
1.

Not all quizzes asked the same questions, but your answers should be on this list. You should understand all the limits given below (and one-sided versions of them even if they're not given). For these questions, you can say "is undefined" or "does not exist" interchangeably.

$$\lim_{x \to -\infty} f(x) = 4$$

$$\lim_{x \to -9} f(x) = 3$$

$$\lim_{x \to -9^-} f(x) = 3$$
 $\lim_{x \to -9^+} f(x) = 3$

$$\lim_{x \to 0^+} f(x) = 3$$

$$\lim_{x\to -7} f(x)$$
 is undefined

$$\lim_{x \to -7^{-}} f(x) = -5$$
 $\lim_{x \to -7^{+}} f(x) = 2$

$$\lim_{x \to 7^+} f(x) = 2$$

$$\lim_{x\to -5} f(x)$$
 is undefined

$$\lim_{x \to -5^{-}} f(x) = -2$$

$$\lim_{x \to -5^-} f(x) = -2$$
 $\lim_{x \to -5^+} f(x) = 1$

$$\lim_{x \to -4^+} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -4^-} f(x) = \infty$$
 $\lim_{x \to -4} f(x)$ is undefined

$$\lim_{x\to -2} f(x) = \infty$$

$$\lim_{x\to 1} f(x) = 2$$

$$\lim_{x\to 2} f(x)$$
 does not exist $\lim_{x\to 4} f(x) = \infty$

$$\lim_{x \to 1} f(x) = \infty$$

$$\lim_{x \to 5} f(x) = -4$$

$$\lim_{x \to 6} f(x) = -\infty \qquad \lim_{x \to \infty} f(x) = -1$$

$$\lim_{x\to\infty} f(x) = -1$$

2. Your quiz question was similar to one of these, possibly with different numbers:

$$f(x) = \begin{cases} 2x & \text{if } x \le 5\\ c & \text{if } x > 5. \end{cases}$$

The function is continuous everywhere, except possibly at x = 5 (no matter what c is). Also, f(5) = 10and $\lim_{x\to 5^-} f(x) = 10$ and $\lim_{x\to 5^+} f(x) = c$. We want $\lim_{x\to 5} f(x)$ to exist and to equal f(5). To make this happen, we need c = 10. That makes both one-sided limits 10, so the two-sided limit exists and is 10. Enough work for you to write: f(5) = 10 and $\lim_{x\to 5^-} f(x) = 10$ and $\lim_{x\to 5^+} f(x) = c$, so c = 10.

$$f(x) = \begin{cases} c & \text{if } x < 1\\ x^2 + 4 & \text{if } x \ge 1. \end{cases}$$

The function is continuous everywhere, except possibly at x = 1 (no matter what c is). Also, f(1) = 5 and $\lim_{x\to 1^-} f(x) = c$ and $\lim_{x\to 1^+} f(x) = 5$. We want the limit $\lim_{x\to 1} f(x)$ to exist and to equal f(1). To make this happen, we need c = 5. That makes both one-sided limits 5, so the two-sided limit exists and is 5. Enough work for you to write: f(1) = 5 and $\lim_{x \to 1^-} f(x) = c$ and $\lim_{x \to 1^+} f(x) = 5$, so c = 5.