MA 724 Homework 2, Comments and some solutions.

CHAPTER 0, PROBLEM 3

I graded this out of 4 points each for the 4 different things you had to prove.

Dimension. Since Π_{d-1} is contained in the hyperplane $\left\{ \vec{x} \in \mathbb{R}^d : \sum_{i=1}^d = \binom{d+1}{2} \right\}$, its dimension is at most d-1. We will show that there are d linearly independent vertices of Π_{d-1} These will then be affinely independent, so that their affine span has at least dimension d-1. This is trivial for d=1, so assume d>1. Take the vertices in the permutohedron whose last coordinate is d. These are obtained from the vertices of Π_{d-2} by adjoining a new last coordinate d. By induction, there are d-1 linearly independent vertices of Π_{d-2} , and when we adjoin a new last coordinate d, we obtain d-1 linearly independent vectors in \mathbb{R}^d , all of which are vertices of Π_{d-1} . Each of these new vectors has $x_1 + \cdots + x_{d-1} = \binom{d}{2}$ and $x_d = d$, so they are contained in the linear subspace of points satisfying $x_1 + \cdots + x_{d-1} - \frac{d-1}{2}x_d = 0$. It's now easy to find a vertex of Π_{d-1} not contained in this subspace, for example, the point \vec{x} with $x_1 = n$, $x_2 = n-1$, etc., which has $x_1 + \cdots + x_{d-1} - \frac{d-1}{2}x_d = \left[\binom{d+1}{2} - 1\right] - \frac{d-1}{2} = \frac{d^2-1}{2}$, which is nonzero for d > 1.

Comment: Many of you did this by showing that the vertex for the identity permutation, and all its d-1 neighbors, constitute a linearly (and thus affinely) independent set. That's a fine way to do it, but notice that it's much easier to subtract the coordinates of the identity permutation from all of them, and show that the d-1 neighbors are linearly independent. Also, notice that if you want to show that all d vectors form an independent set, it's much easier to use *column* operations in this case.

Facets. We will show that the facets are in bijection with the nonempty proper subsets of [d]. Given such a subset, the corresponding inequality is $\sum_{i \in S} x_i \ge {\binom{|S|+1}{2}}$. All vertices of Π_{d-1} (and thus all points of Π_{d-1} satisfy this inequality, because the smallest that $\sum_{i \in S}$ can be is $1 + 2 + \cdots + |S| = {\binom{|S|+1}{2}}$. This is attained for all vertices having the values 1 through |S| in their coordinates indexed by indices in S. The convex hull of these vertices is a (d-2)-polytope isomorphic to $\Pi_{|S|-1} \times \Pi_{d-|S|-1}$, so these inequalities define facets. It only remains to show that there are no other facets.

The facet defined by S contains the vertex $\vec{x}_0 = \begin{pmatrix} 1\\ 2\\ \vdots\\ d \end{pmatrix}$ if and only if $S = \{1, \ldots, i\}$ for some *i* with

 $1 \leq i < n$. If $S = \{1, \ldots, i\}$ and $S' = \{1, \ldots, j\}$ with i < j, then the intersection of the facets defined by S and S' contains all vertices with the values 1 through i appearing as the first through ith coordinates, and i + 1 through j appearing as the (i + 1)st through jth coordinates. Arguing similarly, we see that the intersection of all of these facets containing \vec{x}_0 , except the facet defined by $\{1, \ldots, i\}$, has exactly two vertices: \vec{x}_0 and the point \vec{x}_i whose ith coordinate is i + 1, whose (i + 1)st coordinate is i, and whose jth coordinate is j for $j \notin \{i, i + 1\}$ (as asserted in Ziegler). Consider the polyhedron P defined only by the facet-defining inequalities for facets, defined by subsets, containing \vec{x}_0 . Then P contains Π_{d-1} , and P is $\vec{x}_0 + \text{cone}(\{\vec{x}_i - \vec{x}_0 : i \in [d]\})$. If there are any additional facets containing \vec{x}_0 besides those defined by subsets, then these facets define a polyhedron P' strictly smaller than P. This P' is $\vec{x}_0 + \text{cone}(Y)$ for some set of vectors that cannot contain $\{\vec{x}_i - \vec{x}_0 : i \in [d]\}$, since P' is strictly smaller than P. In particular, some \vec{x}_i is not in Π_{d-1} and this contradiction shows that the only facets containing \vec{x}_0 are those defined by subsets. By the symmetry of permuting coordinates, we conclude that all facets of P are defined by subsets as above.

