
MA/CSC 416
Homework 12, Comments and some solutions.

Section 5.1, Problem 4

Since the problem was to explain something that seems intuitively obvious, I wanted you to really
explain it, instead of just relying on something else that seemed intuitively obvious. Here is one way
to explain it completely rigorously.

Sample solution to Problem 4. Let r and k be any positive integers. Suppose I have any arrangement
of pigeons into k holes such that every hole has fewer than

⌈

r

k

⌉

pigeons. In other words, pi ≤
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k

⌉

−1

for each i ∈ [k], where pi is the number of pigeons in hole i, But
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⌉

−1 is alway strictly less than r

k
.

(If k divides r then
⌈
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⌉

− 1 is r

k
− 1, and otherwise
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− 1 is obtained from r

k
by rounding down.)

So the total number of pigeons is
∑k

i=1
pi < k r

k
= r. This shows that if each hole has fewer than

⌈
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k
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pigeons, then there are fewer than r pigeons total. �

Section 5.1, Problem 6

Sample solution to Problem 6. Apply Problem 4 with r = 40 and k = 12. (The pigeons are the
people and the holes are the months.) �

Section 5.1, Problem 7

As suggested in the hint in the back of the book, factor each integer in S as a product of a power
of 2 and an odd integer. (There is a unique factorization of this form for any integer: you have to
factor out every power of 2 present.) Now think of the “pigeonholes” as the possible odd integers
you can get in this factorization. There are n possibilities: 1, 3, . . . , (2n− 1). Since there are n+ 1
elements of S (“pigeons”), by the pigeonhole principle, two of them must have the same odd integer
in their factorization. One of these (whichever has the smaller power of 2) exactly divides the other.

This was not part of the problem, but notice that subsets S ⊆ [2n] need not have this property
if they have fewer than n+ 1 elements. For example, take S = {n+ 1, n+ 2, . . . , 2n}.

Section 5.1, Problem 8

I’m going to describe some things in words that would be more effectively described in pictures
in your homework. (So, for example, you wouldn’t have to name points.)

Call the triangle ABC. Let X be the midpoint of AB, let Y be the midpoint of AC and let Z
be the midpoint of BC. Cut the triangle into 4 pieces by drawing 3 line segments: XY , XZ and
Y Z. Notice that if any two points are in the same one of these 4 triangles (even if they are on the
boundary), their distance is at most 1. So to find a collection of points all distance > 1 apart, we
need to put at most one point in each triangle. In particular, there is no way to choose 5 points all
distance > 1 apart.

Section 5.2, Problem 2

Part a. Recall from class that the complement of a graph G = (V,E) is a graph Gc = (V,E′)
where E′ = {pairs {u, v} ⊆ V : {u, v} 6∈ E}. In other words, every edge of G becomes a non-edge
of Gc and every non-edge of G becomes an edge of Gc. In particular, an s-clique in G becomes an
s-independent set in Gc and a t-independent set in becomes a t-clique in Gc. This is the symmetry
that lets us exchange s and t in the Ramsey numbers.

Part b. By definition, N(1, t) is the smallest integer n such that any graph with n vertices has
either a 1-clique or a t-independent set. But a 1-clique is a vertex and as long as n ≥ 1 the graph
will have a vertex. If n < 1 (i.e. n = 0), the graph will not have a vertex and since t ≥ 1, it will also
not have a t-independent set. So N(1, t) = 1.

Part c. By definition, N(2, t) is the smallest integer n such that any graph with n vertices has
either a 2-clique or a t-independent set. But a 2-clique is an edge. A graph with n vertices and no
edges will have a t-independent set if and only if n ≥ t. So N(2, t) = t.
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Section 5.2, Problem 3

Both parts are a special case of the general proof we did in class. The idea was to show me that
you understood that proof by correctly explaining the proof in these special cases.

We can take it as given the fact (proved in class and in the book) that any graph on 6 vertices
either has a 3-clique or a 3-independent set. Also, we can take it as given (or just obvious) that
any graph on 4 vertices either has an edge or is a 4-independent set (by the special case t = 4 of
Problem 2c).

Sample solution for 3a. To prove that N(3, 4) ≤ 10, we need to show that any graph with 10 vertices
has either a 3-clique or a 4-independent set. Let G be a graph with 10 vertices and let v be a vertex
of G. Since G has 10 vertices, there must either be 4 or more vertices connected to v by edges or 6
or more vertices no connected to v. (Otherwise, v could have at most 9 vertices total.)

