
MATH 341, Fall 2023, TEST 1 ANSWERS.
1. Determine if y = xex is a solution to the differential equation y′ y = yex + x2e2x.

ANSWER: Calculate y′ = xex + ex and plug in: (xex + ex)xex
?
= xex · ex + x2e2x. Yes!

COMMENT: If you tried some method of solving this ODE, you were wasting your time (and trying to
do something hard that we haven’t learned). You were given the proposed solution. Just test it.

2. Consider the direction field drawn below.
a. Sketch (right on the picture shown) a reasonable approximation to the solution to the differential
equation whose direction field is shown, subject to the initial condition y(−1) = −1.
b. Of the six ODEs below, circle the one whose direction field is shown, and cross out all the others.
ANSWER:
2a.

1 2-1-2

1

2

-1

-2

x

y

2b. There were many ways to eliminate wrong choices. Here’s how I did it: Consider the slope mark at
(0, 0), which looks like it represents a slope of about 1. Plug in x = 0 and y = 0 to the choices and see
if you get something not close to 1. You can eliminate y′ = x sin(y), y′ = y2 and y′ = sin(x) because
they all give zero. Now, for y′ = cos(x), the slope marks shouldn’t change when you change y (i.e. move
up or down) without changing x. That’s certainly not what happens in the picture. Looking at the two
remaining choices, think about y′ = 1 − x2y. Its direction field should show slope-zero at (1, 1), but this
doesn’t match the picture. The answer is y′ = ex

2+y.

3. Consider the following differential equation.

y′ +
1

x2
y = e

1
x .

a. Find the general solution.
b. Find the solution to the initial value problem with the above ODE and y(1)=0.

ANSWER:

3a. This is a first-order linear ODE, with P (x) = 1
x2 so µ(x) = e

−1
x .

Multiplying through by µ(x) and integrating both sides (remembering that we reverse-engineered the

product rule on the left side), we get to

ye
−1
x = x + C so y = xe

1
x + Ce

1
x
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Don’t forget that we have to divide everything, including the “C” by µ(x).

3b. Set x = 1 and y = 0 in the general solution you found, and solve for C:

0 = e+ Ce so Ce = −e so C = −1.

The answer was

y = xe
1
x − e

1
x .

4. Consider the ODE y3y′ = (x+ 1)2.
a. Find a one-parameter family of solutions to the ODE. It is okay to leave your solution in implicit form.
b. Recall that the Existence and Uniqueness Theorem for First-order ODEs says:

Consider the IVP
dy

dx
= f(x, y), y(x0) = y0. If f and ∂f

∂y
are continuous in some rectangle

R = {(x, y) : a < x < b, c < y < d} that contains the point (x0, y0) then the IVP has a
unique solution in some interval x0 − δ < x < x0 + δ, where δ is a positive number.

Does the Existence and Uniqueness Theorem guarantee a unique solution to the IVP y3y′ = (x +
1)2, y(3) = 0? Why or why not?
ANSWER:
4a. This is a separable ODE, and in fact, it’s already separated for you (except for moving the dx to the
right side). Separate and integrate: ∫

y3 dy =

∫
(x+ 1)2 dy.

y4

4
=

(x+ 1)3

3
+ C.

You can stop there or simplify further.

4b. No, it doesn’t. The function f(x, y) = (x+1)3

y3
isn’t even defined, much less continuous, at (3, 0).

5. I claim that the ODE with differential form 3x2y3 dx + (3x3y2 + ay) dy = 0 describes the level sets of
some F . (Your a was −18, 14, −6 or 10.)
a. Without finding F , check that my claim is correct.
b. Write the general solution for the ODE.
ANSWER:
5a. (First, the thought process:)
An ODE describes the level sets of a function F (x, y) if the ODE can be written in differential form as
∂F
∂x

dx+ ∂F
∂y

dy = 0. The function F (x, y) would have ∂2F
∂y∂x

= ∂2F
∂x∂y

.

The part in front of dx must be ∂F
∂x

and the part in front of dy must be ∂F
∂y
. So to check ∂2F

∂y∂x
= ∂2F

∂x∂y
, I’m

checking
∂

∂y
(the part in front of dx)

?
=

∂

∂x
(the part in front of dy).

(Now what you write:)

Check that ∂
∂y
(3x2y3)

?
= ∂

∂x
(3x3y2 + ay). Both come out to 9x2y2, so the answer is yes.

5b. Thinking as described in part a, you know that ∂F
∂x

= 3x2y3. Integrating
∫
dx, we find that F =

x3y3 + g(y) where g(y) is an arbitrary function of y. But we also know that ∂F
∂y

= 3x3y2 + ay and plugging

in F = x3y3 + g(y) to ∂F
∂y

= 3x3y2 + ay, we get 3x3y2 + g′(y) = 3x3y2 + ay, so g′(y) = ay. Solving this
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simple ODE, g(y) = a
2
x2 +C. The final answer is F = x3y3 + a

2
x2. (We don’t need to bother with the C.)

