MATH 341 Fall 2023, QUIZ 12

In each problem, the eigenvalues of a 2 X 2 matrix A are given, along with one eigenvector for each. (The matrix
A is not specified.) In each case, we will consider the system Z’ = AZ and you should do 3 things: circle the
correct classification of the critical point at (0,0); circle the correct description of the stability of the critical point
at (0,0); and sketch the phase-plane portrait of the system.
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