If there are 4 vertices connected to v then among those 6 vertices there is either an edge or the
four vertices form a 4-independent set. In the latter case, we have found a 4-independent set in G.
In the former case, if x and y are two of the four vertices and are connected by an edge then v, x, y
form a 3-clique.

If there are 6 or more vertices not connected to v then among these 6 vertices there is either a
3-clique or a 3-independent set. If there is a 3-clique then we are done. If there is a 3-independent
set, then adjoining v to that set gives a 4-independent set.

Thus in any case, G has either a 3-clique or a 4-independent set. �

Part b is similar, but we have to refer to part a and to Problem 2a to know that any graph on 10
vertices either has a 3-clique or a 4-independent set and that any graph on 10 vertices either has a
3-independent set or a 4-clique.

Section 5.2, Problem 11

Either the two edges share a vertex or they do not.

Section 5.2, Problem 12

In general, why should there be exactly 2 graphs having n vertices and
(

n

2

)

− 2 edges? Because
the complement is a graph with exactly two edges. Two graphs are isomorphic if and only if their
complements are isomorphic. So you can use Problem 11.

Section 5.2, Problem 19

There might be many ways to do this. Here’s one way: Both graphs have the same degree
sequence, and in particular, each has exactly one vertex of degree 3. In the graph on the left, the
vertex of degree 3 is connected to vertices of degree 4, 5 and 5. In the graph on the right, the vertex
of degree 3 is connected to vertices of degree 4, 4 and 4. So they can’t be isomorphic. Here’s another
way: Two graphs are isomorphic if and only if their complements are isomorphic. If you draw their
complements, you’ll see that they are clearly not isomorphic.

Section 5.3, Problem 1

Sample direct approach to Problem 1a. I’ll refer to the vertices as A, B. C, D and E, with A at the
top, and then lettering them clockwise. First, choose a color for E (r choices). There are then r− 1
choices of a color for A and then r − 2 choices for a color for B. Now, to color D, I can either color
it the same color as B (1 way), in which case I have r − 1 choices for C, or I can color it a different
color than B (r− 2 ways) in which case I have r− 2 choices for C. The total number of colorings is

r(r − 1)(r − 2) [1 · (r − 1) + (r − 2)(r − 2)] = r(r − 1)(r − 2)(r2 − 3r + 3). �

The key to using chromatic reduction (AKA deletion/contraction) is to choose edges that turn
your graph into graphs whose chromatic polynomials you already know.
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Sample chromatic reduction approach to Problem 1a. I’ll refer to the vertices as A, B. C, D and E,
with A at the top, and then lettering them clockwise.
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The second term on the right side is r(r − 1)2(r − 2), by an example from class. The first term is
(r − 1)5 − (r − 1) = (r − 1)[(r − 1)4 − 1] = (r − 1)(r4 − 4r3 + 6r2 − 4r) by Problem 9a. Thus the
chromatic polynomial is

(r−1)(r4−4r3+6r2−4r)−r(r−1)2(r−2) = (r−1)(r4−5r3+9r2−6r) = r(r−1)(r−2)(r2−3r+3). �

There are many other ways we could have done this: at each step we have a lot of choices about
which edges to delete/contract.

Sample proof of Problem 1b. Following the hint, we notice that the graph in 1b is isomorphic to the
graph in 1a, so they have the same chromatic polynomial. �

Sample direct approach to Problem 1c. Notice that we can break1 this into two independent steps:
Step 1: Choose a coloring for vertices B and E.
Step 2: Choose a coloring for vertices A, C and D.
The number of ways to do Step 1 is r(r − 1) either by easy direct counting or by applying the
theorem on the chromatic polynomial of trees. The number of ways to do Step 2 is r(r − 1)(r − 2)
by easy direct counting, or by Problem 9c. �

For fun, let’s also do part c by chromatic reduction, all the way to the “base case” where we have
no edges. It will be tedious to keep track of vertex labelings, so I’ll just write the unlabeled graphs,
and I’ll occasionally move vertices around so I can combine like terms. Each graph I draw, if it has
any edges, will have one edge dotted, indicating the edge I’m going to delete/contract in the next

step. When I get to a graph with no edges, I’ll replace it in the next step by rn, where n is the
number of vertices of that graph. You’ll need to think to follow this.

