
MA/CSC 416
Homework 8, Comments and some solutions.

1. Section 2.2, Problem 29

There are two ways to see that this is the multinomial coefficient
(

m
r1,...,rn

)
, i.e. the number of

m-letter words in an alphabet with n different letters, with ri copies of the ith letter for each i.
One way is to use the fundamental counting principle to distribute the balls: First, choose r1

(out of m) balls to go in U1, then choose r2 balls (out of the remaining m− r1) for U2, etc. You get
exactly the right side of Theorem 1.5.1.

Another way is to make the m choices of urns and write down, for each ball, which urn you chose.
The resulting sequence of urns is a word with the letter “Ui” occurring exactly ri times for each i.

2. Section 2.2, Problem 31

The Bell number Br is the total number of set partitions of [r]. So the problem is asking us to
see why

“making an unordered factorization of n into integers greater than one”

is the same as

“making a set partition of some r-element set.”

The natural choice of r-element set is {p1, p2, . . . , pr}. Given a partition of {p1, p2, . . . , pr}, we can
multiply the elements within each block. Thus the blocks of the partition become the factors in a
factorization. It is easy to see that this is a bijection. (That is, easy once you understand what I
wrote. If you don’t understand what I wrote, maybe I didn’t write it clearly. Ask!)

Section 2.3, Problem 4

The point was that a permutation p fixes some i if and only if its inverse fixes i. Here’s a proof:

Proof. Suppose p(i) = i. (In other words, suppose p fixes i.) Then p−1(i) = p−1(p(i)) = i by
definition of p−1. In other words, p−1 fixes i.

Conversely, suppose p−1(i) = i. (In other words, suppose p−1 fixes i.) Then p(i) = p(p−1(i)) = i
by definition of p−1. In other words, p fixes i. □

Section 2.3, Problem 5

Fallacious argument. By Problem 4, if p is a derangement, then so is p−1. Thus the set of derange-
ments consists of pairs

{
p, p−1

}
. So the number of derangements is even. □

The fallacy is that Problem 4 does not show that derangements come in pairs. The “pair”
{
p, p−1

}
only has one element when p is its own inverse. And there are lots of examples of derangements p
such that p is its own inverse. The smallest example is p = 12 ∈ S2.

Section 2.3, Problem 12

Sample proof of Problem 12. The right side counts permutations according to the number of fixed
points. More specifically, let k be the number of elements not fixed by a permutation p and break
up the set of permutations into disjoint collections, according to k. You get:

n! =

n∑
k=0

(the number of permutations in Sn with exactly k non-fixed points)

For k = 0 there is exactly one permutation (12 · · ·n) with k non-fixed points, and for k = 1 there
are none. (Why?) For k ≥ 2, we can count permutations in Sn with exactly k non-fixed points by a
two-step process: first, pick k elements to be non-fixed and second, choose a derangement of those
k permutations. The result is the desired formula n! = 1 +

∑n
k=2

(
n
k

)
D(k).

Another way to finish the proof: For any k, the number of permutations in Sn with exactly k
non-fixed points is

(
n
k

)
D(k), so n! =

∑n
k=0

(
n
k

)
D(k). Since

(
n
0

)
= 1 and D(0) = 1 and D(1) = 0, this

is the desired formula n! = 1 +
∑n

k=2

(
n
k

)
D(k). (But why is D(0) = 1?) □
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Section 2.3, Problem 18

You should have done this as a sum/difference with 15 terms. The point was not to just count
the primes directly. Your terms looked like, for example, |A2 ∩ A5|. You needed to recognize that
A2 ∩A5 is the set of multiples of 10 strictly between 10 and 100, which you could calculate (without
listing them all!) to have 8 elements.

This may not have been the most effective way to count primes between 10 and 100, but I can
imagine this method working well by computer for larger ranges.

Additional Problem

The point is that increasing functions from [r] to [n] “are” r-element subsets of [n]. Then the
book’s version breaks up the sum according to r.


