Laplace transform "Bag of Tricks" Most of these also appear in the Table of Laplace Transforms in the back of the book.

	Function-Land	Transform-World
	f(t)	$\mathcal{L}(f(t))$ or $F(s)$
Linearity of Transforms	af(t) + bg(t)	aF(s) + bG(s)
Transforms of Derivatives	$f'(t) \ f''(t)$	sF(s) - f(0) $s^{2}F(s) - sf(0) - f'(0)$
Translation on the s -Axis	$e^{at}f(t)$	F(s-a)
Transforms of Integrals	$\int_0^t f(au) d au$	$\frac{F(s)}{s}$
The Convolution Property	f(t) * g(t)	F(s)G(s)
Differentiation of Transforms	$\begin{array}{c} -tf(t)\\ (-t)^n f(t) \end{array}$	$F'(s) \ F^{(n)}(s)$
Integration of Transforms	$rac{f(t)}{t}$	$\int_s^\infty F(\sigma) d\sigma$
Translation on the t -Axis	u(t-a)f(t-a)	$e^{-as}F(s)$

Note that f(t) * g(t) is defined to be $\int_0^t f(\tau)g(t-\tau)d\tau$ and this integral is what is shown in the table in the back of the book. For "Translation on the *t*-axis" to be helpful, you'll need to know what u(t-a) is.

These tricks all work for when f(t) and q(t) are piecewise continuous functions of exponential order as $t \to \infty$, except: 1. Transforms of Derivatives: f(t) must be continuous and f'(t) must be piecewise continuous and both must be of exponential order. 2. Integration of Transforms: $\frac{f(t)}{t}$ must also have a finite limit as $t \to 0$ from the right.