
MA 724
Homework 4, Comments and some solutions.

Lecture 2, Problem 0

Let P be a polyhedron and let F0 be minimal among nonempty faces of P . We are to show that
for any x⃗0 ∈ F0, the lineality space of P is lin(P ) = F0 − x⃗0. Here F0 − x⃗0 means {x⃗− x⃗0 : x⃗ ∈ F0}.
In particular, F0−x⃗0 is a linear subspace. The “Thus,...” statement in the book follows immediately.

One nice proof consists of using Additional Problems 1 and 2 from the previous assignment and
then using a Farkas Lemma.

Translating the polyhedron does not change the lineality space, so we may as well translate to make
x⃗0 = 0⃗. By Additional Problems 1 and 2, we need to show that F0 =

{
y⃗ ∈ Rd : ty⃗ ∈ F0 for all t ∈ R

}
.

On one hand,
{
y⃗ ∈ Rd : ty⃗ ∈ F0 for all t ∈ R

}
⊆

{
y⃗ ∈ Rd : 1y⃗ ∈ F0

}
= F0.

Suppose there exists y⃗ ∈ F0 such that y⃗ ̸∈ lin(F0). That means that there exists t ∈ R such that

ty⃗ ̸∈ F0. In particular, y⃗ ̸= 0⃗. By Farkas IV, there exists a linear inequality a⃗x⃗ ≤ α that is valid
for F0 but not satisfied by ty⃗. (This interpretation of Farkas IV is found in the paragraph before
Proposition 1.10 and was also given in class.) Let α′ = maxx⃗∈F0

a⃗x⃗. This maximum is attained

at a unique point on the line segment [⃗0, ty⃗] since 0⃗ ∈ F0, since a⃗x⃗ ≤ α is valid for F0 and since
a⃗(ty⃗) > α. The face G = {x⃗ ∈ F0 : a⃗x⃗ = α′} is a proper, nonempty face of F0, because it contains

only one point on [⃗0, ty⃗], but F0 contains the entire line segment [⃗0, y] ⊂ [⃗0, ty⃗]. This contradiction
shows that F0 =

{
y⃗ ∈ Rd : ty⃗ ∈ F0 for all t ∈ R

}
.

If a polyhedron P has a vertex, then that vertex has lineality space {⃗0}, so by Additional Problem

2 from last time, P has lineality space {⃗0}.

Lecture 2, Problem 2

Let P = P (A, z⃗) be a polytope, for A ∈ Rm×d and z⃗ ∈ Rm. Then the map η : x⃗ 7→ (Ax⃗ − z⃗) is
an affine map from Rd to Rm, so its image is an affine subspace. Now, x⃗ ∈ Rd is in P if and only

if η(x⃗) ≤ 0⃗, so η(P ) is intersection of the affine subspace η(Rd) with the orthant
{
y⃗ ∈ Rm : y⃗ ≤ 0⃗

}
.

If ker(A) has a nonzero vector w⃗, then the line spanned by w⃗ is in the lineality space of P (check
the defining inequalities!), contradicting the assumption that P is a polytope (and thus bounded).
So η is one-to-one, and therefore it restricts to a bijection between P and η(P ). Thus P is affinely
equivalent to η(P ). Since P is bounded, and η(P ) is affinely equivalent to P , η(P ) is also bounded.

Lecture 2, Problem 4

You should have used Theorem 2.7, but of course not any part of that theorem that was proved
using duality (the “coatomic” property and the fact that L(P )op is the face lattice of a polytope).
Luckily, the rest of the thoerem is enough:

Let F be a proper (!) face of P and consider a maximal chain in [F, P ] ⊆ L(P ). Since L(P ) is
graded and the rank function is dimension + 1, the element covered by P in the chain has dimension
dim(P )− 1, or in other words it is a facet.

Lecture 2, Problem 7

Interpret each column of M(P ) as the set of vertices of a facet of P . Then take all intersections
of these sets (i.e. for each set of columns, take the intersection). Since L(P ) is coatomic, every
face’s vertex set appears in this way. Then order these vertex sets by containment to get L(P ).
The dimension is obtained as the length of the longest chain minus one. The matrix M(P△) is the
transpose of M(P ).
Comment: All of you should have checked your solution against a small example. This is always a
good idea. You might have assumed that, in a d-polytope, the intersection of two facets is a face of
dimension d− 2. This is not necessarily true. In this case, a square would have been an instructive
example.
Another comment: Another common mistake is trying to build the face lattice “from the bottom
up.” That’s a lot harder. Why? Because we know the meet operation is intersection, and that
interacts well with considering vertex sets of faces. Is there a similarly simple expression for the join
operation? For example, what is the join of two vertices of a 3-cube?
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