1Notice that this “breaking into two steps” is exactly the point of Theorem 5.3.11 in the book.
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Sample chromatic reduction approach to Problem 1c.
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Section 5.3, Problem 3

We’ll do part b first. This is a lot like problem 1, and you could do it either by chromatic reduction
or directly. One nice shortcut: Notice that we can break this into two independent steps:
Step 1: Choose a coloring for the center vertex (r ways)
Step 2: Choose a coloring the remaining 5 vertices.
The number of ways to do Step 2 is p(G′, r − 1), where G′ is the subgraph (a 5-cycle) induced by
the 5 outer vertices. (Why?) Now you can apply Problem 9c.

The book gives the answer to part b as r(r− 1)(r− 2)(r− 3)(r2 − 4r+5). You should know how
to get the answer to part a from there. If not, ask.

Section 5.3, Problem 9

Part c. This is by deletion/contraction, by Theorem 5.3.16 and by induction on n. I’ll introduce
some notation: Pn will be a “path” with n vertices. This is a tree with no “branches,” or more
specifically take V = [n] and connect two vertices i and j if and only if |j − i| = 1. So Pn would
look like •—•— · · · —•, with n vertices. The point is that Pn is a tree, so we know its chromatic
polynomial.

Sample proof of Problem 9c. By direct counting, the chromatic polynomial of C3 is

p(C3, r) = r(r − 1)(r − 2)

= (r − 1)(r2 − 2r)

= (r − 1)
[

(r − 1)2 − 1
]

= (r − 1)3 − (r − 1)

That serves as a base case for induction. As an inductive assumption, assume that we have al-
ready shown that p(Cn−1, r) = (r − 1)n−1 + (−1)n−1(r − 1). Now for n > 3, choose any edge
to delete/contract. Deleting gives a path Pn and contracting gives Cn−1. So, by our main dele-
tion/contraction theorem

p(Cn, r) = p(Pn−1, r)− p(Cn−1, r).
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Applying Theorem 5.3.16 and induction, we obtain

p(Cn, r) = r(r − 1)n−1 −
[

(r − 1)n−1 + (−1)n−1(r − 1)
]

= r(r − 1)n−1 − (r − 1)n−1 − (−1)n−1(r − 1)

= r(r − 1)n−1 − (r − 1)n−1 + (−1)n(r − 1)

= (r − 1)(r − 1)n−1 + (−1)n(r − 1)

= (r − 1)n + (−1)n(r − 1) �

Part d. Bipartite means “having a proper 2-coloring.” So we look at the formula for p(Cn, r) in
Part c and figure out whether specializing to r = 2 gives zero or not. If n is even:

p(Cn, 2) = (2 − 1)n + (2− 1) = 2

So there are exactly two 2-colorings of Cn for n even, and in particular Cn is bipartite for n even.
If n is odd:

p(Cn, 2) = (2 − 1)n − (2− 1) = 0

So there are no 2-colorings of Cn for n odd. In other words, Cn is not bipartite for n odd.

Section 5.3, Problem 13

Sample proof of Problem 13. If m = 0 then p(G, r) = rn so b1 = 0. This is the base case for
induction on m. The inductive assumption is that the for any n and any m′ < m, the chromatic
polynomial is (rn−m′rn−1+[terms of degree < n−1]). Now for any edge e, by deletion/contraction
p(G, r) = p(G−e, r)−p(G/e, r). But G/e is a graph with n−1 vertices, so its chromatic polynomial
is (rn−1 + [terms of degree < n − 1]) by induction, or by the “monic” assertion in Corollary 5.3.7.
Since G − e is a graph with n vertices and m − 1 edges, by induction, its chromatic polynomial is
(rn − (m− 1)rn−1 + [terms of degree < n− 1]). Thus

p(G, r) = p(G− e, r)− p(G/e, r)

= (rn − (m− 1)rn−1 + [terms of degree < n− 1])− (rn−1 + [terms of degree < n− 1])

= (rn −mrn−1 + [terms of degree < n− 1]). �

Section 5.3, Problem 21

One approach: Using the factorization x6 − 12x5 + 54x4 − 112x3 + 105x3 − 36x = x(x− 1)2(x−
3)2(x − 4), we see that the zeros of this polynomial are 0, 1, 3 and 4. If this were a chromatic
polynomial of some graph, then that graph would in particular have a 2-coloring but no 3 coloring.
That’s ridiculous. Why?

Another approach: find a positive integer such that this polynomial evaluates to a negative
number. (For example, x = 2.) That makes no sense. (The number of ways to color some graph
with 2 colors is negative?)


