MATH 141, Fall 2025, QUIZ 7 solutions

1. If 
$$A^2 - 3 = B^5$$
 and  $\frac{dA}{dt} = 1$ , find  $\frac{dB}{dt}$  when  $A = 2$ .

Differentiate both sides (using chain rule!) to get a relationship between the rates: 
$$2A \frac{dA}{dt} = 5B^4 \frac{dB}{dt}$$
  
When  $A = 2$ ,  $2^2 - 3 = 1 = B^5$ , so  $B = 1$ .

Put all this into the relationship between the rates, then solve: 
$$2 \cdot 2 \cdot 1 = 5 \cdot 1^4 \frac{dB}{dt}$$
  $\boxed{\frac{dB}{dt} = \frac{4}{5}}$ 

1. If 
$$B^2 - 3 = A^3$$
 and  $\frac{dA}{dt} = 1$ , find  $\frac{dB}{dt}$  when  $B = 2$ .

Differentiate both sides (using chain rule!) to get a relationship between the rates: 
$$2B \frac{dB}{dt} = 3A^2 \frac{dA}{dt}$$
. When  $B = 2$ ,  $2^2 - 3 = 1 = B^3$ , so  $A = 1$ .

Put all this into the relationship between the rates, then solve: 
$$2 \cdot 2 \cdot \frac{dB}{dt} = 3 \cdot 1^2 \cdot 1$$
  $\left[ \frac{dB}{dt} = \frac{3}{4} \right]$ .

1. If 
$$A^2 - 8 = B^3$$
 and  $\frac{dA}{dt} = 1$ , find  $\frac{dB}{dt}$  when  $A = 3$ .

Differentiate both sides (using chain rule!) to get a relationship between the rates: 
$$2A \frac{dA}{dt} = 3B^2 \frac{dB}{dt}$$
. When  $A = 3$ ,  $3^2 - 8 = 1 = B^3$ , so  $B = 1$ .

Put all this into the relationship between the rates, then solve: 
$$2 \cdot 3 \cdot 1 = 3 \cdot 1^2 \frac{dB}{dt}$$
  $\frac{dB}{dt} = 2$ 

1. If 
$$B^2 - 8 = A^5$$
 and  $\frac{dA}{dt} = 1$ , find  $\frac{dB}{dt}$  when  $B = 3$ .

Differentiate both sides (using chain rule!) to get a relationship between the rates: 
$$2B \frac{dB}{dt} = 5A^4 \frac{dA}{dt}.$$
 When  $B = 3$ ,  $3^2 - 8 = 1 = A^5$ , so  $A = 1$ .

Put all this into the relationship between the rates, then solve: 
$$2 \cdot 3 \cdot \frac{dB}{dt} = 5 \cdot 1^4 \cdot 1$$
  $\left[ \frac{dB}{dt} = \frac{5}{6} \right]$ 

2. Let 
$$f(x) = x^4 + x^3 + x^2 + 2x + 4$$
. Find the linear approximation  $L_1(x)$  to  $f(x)$  at  $x = 1$ .  $f'(x) = 4x^3 + 3x^2 + 2x + 2$ , so  $f'(1) = 4 + 3 + 2 + 2 = 11$ . Also  $f(1) = 9$ .  $L_1(x) = 9 + 11(x - 1)$ . This is  $L_c(x) = f(c) + f'(c)(x - c)$  for this  $f$  and for  $x = 1$ .

Alternate versions of the problem and answers (work is similar):

$$f(x) = x^4 + x^3 + 2x^2 + x + 3 \rightarrow L_1(x) = 8 + 12(x - 1).$$
  
 $f(x) = x^4 + 2x^3 + x^2 + x + 2 \rightarrow L_1(x) = 7 + 13(x - 1).$ 

$$f(x) = x^4 + 2x^3 + x^2 + x + 2 \rightarrow L_1(x) = 7 + 13(x - 1).$$

$$f(x) = 2x^4 + x^3 + x^2 + x + 1 \rightarrow L_1(x) = 6 + 14(x - 1).$$

3. (5 points) Find the linear approximation to  $\sqrt[3]{x}$  at x=8 and use it to approximate  $\sqrt[3]{8.12}$ . (You will make your calculator-free computations much easier if you think of 8.12 as  $8 + \frac{12}{100}$ .)

$$f(x) = \sqrt[3]{x}$$
, so  $f(8) = 2$ .  $f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3(\sqrt[3]{x})^2}$ .  $f'(8) = \frac{1}{3(\sqrt[3]{8})^2} = \frac{1}{12}$ 

$$L_8(x) = 2 + \frac{1}{12}(x - 8)$$
. This is  $L_c(x) = f(c) + f'(c)(x - c)$  for this f and for  $x = 8$ .

The approximation is  $\sqrt[3]{x} \approx 2 + \frac{1}{12}(x-8)$ . You could simplify this, but because you're taking x-values close to x, simplifying, in this case, gives you something less easy to use!

$$\sqrt[3]{8.12} \approx 2 + \frac{1}{12} \left(\frac{12}{100}\right) = 2 + \frac{1}{100} = 2.01$$