Problem 1

1. Consider the series $\sum_{n=0}^{\infty} \left(\frac{1}{5}\right)^n x^n = 1 + \frac{1}{5}x + \frac{1}{25}x^2 + \frac{1}{125}x^3 + \cdots$. a. Find the radius of convergence of the series.

b. Find the interval of convergence of the series.

c. Give a formula for the function represented by this series on its interval of convergence.

Solution. Notice that this is a geometric series with a = 1 and $r = \frac{1}{5}x$. So it converges to $\frac{a}{1-r} = \frac{1}{1-\frac{1}{5}x}$ if $\left|\frac{1}{5}x\right| < 1$ (i.e. |x| < 5) and it diverges if $\left|\frac{1}{5}x\right| \ge 1$ (i.e. $|x| \ge 5$). That tells us the answers to all three parts: a. The radius of convergence is 5.

b. The interval of convergence is (-5, 5). (No need to test endpoints separately... since it's a geometric series, we already know it diverges at the endpoints.)

c. The function is $\frac{1}{1-\frac{1}{5}x} = \frac{5}{5-x}$.

Problem 2

2. Find the radius of convergence and the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{2^n x^n}{n!}$.

Solution. We'll use the Ratio Test to test convergence:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{2^{n+1}x^{n+1}}{(n+1)!}}{\frac{2^n x^n}{n!}} \right| = \lim_{n \to \infty} \left| \frac{2^{n+1}x^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n x^n} \right| = \lim_{n \to \infty} \left| \frac{2x}{(n+1)} \right| = 0$$

This is zero regardless of what x is, so the series converges for all x. That is, the radius of convergence is ∞ . So the interval of convergence is $(-\infty,\infty)$. (No need to test endpoints separately... The interval is the whole number line, so there *are* no endpoints!)

By the way, we will see later that this series agrees with e^{2x} for all x. You should be able to do that problem using Taylor Series (for the final but not for Test 4).

Problem 3

3. Consider the series $\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$.

a. Find the radius of convergence of the series.

b. Find the interval of convergence of the series.

Solution. We'll again use the Ratio Test:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{2n+2}}{(2n+2)!}}{\frac{x^{2n}}{(2n)!}} \right| = \lim_{n \to \infty} \left| \frac{x^2}{(2n+2)(2n+1)} \right| = 0$$

Again, this is zero regardless of what x is, so the series converges for all x. The radius of convergence is ∞ . The interval of convergence is $(-\infty, \infty)$.

By the way, we showed in class that this series agrees with $\cos x$ for all x. You should be able to do that problem using Taylor Series.

Problem 4

4. Consider the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$.

a. Find the radius of convergence of the series.

b. Find the interval of convergence of the series.

Solution. Ratio Test again! (Sensing a pattern here? You're right.)

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{x^{n+1}}{n+1}}{\frac{x^n}{n}} \right| = \lim_{n \to \infty} \left| \frac{nx}{n+1} \right| = |x|$$

The Ratio Test says that this converges if that limiting ratio is < 1. That is the series converges if |x| < 1. So the radius of convergence is 1.

To find the exact interval of convergence, we need to test the endpoints ± 1 .

Checking x = 1: $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1^n}{n}$ converges by the Alternating Series Test (because $\frac{1}{n}$ decreases and limits to 0). Checking x = -1:

 $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(-1)^n}{n} = \sum_{n=1}^{\infty} -\frac{1}{n}$ diverges. (It is -1 times the Harmonic Series).

So, the interval of convergence is (-1, 1].