The point now is to remember that that the solutions are level curves of some function, and we just found
the function.

ANSWER: x3y3 +
a

2
x2 = C for constants C.

6. A tank initially holds 600 L of brine with 20 kg of salt. A salt solution (concentration 0.3 kg/L) flows
into a tank at a constant rate of 9 L/min. The solution flows out of the tank at a constant rate of 7 L/min.
Assuming instantaneous, perfect mixing in the tank, write an IVP describing S(t), the mass of salt in the
tank at time t minutes. Do not solve the IVP, just write it down.

ANSWER:
dS

dt
= 2.7− 7S

600 + 2t
S(0) = 20.

What you think but don’t have to write:
The 2.7 is 0.3 kg/L times 9 L/min (the salt flowing in). The 7S

600+2t
is the salt flowing out: 7 L/min times

the concentration in the tank, which is S divided by volume. (You solved a separate, easy ODE to find
that the volume at t minutes is 600 + 2t.
(Your numbers might have been different.)

7. Find the general solution to each of the following ODEs. Use t as an independent variable.

7a. y′′ + 2y′ − 15y = 0
r2 + 2r − 15 = 0, r = −5, 3, y(t) = c1e

−5t + c2e
3t.

7b. y′′ + 8y′ + 16y = 0
r2 + 8r + 16 = 0, r = −4 (repeated), y(t) = c1e

−4t + c2te
−4t.

7c. y′′′ + 4y′′ − 2y′ − 20y = 0 (Hint: e2t is a solution.)
r3 + 4r2 − 2r − 20 = 0. Since e2t is a solution, we know r − 2 is a factor.
(r − 2)(r2 + 6r + 10) = 0, so r = 2 or r = −6±

√
36−40
2

= −3± i.

y(x) = c1e
2t + c2e

−3t cos t+ c3e
−3t sin t.

7c. Sorry, this is the one that had the typo. On the test it was 11y′.
y′′′ − 6y′′ + 13y′ − 10y = 0 (Hint: e2t is a solution.) r3 − 6r2 + 13r − 10 = 0. Since e2t is a solution, we
know r − 2 is a factor.
(r − 2)(r2 − 4r + 5) = 0, so r = 2 or r = 4±

√
16−20
2

= 2± i.

y(x) = c1e
2t + c2e

2t cos t+ c3e
2t sin t.

7d. y′′ − y = t2

The auxiliary equation is r2−1 = 0 so the solution to the associated homogeneous ODE is y(t) = c1e
t+c2e

−t.
We find the collection of terms t2, t, 1 by differentiating t2 repeatedly, and we write yp = At2 + Bt + C.
So y′′p = 2A and we substitute into the ODE to get 2A− (At2 + Bt+ C) = t2. This gives three equations
−A = 1 (coefficient of t2) and −B = 0 (coefficient of t) and 2A−C = 0 (constant term). We solve A = −1
and B = 0 and C = −2, so a particular solution is yp = −t2 − 2. The general solution is

y = −t2 − 2 + c1e
t + c2e

−t.

8. Solve the IVP y′′ + y = 1 y(0) = a y′(0) = 1
(Your a was 2, 4, 6, or 8.)
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ANSWER:
The auxiliary equation is r2 + 1 = 0 so the solution to the associated homogeneous ODE is y(t) =
c1 sin t+ c2 cos t. (Danger: Don’t use the initial conditions at this point to find c1 and c2. The initial con-
ditions are for the nonhomogeneous ODE y′′+y = 1, not for the associated homogeneous ODE y′′+y = 0.)

To find a particular solution, a good initial guess is yp = A and this doesn’t conflict with the solution to
the associated homogeneous ODE, so we don’t revise it. Calculate y′′p = 0, and substitute into y′′ + y = 1,
to get A = 1. A particular solution is yp = 1, so the general solution is y = 1 + c1 sin t+ c2 cos t.

Now, y(0) = a says a = 1 + c2, so c2 = a− 1. Also, y′ = c1 cos t− c2 sin t, so y′(0) = 1 says 1 = c1.
The solution to the IVP is y = 1 + sin t+ (a− 1) cos t.

