
MA 724
Homework 1, Comments and some solutions.

Problem 0

It is enough to prove the following:

Claim 1. If x⃗1, x⃗2, x⃗3, x⃗4, x⃗5 ∈ R3 are not coplanar, then there exist i ̸= j ∈ [5] such that the line segment
[x⃗i, x⃗j ] is an edge of conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5).

One proof. If the claim fails, then we have a 3-polytope with 5 vertices, all pairs of which form an edge. The
boundary of the polytope is homeomorphic to a sphere, and the vertices and edges constitute an embedding
of the complete graph with five vertices into the sphere. The edges in this embedding don’t cross, because the
intersection of two edges would be a vertex. However, the complete graph on five vertices has no embedding,
without crossings, into the sphere. □

If you aren’t familiar with the result that the complete graph is not planar, then you can take a different
route.

Sketch of another proof. If x⃗1, x⃗2, x⃗3, x⃗4, x⃗5 ∈ R3 are not coplanar, then without loss of generality x⃗1, x⃗2, x⃗3, x⃗4

are also not coplanar, so their convex hull is a 3-simplex (tetrahedron). Each of the four facets of the tetra-
hedron is contained in some hyperplane. For each of these hyperplane, we will say a point is “inside” the
hyperplane if it is on the same side of the hyperplane as the tetrahedron is.

We want to show that, no matter where x⃗5 is, the claim holds. Up to symmetry, we need only consider
how many of the four planes x5 is inside. If it’s inside all four, the claim is easy. If it’s inside three of them,
conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5) is a bipyramid over a triangle, so the claim holds. If it’s inside two of them, name the
hyperplanes it is outside as H1 and H2. Then the intersection H1 ∩H2 ∩ conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5) is an edge
of the tetrahedron that is in the interior of conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5). If it’s inside one of them, the the three
hyperplanes it is outside intersect conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5) in a vertex, without loss of generality x⃗1, and the
line segment [x⃗1, x⃗5] is in the interior of conv(x⃗1, x⃗2, x⃗3, x⃗4, x⃗5). It’s impossible for a point to be outside of
all four hyperplanes. □

Problem 5

I will do this in a way that looks forward to the more explicit definition of faces that we will soon have.
For each nonempty face F of a polytope P , there exists one or more linear functionals whose maximum on
P is attained on precisely the set F . Conversely, given a linear functional f , the subset of P where f attains
its maximum on P is a face of P . (Why is this definition of faces as sets maximizing linear functionals the
same as the “supporting halfspaces” definition from class?)

A linear functional is a row vector c⃗ = [c1, c2, . . . , cd], interpreted as a function from Rd to R given
by matrix multiplication x⃗ 7→ c⃗ x⃗. The set of points in the cube that maximize c⃗ is the set of points{
x⃗ : xi =

ci
|ci| when ci ̸= 0 and − 1 ≤ xi ≤ 1 when ci = 0

}
. To find faces, we may as well replace each

nonzero ci by ci/|ci|, so that c⃗ ∈
(
{−1, 0, 1}d

)∗
. (Ziegler didn’t bother with the ∗ here, but I’ve got

it since c is a row vector.) Each choice of c⃗ gives a different set of maximum points. This puts the

nonempty faces of Cd in bijection with the vectors c⃗ ∈
(
{−1, 0, 1}d

)∗
. Specifically, the bijection sends c⃗ to

{x⃗ ∈ Cd : xi = −1 if ci = −1 and xi = 1 if ci = 1}.
We also answered the optimization problem. For the separation problem, a point y⃗ is not in Cd if and

only if it violates some inequality yi ≤ 1 or yi ≥ −1. We can see which by just examining the coordinates
of y⃗. (Note: The separation asks for a linear inequality, so |yi| ≤ 1 is not the answer. The book should
have asked you to give a linear inequality that is violated by y⃗.)

You did not have to write anything about other polytopes, but I hope you thought about it. The main
general ideas I want you to take away from this problem are:

(1) The separation problem is easy when you know a small set of inequalities defining the polytope (We
haven’t discussed this yet, but a smallest possible set of inequalities has exactly one for each facet);
and
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(2) For any linear functional, there is always a vertex (or more than one) that obtains the maximum.
(We’ll see when we consider faces more carefully.) Thus, the optimization problem is easy when you
have a short list of all vertices, and their coordinates.

By the way, optimization is easy on a cyclic polytope: To maximize [c1 c2 · · · cd], you just have to evaluate
c1t+ c2t

2+ · · ·+ cdt
d for each of the values t1, . . . , tn defining Cd(t1, . . . , tn). Separation may also be not too

bad: You can use Gale’s Evenness Criterion to find formulas for all of the facet-defining inequalities. (It’s
that polynomial that came from the determinant, the one we used to prove the Criterion.)

