

I and A−1
J are constants, so this is a polynomial

equation in λ. The equation is not tautologically true, because z⃗I has a smaller power of λ than
occurs anywhere in z⃗J . Taking all such equations for all minimal linear dependences among d + 1
rows of A, we have finitely many polynomial equations in λ and we have to choose positive λ to
make all of the equations false. We can thus choose λ to be positive, but smaller than the smallest
positive zero of any of the equations, and we will make P (A, 1⃗(λ)) simple.

For λ small enough, the facets of the new polytope are in bijection with the facets of the old
polytope. To see this, let F be a facet of P (A, 1⃗) defined by the hyperplane {x⃗ : a⃗x⃗ = 1} and let H ′

be the hyperplane {x⃗ : a⃗x⃗ = z}, where z is the appropriate entry of 1⃗(λ). Choose a point x⃗F in the
relative interior of the facet and let x⃗ ′

F be the point in H ′ such that the line containing x⃗F and x⃗ ′
F

is perpendicular to H ′. In particular, the distance z − 1 between x⃗F and x⃗ ′
F is a power of λ. Do

this for every facet of P (A, 1⃗). Now, there is some minimum distance that any x⃗F is from any other

facet-defining hyperplane. As long as we choose λ small enough, the points x⃗ ′
F will be in P (A, 1⃗(λ))

and will be contained in exactly one of the defining hyperplanes. Thus they will be in the relative
interiors of facets, and we have shown that every row of Ax⃗ ≤ 1⃗(λ) defines a facet.

Why is the diameter of the graph of P (A, 1⃗(λ)) greater than or equal to the diameter of the

graph of P (A, 1⃗)? Represent each edge of P (A, 1⃗(λ)) as an intersection of facets. Since P (A, 1⃗(λ)) is
simple, it is an intersection of d − 1 facets. Each vertex in the edge is the intersection of d facets
(the d − 1 facets containing the edge plus one more). There are two possibilities: Either the two

sets of d facet-defining hyperplanes define the same point in P (A, 1⃗) or they define different points.
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So either the edge of P (A, 1⃗(λ)) corresponds to a vertex in P (A, 1⃗) or it corresponds to an edge in

P (A, 1⃗). Given any vertex v⃗ of P (A, 1⃗), we can choose (non-uniquely) a corresponding vertex v⃗′ in

P (A, 1⃗(λ)), by finding any d facets of P (A, 1⃗) containing v⃗ and intersecting the corresponding facets

of P (A, 1⃗(λ)) to make v⃗′. Now given any two vertices of P (A, 1⃗), we can look at two corresponding

vertices in P (A, 1⃗(λ)), and make a path between them. The length of this path is bounded by the

diameter of the graph of P (A, 1⃗(λ)). By contracting some edges to vertices, we get a path between

the two vertices of P (A, 1⃗). Thus all pairs of vertices of P (A, 1⃗) are connected by a path whose

length is bounded above by the diameter of the graph of P (A, 1⃗(λ)).
By the way, the part about “proving the Hirsch conjecture” can be ignored, since we now know

that the Hirsch conjecture is false.