Simple. Since we know what the facets are, we notice that the facet defined by S contains the vertex labeled by the identity permutation if and only if $S = \{1, \ldots, i\}$ for some i with $1 \le i < n$. There are exactly d - 1 facets containing that vertex, and all vertices are symmetric by the symmetry of permuting coordinates, so Π_{d-1} is simple.

Zonotope. One way to do this is on p. 200 of Ziegler. We'll show another, less slick way.

We'll project the cube $[0,1]^{\binom{d}{2}} \subset \mathbb{R}^{\binom{d}{2}}$ to \mathbb{R}^d and show that the image is Π_{d-1} . Label the standard unit basis vectors for $\mathbb{R}^{\binom{d}{2}}$ as \vec{e}_{ij} for $1 \leq i < j \leq d$ and define a linear map $\varphi : \mathbb{R}^{\binom{d}{2}} \to \mathbb{R}^d$ by sending e_{ij} to $e_i - e_j$. Define an affine map $\bar{\varphi}$ sending \vec{x} to $\varphi(x) + \vec{x}_0$. To show that the image of the cube under $\bar{\varphi}$ is Π_{d-1} , we need to show two things: First, we'll show that every vertex of Π_{d-1} is the image of some vertex of the cube under $\bar{\varphi}$. That implies that Π_{d-1} is contained in the image. Then we'll show that each vertex of the cube projects into Π_{d-1} , by showing that the projections satisfy all of the facet-defining inequalities. That implies that the image is contained in Π_{d-1} .

Proposition 1. If \vec{x} is a vertex of Π_{d-1} , then there exists a vertex \vec{v} of $[0,1]^{\binom{d}{2}}$ such that $\bar{\varphi}(\vec{v}) = \vec{x}$. Specifically, \vec{v} is the vector in $\{0,1\}^{\binom{d}{2}}$ whose ij-coordinate is 1 if and only if $x_i > x_j$.

Proof. We argue by induction on the number of inversions of the permutation whose one-line notation is $x_1 \cdots x_n$. If there are no inversions, then $\vec{x} = \vec{x}_0 = \bar{\varphi}(\vec{0})$. Otherwise, there exists some $k \in [d-1]$ such that k precedes k+1 in $x_1 \cdots x_n$. Let \vec{x}' be the vector obtained by replacing k by k+1 and k+1 by k in the coordinates of \vec{x} . By induction, the vector \vec{v}' in $\{0,1\}^{\binom{d}{2}}$ whose ij-coordinate is 1 if and only if $x'_i > x'_j$ has $\bar{\varphi}(\vec{v}') = \vec{x}'$. Now $\bar{\varphi}(\vec{v}) = \bar{\varphi}(\vec{v}') + e_i - e_j = \vec{x}$, where i is the position of k+1 in \vec{x} and j is the position of k in \vec{x} .

Proposition 2. If \vec{v} is a vertex of $[0,1]^{\binom{d}{2}}$, then $\bar{\varphi}(\vec{v}) \in \Pi_{d-1}$.

Proof. First, we show that $\bar{\varphi}(\vec{v})$ satisfies the facet-defining inequalities for facets containing \vec{x}_0 , as described above. This amount to showing that, for each $i \in [d-1]$, the sum of the first *i* coordinates of $\bar{\varphi}(\vec{v})$ is at least $\binom{i+1}{2}$. We argue by induction on the number of 1's among the coordinates of \vec{v} . If there are no 1's, then $\bar{\varphi}(\vec{v}) = \vec{x}_0$, which satisfies the inequalities (with equality, in fact). Otherwise, suppose the *ij*-coordinate of \vec{v} is 1 for some $1 \leq i < j \leq d$, and let \vec{v}' be $\vec{v} - \vec{e}_{ij}$, the vector obtained by changing that 1 to 0. Then $\bar{\varphi}(\vec{v}') = \bar{\varphi}(\vec{v}) - \vec{e}_i + \vec{e}_j$, so for any $k \in [d-1]$, the sum of the first k coordinates of $\bar{\varphi}(\vec{v}')$ is at least as big as the sum of the first k coordinates of $\bar{\varphi}(\vec{v}')$. By induction, the inequalities hold for $\bar{\varphi}(\vec{v}')$, so the inequality holds for $\bar{\varphi}(\vec{v})$ as well.

To see that the other inequalities hold, make the same inductive argument with the following modifications: Instead of \vec{x}_0 , take any vertex \vec{x} of Π_{d-1} . Let \vec{v} be the vector in $[0,1]^{\binom{d}{2}}$ such that $\bar{\varphi}(\vec{v}) = \vec{x}$, which exists by the previous proposition. Let \vec{w} be any other vector in $[0,1]^{\binom{d}{2}}$. Instead of doing induction on the number of zeros in \vec{w} , do induction on the number of positions where \vec{w} differs from \vec{v} . When \vec{v} and \vec{w} differ at some position ij, either subtract or add \vec{e}_{ij} to make \vec{w} closer to \vec{v} . Instead of considering the first k positions, consider the positions where the coordinates of \vec{v} are 1 through k.

