
MA 724
Homework 5, Comments and some solutions.

Problem 9

Applying Theorem 2.7, we know that F ⋄ is a polytope of dimension dim(P )−dim(F )−1. We can’t
just blindly apply the geometric operation of polar duality, because F typically is not full dimensional
and does not contain the origin in its interior. But we can get something combinatorially dual to F ⋄

by restricting to the affine hull of F ⋄, then translating until 0⃗ is in the interior of F ⋄, and then doing
polar duality. (If we don’t restrict to the affine hull, then the interior of F ⋄ can be empty, and then

things go wrong because we need 0⃗ in the interior, not just the relative interior.) This construction
is what Ziegler meant (and indeed, he was thinking of the △ symbol as exactly this combinatorial
duality).

Now P/F , defined in this way, is again a polytope of dimension dim(P )− dim(F )− 1. The face
lattice of F ⋄ is isomorphic to the interval [P ⋄, F ⋄] in L(P△). The face lattice of P/F is dual to the
face lattice of F ⋄, so it is isomorphic to the interval [F, P ] in L(P ).

To obtain P/F as an iterated face figure, it is convenient to fix, first, a saturated chain ∅ =
F0 < F1 < · · · < Fk = F . Then P/F1 is a vertex figure and L(P/F1) is isomorphic to [F1, P ].
There is a saturated chain corresponding to F1 < · · · < Fk = F in L(P/F1), and we can repeat,
forming (P/F1)/F2, then ((P/F1)/F2)/F3, and so forth until we reach a polytope whose face lattice
is isomorphic to [F, P ]. This is P/F .

We’ll sketch a more direct construction of P/F . (There is another construction below, which you
might like better.) We’ll first construct what I’ll call the local polyhedron P |F of P at F . This is the
polyhedron defined by all of the facet-defining inequalities for facets of P containing F . If F = ∅,
then P |F = P , so assume that F ̸= ∅. There is a bijection η between faces of P containing F and
nonempty faces of P |F , with inverse θ defined as follows: Given a face G of P containing F , η maps
G to the intersection of the facets of P |F containing G. Given a nonempty face E of P |F , θ maps
E to P ∩ E.

If G is a face of P containing F , and U is the set of facets of P |F containing G, then θ(η(G)) =
P ∩

⋂
F ′∈U F ′ =

⋂
F ′ ∈ U(P ∩F ′). The latter is the intersection of all of the facets of P containing

G, so it equals G. If E is a nonempty face of P |F , then η(θ(E)) is the intersection of all of the facets
of P |F containing P ∩ E. But a facet of P |F contains P ∩ E if and only if it contains E, so η(θ) is
the intersection of all of the facets of P |F containing G, which equals G.

Now, to make a polytope with the right face lattice, mod out by the lineality space of P |F . This
gives a polyhedron with a unique vertex (corresponding to the minimal nonempty face η(F ) of P |F ).
Take the vertex figure of that vertex. The result is a polytope isomorphic to P/F .

Here is another direct construction that you might like better. Choose any point x⃗ in the relative
interior of F , and let S be an affine subspace containing x⃗ and complementary to aff(F ) (meaning
that the intersection of the two is x⃗ and their dimensions sum to d). The intersection P ∩ S is a
polytope of dimension dim(P )− dim(F ), and x⃗ is a vertex of P ∩ S. Then R/F is the vertex figure
(P ∩ S)/x⃗.

Here is a sketch of why this works. Since we can obtain P/F as an iterated vertex figure, we are
basically intersecting P with a hyperplane, then another, etc. In all, we intersect P with dim(F )+1
hyperplanes. This amounts to intersecting P with a subspace of dimension dim(P )−dim(F )−1. (If
the hyperplanes are not in independent directions, we would end up with a polytope of the wrong
dimension.) The construction above intersects P with a subspace of dimension dim(P ) − dim(F )
and then intersects the result with another hyperplane, so in all it amounts to intersecting P with
a subspace of dimension dim(P )− dim(F )− 1. The detail that needs to be checked is that we can
choose the complementary subspace and construct all the vertex figures so that these two subspaces
of dimension dim(P )− dim(F )− 1 actually coincide. I’ll leave that to you if you are interested, but
the point is that we have a lot of freedom in constructing these subspaces.

1



2

Problem 10

Take y⃗ to be the center of a square in R2, and you’ll find a counterexample to both statements
(iii) and (iv) if the word “point” is replaced by “vertex” in both statements. A counterexample just
for (iv) is easier: A triangle has more than one interior point!

But wait! Why doesn’t this counterexample to (iii) contradict Caratheodory’s Theorem? (Look
carefully at the theorem.)

Lecture 2, Problem 14

Part (i). First, here is a true statement for polyhedra.

