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As a→ −∞, ea → 0, so this limit is ln 2− ln 1 = ln 2.

Conclusion:
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−1 = 0− 0 = 0.

This is wrong because there is a vertical asymptote at x = 0. Instead, break it
into 2 integrals and do each one with a limit.
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Both of these limits diverge, so
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You might think, “The first limit is ∞ and the second limit is −∞, so they add up to
0.” But that kind of arithmetic is problematic, because ∞ is not a number. There is
infinite negative area below the curve and infinite positive area. That doesn’t let us put
any numerical value to the total area.