CHAPTER 0, PROBLEM 9

This was really 2 separate parts, so I graded it out of 8 (4 each).

The "show bijectively" question could be straight out of MA 524, although I think that without Gale's evenness criterion for context, it would have been harder to understand what was being asked. There are many nice ways to do this.

Proposition 3. The number of subsets $S \subseteq [n]$ such that S is a disjoint union of k pairs of the form $\{i, i+1\}$ is $\binom{n-k}{k}$.

Proof. Here is a bijection η from such subsets S to sequences of dots and rectangles with exactly k rectangles and n - 2k dots: Write the numbers $1, \ldots, n$ on a horizontal line. For each pair $\{i, i + 1\}$ in S, draw a rectangle around i and i + 1 and erase the numbers i and i + 1. Then replace each remaining number with a dot. The resulting sequence is $\eta(S)$. (For example, for n = 9 and $S = \{2, 3, 4, 5, 7, 8\}$, we would write $\bullet \square \square \bullet \square \bullet$.

The inverse map θ is as follows. Given a sequence T of dots and rectangles, starting from the left, write the numbers $1, \ldots, n$, one number replacing each dot and two numbers inside each rectangle. Then $\theta(T)$ is the set of numbers occurring inside rectangles.

Sequences of dots and rectangles with exactly k rectangles and n-2k dots are counted by $\binom{n-k}{k}$ because for each of the n-k positions in the sequence, we choose exactly k of them to be filled with rectangles. \Box

Now, we can count facets of the cyclic polytope $C_d(n)$. These are subsets that satisfy Gale's evenness criterion.

Proposition 4. The number of facets of $C_d(n)$ is $\frac{n}{n-k} \binom{n-k}{k}$ if d = 2k or $2\binom{n-k-1}{k}$ if d = 2k+1.

Proof. The vertices of $C_d(n)$ are $\{\vec{x}(t_1), \ldots, \vec{x}(t_n)\}$ with $t_1 < \cdots < t_n$. The facets of $C_d(n)$ are the convex hulls of sets $\{\vec{x}(t_i) : i \in S\}$ for sets S satisfying Gale's evenness criterion. (We will call such sets "Gale-even sets" in this proof.) A Gale-even set S is not necessarily a disjoint union of pairs of the form $\{i, i + 1\}$. Instead it is a disjoint union of sets $\{i, i + 1\}$ and possibly a set $\{1\}$ and/or a set $\{n\}$.

If d = 2k, then Gale-even sets come in two kinds: Either S is a disjoint union of k subsets $\{i, i+1\}$ of [n] or S is a disjoint union of $\{1, n\}$ and k - 1 subsets $\{i, i+1\}$ of $\{2, \ldots, n-1\}$. By Proposition 3, the first kind of subset is counted by $\binom{n-k}{k}$ and the second kind of subset is counted by $\binom{n-1-k}{k-1} = \binom{n-1-k}{k-1}$. The total number of Gale-even sets is

$$\binom{n-k}{k} + \binom{n-1-k}{k-1} = \binom{n-k}{k} + \frac{(n-k-1)!}{(k-1)!(n-2k)!} = \binom{n-k}{k} + \frac{k}{n-k} \cdot \frac{(n-k)!}{k!(n-2k)!} = \frac{n}{n-k} \binom{n-k}{k}.$$

If d = 2k - 1, then Gale-even sets again come in two kinds. This time, either S is a disjoint union of the set $\{1\}$ with k subsets $\{i, i + 1\}$ of $\{2, \ldots, n\}$ or S is a disjoint union of $\{n\}$ with k subsets $\{i, i + 1\}$ of $\{1, \ldots, n-1\}$. Proposition 3 implies that each kind of set is counted by $\binom{n-1-k}{k}$, for a total of $2\binom{n-k-1}{k}$. \Box

It is straightforward to go from Proposition 4 to the formula in the book using floors and ceilings, but I don't think that is an improvement. What is nice about the formula with floors and ceilings is that it is a huge hint for how you prove Proposition 4, by breaking up the count as a sum of two particular binomial coefficients and referring to Proposition 3.

For the estimates, I guess we could think hard about approximating binomial coefficients, but I just put them into Maple: $C_{10}(20) = 4004 \approx 4 \cdot 10^3$, $C_{10}(100) = 60990020 \approx 6 \cdot 10^7$, and $C_{50}(100) = 70118062854865191504 \approx 7 \cdot 10^{19}$.