Proposition 1. Suppose P (A, z⃗) is a nonempty polyhedron. An inequality that appears as a row of
Ax⃗ ≤ z⃗ is redundant if and only if it can be written as a positive combination of other inequalities
in the system and the inequality 0x⃗ ≤ 1.

Proof. The “if” direction is trivial. Suppose the inequality a⃗0x⃗ ≤ z0 is redundant, and let A′x⃗ ≤ z⃗ ′

be the system obtained by deleting that row. Since P (A, z⃗) ̸= ∅, condition (ii) of Farkas III does not
hold (by Farkas I or an easy proof). Thus Farkas III says that there exists a row vector c⃗ ≥ 0 such
that c⃗A′ = a⃗0 and c⃗ z⃗ ′ ≤ z0. Let z1 = c⃗ z⃗ ′. Then c⃗Ax⃗ ≤ c⃗ z⃗ ′ is the inequality a⃗0x⃗ ≤ z1, a positive
combination of the inequalities A′x⃗ ≤ z⃗ ′. The inequality a⃗0x⃗ ≤ z0 is this positive combination plus
γ(0x⃗ ≤ 1⃗), where γ is the nonnegative scalar z0 − z1. □

Here is another true statement for polyhedra, with conclusion closer to what we’re looking for,
but with an additional hypothesis:

Proposition 2. An inequality that appears as a row of Ax⃗ ≤ z⃗ and that defines a nonempty face of
P (A, z⃗) is redundant if and only if it can be written as a positive combination of other inequalities
in the system.

Proof. The “if” direction is still trivial. Suppose the inequality a⃗0x⃗ ≤ z0 is redundant, and let
A′x⃗ ≤ z⃗ ′ be the system obtained by deleting that row. Then as above, there exists c⃗ ≥ 0 and γ ≥ 0
such that the inequality a⃗0x⃗ ≤ z0 is c⃗Ax⃗ ≤ c⃗ z⃗ ′ plus γ(0x⃗ ≤ 1⃗). But c⃗Ax⃗ ≤ c⃗ z⃗ ′ is valid for P , and
thus c⃗ z⃗ ′ is greater than or equal to the maximum, over P , of the linear functional c⃗A. If γ > 0,
then c⃗ z⃗ ′ + γ is strictly greater than the maximum, over P , of the linear functional c⃗A. Therefore,
no point in P satisfies a⃗0x⃗ = z0, and thus the face defined by a⃗0x⃗ ≤ z0 is empty, contradicting the
hypothesis. We conclude that γ = 0. □

Finally, what the book was asking you to prove.

Proposition 3. Suppose P (A, z⃗) is a d-polytope in Rd. An inequality that appears as a row of
Ax⃗ ≤ z⃗ is redundant if and only if it can be written as a positive combination of other inequalities
in the system.

Proposition 3 follows immediately from Proposition 1 and the following lemma.

Lemma 1. If P = P (A, z⃗) is a d-polytope in Rd, then 0x⃗ ≤ 1 is a positive linear combination of
inequalities in the system Ax⃗ ≤ z⃗.

Proof. Wemay as well assume A has no zero rows. (If A has a zero row, then either the corresponding
entry of z⃗ is zero, and we can delete that irrelevant row, or the corresponding entry of z⃗ is positive,
in which case, we can scale that row to be 0x⃗ ≤ 1 and we’re done.)

If A is an m × d matrix, we are looking for a vector c⃗ ∈ (Rm)∗ with c⃗ ≥ 0 such that c⃗A = 0
and c⃗ z⃗ = 1. Equivalently, a vector c⃗ with c⃗ ≥ 0 such that c⃗ (A, z⃗) = (0, 1). Dualizing Farkas II,
we see that this exists if and only if there does not exist a column vector w⃗ and a scalar s with
(A, z⃗)( w⃗s ) ≥ 0⃗ and (0, 1)( w⃗s ) < 0. Equivalently, there does not exist w⃗ ∈ Rd and t > 0 such that

Aw⃗− tz⃗ ≥ 0⃗, or in other words Aw⃗ ≥ tz⃗. Equivalently (taking v⃗ = w⃗/t) there does not exist v⃗ ∈ Rd

with Av⃗ ≥ z⃗.
If such a v⃗ does exist, let x⃗ be a vector in the interior of P , so that Ax⃗ < z⃗. (This is by Lemma 2.8

since A has no zero rows.) Since Ax⃗ < z⃗ and Av⃗ ≥ z⃗, we know that x⃗ ̸= v⃗. For any λ ≥ 1, the
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vector x⃗′ = λx⃗+ (1− λ)v⃗ has Ax⃗′ ≤ λz⃗ + (1− λ)z⃗ = z⃗. Thus the vectors x⃗′ for λ ≥ 1 constitute a
ray in P , contradicting the hypothesis that P is a polytope. (Polytopes are bounded!) We conclude
that the desired vector c⃗ exists. □

