MATH 241, Fall 2018, QUIZ 9 answers

1. Find the general solution for each of the following ODEs.

y'' - 2y' + 5y = 0Auxiliary equation: $r^2 - 2r + 5 = 0$. Solve (quadratic formula): $r = 1 \pm 2i$. General solution: $y(x) = C_1 e^x \cos 2x + C_2 e^x \sin 2x$.

y'' - 2y' + y = 0Auxiliary equation: $r^2 - 2r + 1 = 0$. Solve (factor or quadratic formula): r = 1. General solution: $y(x) = C_1 e^x + C_2 x e^x$.

y'' - 2y' - 3y = 0Auxiliary equation: $r^2 - 2r - 3 = 0$. Solve (factor or quadratic formula): r = -1, 3. General solution: $y(x) = C_1 e^{-x} + C_2 e^{3x}$.

2. Suppose a certain 2nd-order linear ODE has general solution $y = c_1 e^{2x} + c_2 e^{5x}$. Solve the initial value problem for that ODE and initial conditions y(0) = 0 and y'(0) = 3. $y(0) = c_1 + c_2 = 0$, so $c_1 = -c_2$.

 $y' = 2c_1e^{2x} + 5c_2e^{5x}$ $y'(0) = 2c_1 + 5c_2 = 3$ Replacing c_1 by $-c_2$, we get $-2c_2 + 5c_2 = 3$, so $3c_2 = 3$, so $c_2 = 1$ and $c_1 = -1$. $\boxed{y = -e^{2x} + e^{5x}}$

2. Suppose a certain 2nd-order linear ODE has general solution $y = c_1 e^{3x} + c_2 e^{4x}$. Solve the initial value problem for that ODE and initial conditions y(0) = 0 and y'(0) = 2. $y(0) = c_1 + c_2 = 0$, so $c_1 = -c_2$.

 $y' = 3c_1e^{3x} + 4c_2e^{4x}$ $y'(0) = 3c_1 + 4c_2 = 2$ Replacing c_1 by $-c_2$, we get $-3c_2 + 4c_2 = 2$, so $c_2 = 2$ and $c_1 = -2$. $y = -2e^{3x} + 2e^{4x}$

2. Suppose a certain 2nd-order linear ODE has general solution $y = c_1 e^{6x} + c_2 e^x$. Solve the initial value problem for that ODE and initial conditions y(0) = 0 and y'(0) = 5. $y(0) = c_1 + c_2 = 0$, so $c_1 = -c_2$.

 $y' = 6c_1e^{6x} + c_2e^x$ $y'(0) = 6c_1 + c_2 = 5$ Replacing c_1 by $-c_2$, we get $-6c_2 + c_2 = 5$, so $-5c_2 = 5$, so $c_2 = -1$ and $c_1 = 1$. $y = e^{6x} - e^x$