9. For each of the following equations, write down the form of the particular solution which you would
find using the Method of Undetermined Coefficients. You do not need to determine the coefficients. To
save you time, I have solved each auxiliary equation for you.

y′′ − 4y′ + 4y = et

r = 2 (repeated) yp = Aet

y′′ − 6y′ + 9y = et

r = 3 (repeated) yp = Aet

y′′ + 4y′ − 5y = t2 cos t
r = 1,−5 yp = At2 cos t+Bt2 sin t+ Ct cos t+Dt sin t+ E cos t+ F sin t

y′′ − 6y′ + 9y = e3t

r = 3 (repeated) yp = At2e3t

y′′ − 4y′ + 4y = e2t

r = 2 (repeated) yp = At2e2t

10. Consider the second-order ODE y′′ = yy′. Note that we have not taught you a method that applies to
this ODE. Use your creativity!

a. Find a one-parameter family of solutions.
ANSWER: The constant functions y ≡ C.

b. Find a solution not represented in the one-parameter family.
ANSWER: Maybe you found another one, but here’s what I found: Try a function of the form y = axn

for a constant a and a constant n. Plugging into the ODE we get:

an(n− 1)xn−2 = axn(anxn−1).

For this to be an equality you need two things: first, the exponent for x has to be the same on both
sides, and second, the constant needs to be the same on both sides. The exponents give the equation
n − 2 = 2n − 1 with solution n = −1. The constant gives the equation (using the fact that n = −1):
a(−1)(−2) = a2(−1) with solutions a = 0 and a = −2. But a = 0 would give the constant solution y ≡ 0,
which was in the one-parameter family, so take a=-2. The solution is y = −2

x
.

c. Find a two-parameter family of solutions.
ANSWER: I don’t know the answer to this question. (It was a challenge question!) Our intuition tells us
that there ought to be some 2-parameter family of solutions, but it’s possible that it’s not something we
can write down. Did you find one? By the way, this is not a linear ODE, so you can’t just write down
something like y = C1 + C2

−2
x
.
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11. This problem is about sines and cosines of imaginary numbers.
As usual, i is the imaginary constant

√
−1.

a. Prove that cos(iθ) = 1
2
(eθ + e−θ).

ANSWER:
We know that eiθ = cos θ + i sin θ. Also, since cosine is an even function and sine is an odd function,
e−iθ = cos θ− i sin θ. If we add these two formulas together, the sines cancel and we get eiθ+e−iθ = 2 cos θ,
or cos θ = 1

2
(eiθ + e−iθ). Substituting iθ for θ and using i2 = −1, that’s

cos(iθ) =
1

2
(e−θ + eθ).

Interestingly, if θ is a real number, then cos(iθ) is also a real number. Sometimes, people call this the
“hyperbolic cosine” cosh θ = 1

2
(e−θ + eθ).

b. Give a formula for sin(iθ).
ANSWER:
This time, subtract the two equations: Taking eiθ = cos θ + i sin θ minus e−iθ = cos θ − i sin θ, the cosines
cancel, and we get eiθ − e−iθ = 2i sin θ or sin θ = 1

2i
(eiθ − e−iθ), or better, sin θ = −i

2
(eiθ − e−iθ). Again

substituting iθ for θ, that’s sin(iθ) = −i
2
(e−θ − eθ), or

sin(iθ) =
i

2
(eθ − e−θ).

Interestingly, if θ is a real number, then sin(iθ) is an imaginary number. It is i times the “hyperbolic sine”
sinh θ = 1

2
(eθ − e−θ).

12. Find the general solution to ty′′ + 2y′ + ty′ + y = 0. (Hint: Write this as [t d2

dt2
+ (2 + t) d

dt
+ 1] y = 0.

Can you “factor” the linear operator?)
ANSWER:
This is a hard problem. I have no idea if I would have figured this out if I were taking the test...I made
the problem up backwards, starting from the answer. (But if you managed to factor the linear operator,
the work you did afterwards was like something I showed you in class.) Anyway:

You can factor [t d2

dt2
+ (2 + t) d

dt
+ 1] y = 0 as

[
d
dt
+ 1

] [
t d
dt
+ 1

]
y = 0.

What does that mean? If you apply the linear operator
[
t d
dt
+ 1

]
to y you get t

dy

dt
+ y. If you then

apply the linear operator
[

d
dt
+ 1

]
to t

dy

dt
+ y (and if you don’t forget to use product rule), you get

(td
2 y
dt2

+ dy
dt
) + dy

dt
+ t

dy

dt
+ y. That’s the same as if you apply [t d2

dt2
+ (2 + t) d

dt
+ 1] to y.

Now let z be
[
t d
dt
+ 1

]
y, so the equation is

[
d
dt
+ 1

]
z = 0. This has general solution z = c1e

−t. But

the equation that defines z (“Let z be
[
t d
dt
+ 1

]
y”) is an ODE that determines y: It’s

[
t d
dt
+ 1

]
y = z.

In other words, to find y, we solve the first-order linear ODE tdy
dt

+ y = c1e
−t. The general solution is

y = c1
e−t

t
+ c2

1

t
.
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