Part (ii). I don’t see how to do this with a Farkas lemma. Suppose P = P (A, z⃗) is nonempty. As
in the description of the problem, P is a d-polytope in Rd. Suppose the inequality a⃗x⃗ ≤ z in the
system is not redundant, and let A′x⃗ ≤ z⃗ ′ be the system obtained by deleting the row a⃗x⃗ ≤ z from
Ax⃗ ≤ z⃗. Then there is a point x⃗ in P (A′, z⃗ ′) that is not in P (A, z⃗). We can take x⃗ to be in the
interior of P (A′, z⃗ ′). (If not, then P (A, z⃗) contains the interior of P (A′, z⃗ ′). But then since P (A, z⃗)
is closed, it contains P (A′, z⃗ ′), which is a contradiction.)

Let y⃗ be a point in the interior of P (A, z⃗). Then the line segment [x⃗, y⃗] intersects the hyperplane
H =

{
x⃗ ∈ Rd : a⃗x⃗ = z

}
in a single point y⃗′. But then y⃗′ is in the interior of P (A′, z⃗ ′), because

both x⃗ and y⃗ are. (Easy exercise using Lemma 2.8: The interior of a polyhedron is convex. By the
way, slightly harder but not hard: The interior of a convex set is convex.) Thus there is an open
d-dimensional ball B containing y⃗′ and contained in P (A′, z⃗ ′).

The face of P (A, z⃗) defined by a⃗x⃗ ≤ z is {x⃗ ∈ P (A, z⃗) : a⃗x⃗ = z}, which equals P (A′, z⃗ ′) ∩ H,
since the two systems differ only by the inequality a⃗x⃗ ≤ z. But P (A′, z⃗ ′) ∩H contains the (d− 1)-
dimensional set B ∩H, so the face is (d− 1)-dimensional, or in other words, it is a facet.

Part (iii). The “only if” direction follows immediately from the definition of a face. Suppose the
inequality a⃗x⃗ ≤ z is valid for P and has a⃗x⃗F = z. Since it is valid for P , it is valid for F . By
Lemma 2.9, we see that a⃗x⃗ = z for all x⃗ ∈ F . (Recall that in class we explained why the conditions
of Lemma 2.9 are also equivalent to the assumption that y⃗ is in the relative interior of P . We apply
the Lemma with P = F and y⃗ = x⃗F , and conclude that condition (ii) of the lemma holds.) Since
F is (d − 1)-dimensional H =

{
x⃗ ∈ Rd : a⃗x⃗ = z

}
is a hyperplane containing F , we conclude that

aff(F ) = H, so that F = P ∩ H by Proposition 2.3(iv). In other words, the inequality a⃗x⃗ ≤ z
defines F .

Part (iv). Certainly, any nontrivial inequality can be scaled in that way. Suppose there are two

such linear inequalities, a⃗x⃗ ≤ z1 and b⃗x⃗ ≤ z2. As in (iii), both are satisfied with equality on the
same hyperplane aff(F ). Thus they are multiples of each other. They also point the same direction
so one is a positive mulitple of the other. But if that multiple is γ, then

1 =

d∑
i=1

|bi| =
d∑

i=1

|γai| = γ

d∑
i=1

|ai| = γ.

The rest of the problem. Suppose there is an irredundant description of a d-polytope P ⊂ Rd as
P (A, z⃗). By (ii), each of the inequalities defines a facet. By (iv), each defines a distinct facet.

Suppose some facet F is not defined by an inequality in the system. Choose a point x⃗F in the
relative interior of F . By (iii), none of the defining inequalities is satisfied with equality at x⃗F . Thus
x⃗F is some positive distance from the hyperplane for each defining inequality. Since there are only
finitely many inequalities in the system, there is an open ball B about x⃗F that is disjoint from all
of these hyperplanes, and thus since x⃗F ∈ P , the entire ball B is in P . Now let a⃗x⃗ ≤ z be a valid
inequality that defines F . Although it is not in the system, by definition of a face, such an inequality
exists. But then by (iii), a⃗x⃗F = z, so the inequality a⃗x⃗ ≤ z cannot hold on the entire d-dimensional
ball B ⊂ P , contradicting the assumption that a⃗x⃗ ≤ z is valid.

We have showed that an irredundant system of linear inequalities defining a d-polytope in Rd

contains exactly one facet-defining inequality for each facet, and contains no other inequalities. The
statement also follows from Proposition 2.2(i) because polarization takes vertices to facet-defining
inequalities.

If dim(P ) < d, then facet-defining inequalities are no longer unique up to scaling. Instead, there
is are d− dim(P ) additional degrees of freedom. The same level of uniqueness can be recovered by
requiring that the a⃗ in a facet-defining hyperplane a⃗x⃗ ≤ z lie in the subspace of (Rd)∗ that is dual
to aff(P ).