Additional problem 1

We need to show that the set

conv(K) =
{
λ1x⃗1 + · · ·+ λkx⃗k : {x⃗1, . . . , x⃗k} ⊆ K, λi ≥ 0,

k∑
i=1

λi = 1
}

is convex. Take x⃗ = λ1x⃗1 + · · · + λnx⃗n and y⃗ = µ1y⃗1 + · · · + µmy⃗m in conv(K) (and in particular, take
each x⃗i and y⃗i in K) and let 0 ≤ ν ≤ 1. We need to show that νx⃗ + (1 − ν)y⃗ ∈ conv(K). But this is just
(νλ1)x⃗1 + · · · + (νλn)x⃗n + (1 − ν)µ1y⃗1 + · · · + (1 − ν)µnx⃗n. Each of these coefficients is between 0 and 1,
and it’s easy to see that they sum to 1, so νx⃗+ (1− ν)y⃗ ∈ conv(K).
Comment 1: You have to start with two completely general points in the set. Specifically, you can’t assume
immediately that x⃗ = λ1x⃗1 + · · · + λnx⃗n and y⃗ = µ1x⃗1 + · · · + µnx⃗n for the same set {x1, . . . , xn}. (You
can, however, write x⃗ as a convex combination of vectors in {x1, . . . , xn}∪ {y1, . . . , ym}, but then you would
probably finish the argument differently, in a way that relates to Comment 2.)
Comment 2: If {x1, . . . , xn} ∩ {y1, . . . , ym} is nonempty, then the expression (νλ1)x⃗1 + · · · + (νλn)x⃗n +
(1− ν)µ1y⃗1 + · · ·+ (1− ν)µnx⃗n is not really a convex combination of vectors, because some vectors appear
twice. But this is easily fixed by “combining like terms”, and that doesn’t hurt the fact that the coefficients
sum to 1.

Additional problem 2

a. If z⃗ ∈ S, then z⃗ = x⃗+ w⃗ for some w⃗ ∈ L. Since y⃗ ∈ S, we also have y⃗ = x⃗+ u⃗. Thus z⃗ = (y⃗ − u⃗) + w⃗ =

y⃗ + (−u⃗+ w⃗) ∈ y⃗ + L. Thus x⃗+ L ⊆ y⃗ + L. In particular, since x⃗ = x⃗+ 0⃗ ∈ x⃗+ L, we have x⃗ ∈ y⃗ + L, so
the symmetric argument shows that y⃗ + L ⊆ x⃗+ L.

b. Given {x⃗1, . . . , x⃗n}, we can write aff({x⃗1, . . . , x⃗n}) = v⃗ + L for a vector v⃗ and linear subspace L. Since
x⃗n ∈ aff({x⃗1, . . . , x⃗n}), part a says that aff({x⃗1, . . . , x⃗n}) = x⃗n + L.

The property of being an affine subspace is preserved by translation (i.e. adding a fixed vector), so if we

add −x⃗n thoughout, we see that aff(
{
x⃗1 − x⃗n, . . . , x⃗n−1 − x⃗n, 0⃗

}
) = L.

Now, recall that aff(K) is the smallest affine subspace containing a set K, and recall also that every
linear subspace is in particular an affine subspace. Since L is a linear subspace and also the smallest

affine subspace containing
{
x⃗1 − x⃗n, . . . , x⃗n−1 − x⃗n, 0⃗

}
, we conclude that L is the smallest linear subspace

containing
{
x⃗1 − x⃗n, . . . , x⃗n−1 − x⃗n, 0⃗

}
. Thus L has dimension ≤ n− 1, so v⃗ + L has dimension ≤ n− 1.

c. Recall that a set {x⃗1, . . . , x⃗n} is affinely independent if and only if its affine hull is (n − 1)-dimensional.

Thus, continuing from the argument in part b, (and leaving out the unnecessary 0⃗ in the set), we see that
{x⃗1, . . . , x⃗n} is affinely independent if and only if {x⃗1 − x⃗n, . . . , x⃗n−1 − x⃗n} is linearly independent.

The set {x⃗1 − x⃗n, . . . , x⃗n−1 − x⃗n} is linearly dependent if and only if there exist constants c1, . . . , cn−1,

not all zero, such that
∑n−1

i=1 ci(x⃗i − x⃗n) = 0⃗. Equivalently, if and only if there exist constants c1, . . . , cn−1,

not all zero, such that
∑n−1

i=1 cix⃗i + (−
∑n−1

i=1 ci)x⃗n = 0⃗.

We see that this is equivalent to the existence of constants c1, . . . , cn, not all zero, such that
∑n

i=1 cix⃗i = 0⃗

and
∑n

i=1 ci = 0⃗. (Given constants c1, . . . , cn−1 as in the previous paragraph, set cn = −
∑n−1

i=1 ci. Given

constants d1, . . . , dn, not all zero, such that
∑n

i=1 dix⃗i = 0⃗ and
∑n

i=1 di = 0⃗, note that dn = −
∑n−1

i=1 di and
thus that d1, . . . , dn−1 are also not all zero.)


