1. Determine whether $y(x) = x^a$ is a solution to the ODE $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2y^2 = b$. (Your *a* and *b* varied.)

We are **checking** a proposed solution, not **solving**, so we just see whether the proposed solution makes the equation true. Compute (for your specific a):

$$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 2y^2 = a^2 x^{2a-2} + 2x^{2a}$$

(For example, if you had a = 3, you got $9x^4 + 2x^6$.) That non-constant polynomial is not equal (as a function) to the constant number b.

It's critical to be clear on what we mean by a solution: The equation says that two **func**tions are equal, meaning that they are the same no matter what x is. Yes, we can find, in principle, the values of x that make the equation true, but that's not the point. The point is that as functions, $a^2x^{2a-2} + 2x^{2a}$ and b are not the same.

2. Determine whether the relationship $y^5 + y = x$ is an implicit solution to the ODE

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5y^4 + 1}$$

Differentiate both sides of $y^5 + y = x$ with respect to x. Don't forget the chain rule! You get:

 $\frac{\mathrm{d}}{\mathrm{d}x}(y^5 + y) = \frac{\mathrm{d}}{\mathrm{d}x}x.$ $5y^4 \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\mathrm{d}y}{\mathrm{d}x} = 1.$ $\frac{\mathrm{d}y}{\mathrm{d}x}(5y^4 + 1) = 1.$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{5y^4 + 1}.$

Yes, this is an implicit solution to the ODE.

(Your quiz might have had different numbers, but the work was essentially the same and the answer was yes.)

3. $\lim_{x\to\infty} y(x) = 1$. Or, in words, for large x, y(x) approaches 1. 4. Fill in the table using Euler's method to approximate a solution to the initial value problem

$$y' = xy \qquad y(1) = 1$$

with step size h = 1. As in class and in the book, y_n is the approximation to $y(x_n)$.

n	x_n	y_n	(Work)
0	1	1	
1	2	2	$1 + (1 \cdot 1) \cdot 1 = 2$
2	3	6	$2 + (2 \cdot 2) \cdot 1 = 6$
3	4	24	$6 + (3 \cdot 6) \cdot 1 = 24$

4. Fill in the table using Euler's method to approximate a solution to the initial value problem

$$y' = x + y \qquad y(1) = 2$$

with step size h = 1. As in class and in the book, y_n is the approximation to $y(x_n)$.

n	x_n	y_n	(Work)
0	1	2	
1	2	4	$1 + (1+2) \cdot 1 = 4$
2	3	10	$4 + (2+4) \cdot 1 = 10$
3	4	24	$10 + (3 + 10) \cdot 1 = 23$