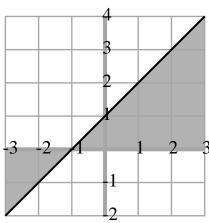
1.
$$\int_{3}^{3} (x+1) \, \mathrm{d}x = \frac{1}{2} \cdot 4 \cdot 4 - \frac{1}{2} \cdot 2 \cdot 2 = 8 - 2 = 6.$$

The small triangle contributes a negative area and the large triangle contributes a positive area. Note that this is not a Riemann sum problem. We're not approximating this area using rectangles, we're computing it using the fact that it is made up of triangles.

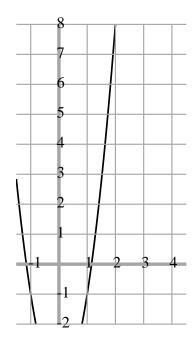


2. Given
$$F(x) = \int_0^x (\sec 2t + 5t + e^t) dt$$
, FTC (Part 1) says $\frac{dF}{dx} = \sec 2x + 5x + e^x$.

The answer is **not** sec $2t + 5t + e^t$, because $\frac{dF}{dx}$ is a function of x, not t. The answer is **also not** (sec $2x + 5x + e^x$) dx, because the problem asks for $\frac{dF}{dx}$, not dF. Your numbers might have been slightly different.

3.
$$\int_{1}^{2} (3x^{2} - 4) dx = \left[x^{3} - 4x \right]_{1}^{2} = (2^{3} - 4 \cdot 2) - (1 - 4) = 0 - (-3) = 3.$$

This used FTC, but we won't need to keep saying that. It's just the way we'll do definite intervals. You didn't have to draw a picture, but here is one. Does the area look right?



4.
$$\int_0^{\frac{\pi}{3}} \cos x \, dx = \left[\sin x \right]_0^{\frac{\pi}{3}} = \sin\left(\frac{\pi}{3}\right) - \sin(0) = \frac{\sqrt{3}}{2} - 0 = \frac{\sqrt{3}}{2}.$$

5.
$$\int_{1}^{3} \left(e^{x} - \frac{1}{x} \right) dx = \left[e^{x} - \ln|x| \right]_{1}^{3} = (e^{3} - \ln 3) - (e^{1} - \ln 1) = (e^{3} - \ln 3) - (e - 0) = e^{3} - \ln 3 - e.$$

6. Given that
$$\int_{1}^{2} f(x) dx = a$$
 and $\int_{1}^{3} f(x) dx = 1$, (Your a was some specific number.)
$$\int_{2}^{3} f(x) dx = 1 - a$$

$$\int_{1}^{1} f(x) dx = 0$$
 This is true for any function.
$$\int_{1}^{2} 3f(x) dx = 3a$$